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Scientific Context: Physics-Informed Machine Learning

=>» Enable prior scientific knowledge based on physics to be taken into account in data-driven machine learning methods
e.g including PINNs - Physics-Informed Neural Nets (Raissi’s paper in 2019)

=>» Has been successfully and increasingly applied to solve a wide variety of linear and nonlinear problems in physics,
covering various fields like mechanics, fluid dynamics, thermodynamics, electromagnetism ... including :
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e Solving Navier—Stokes equations coupled with the
corresponding temperature equation for analyzing heat flow
convection (NSE+HE). Cai et al, 2021

| —] ~1300 papers

., NSE
GE) Veu =0
D U+ (V= -Vp + (Re)'T » * Solving incompressible Navier—Stokes equations (NSE). Jin et
| . s papers
- al., 2020.
©
R}
Q- —
EU P = 0 * Solving Euler equations (EE) that model high-speed
- aerodynamic flows. Mao et al, 2019

iR BER =0 * Solving the nonlinear Shrédinger Equation (SE).

~30 papers

Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics. 378. Online

Cuomo, S., et al., (2022). Scientific machine learning through physics—informed neural networks: Where we are and what’s next. Journal of Scientific Computing, 92(3), 88. Read Online 3


https://link.springer.com/article/10.1007/s10915-022-01939-z
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125

Hybrid modeling: combining ML and Physical Simulation

In engineering, it allows

=» the integration of analytical knowledge derived from physical laws governing the studied systems,
* to augment th statistical knowledge learned from observed/measured data

» for reducing the high cost of physical simulation, in particular in the industrial sector

=>» Promising : 1st recommendation from the French Academy of Technologies in its 2020 report:

It will be ncessary to build hybrid approaches, combining basic physics and learning:
i.e. Knowledge and physico-mathematical modeling With Information extracted by deeplearning from data.

«Calcul et données : nouvelles perspectives pour la

9 Despite its SCientiﬁC Cha“enges’ this hybridization iS SUitable for simulation numériqueéhaute performance,» Rapport de

I’Académie des Technologies, Décembre 2020. ISBN : 979-

numerical simulation in the industrial sector 10-97579-23-4, Lire en ligne


http://academie-technologies-prod.s3.amazonaws.com/2021/02/12/11/24/55/55ec7fb7-3abb-4fde-a26f-b66d4b9e4b4e/CalculEtDonn%C3%A9es.pdf

ML for Physical Simulation in Industry

* Covering various fields in physics (mechanics, fluid dynamics, aerodynamics, electromagnetism ...)

* |In a wide variety of Applications in industry, in particular in numerical simulation

Electricity (power grids) Aerodynamics Solid Mechanics pneumatics  Fluid Flows/Dynamics
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Picture from Marot, A., et al. (2018, October).
Guided machine learning for power grid

segmentation. In 2018 IEEE PES Innovative /° //'/ | o~ | SN Picture from Emmanuel Menier
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Challenges : Physical systems that are Scientific Challenges
- Complex to model/solve analytically * Problems highly-nonlinear, high-dimensional, with complex
structures (eg. organized in graphs...
- Compuationally expensive to solve numerically * Need for adapted NN architectures: Graph NNets, Deep AE ..

eg. , Computational Fluid Dynamics — CFD, Turbulance, Flows



Deep NNets for Unsupervised representation Learning

* Nnets with a hidden layer are universal approximators
* Nnets are capable to recover highly non-linear relationships in the data

* Adapted architectures that work in a low-dimensional (latent) space

Shallow / Linear Deep / Non-Linear
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POD: proper orthogonal decomposition
PCA: principal component analysis

Auto-Encoding Deep Nets

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. Read Online 6



https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010719-060214

Hybrid ML modeling for solving Partial Differential Equations

|
@ Observations @ Parameters

'

— @ ———> f+DIfy)=
Variables

Mlnlmlzatlon (fx) - y)2 + (f + D [f; n])?
|

Al solver Differential equation

A neural framework for solving PDEs, where

* the Al solver is a PINN trained to estimate target function f.

* The derivative of x is calculated by automatically differentiating the NN’s outputs.
* When the differential equation D(f;n) is unknown (parameterized by n), it can be

estimated by solving a multi-objective loss that optimizes both the functional
form of the equation and its fit to observations y.

Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online

- Eg. Learning Computational
Fluid Dynamics

- Navier-Stokes Equations:
fundamental partial
differentials equations (PDE)
that describe the flow

of incompressible fluids.

C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de
I’Acad. d. Sci.,6, 398 (1822)

C.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, Trans.
Cambridge Phys. Soc., 8, (1845)

- Challenge: High-Dimensional
non-linear Physical Equations

Simulation from Emmanuel Menier


https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf

Hybrid ML and Physical Simulation in Industry

Eg. Deep Statistical Solvers (DSS) Learn the states U=(U)

Context: Simulation of a Power Grid flow of the Interaction Graph G :
, l U (G) = in /(U,G
Problem: ,-,E 1 (@) e U.G)
Given injections (productions and ;
. C . ! a) G~D b) G~D
consumptions) inj:, inj., injs, 3 h
compute the flows of electricity in a i & o]
all lines l1, Io, Is, L g wg) Qﬂ] @J:r_@)
The "proxy" approach (SoTA): learning from known 5 8

. . ) U u U
solutions of the problem, provided by a classical solver.

=» Cons: needs a huge number of training examples :
(i.e., UN(G)): too costly to obtain and no exact solutions

=> The DSS directly trains Solvery by minimizing the o=t (G
loss ¢ with no need for such examples.

5— o Proxy approach (a) vs. Deep
Statistical Solver - DSS (b)

machine learning for power grid segmentation. In 2018 function

............
Picture from Marot, A., et al. (2018, October). Guided Trainable g e
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IEEE PES Innovative Smart Grid Technologies A~k | ntermediate - G G Gk
Conference Europe (ISGT-Europe) (pp. 1-6). output : + + +
IO R = i R Graph Neural Network
Ina .
U gpu | €U ,G) ¢«u ,G) t(u G tu ,G) architecture of a DSS
- Donon, B., et al. (2020). Deep statistical solvers. Advances in Neural Information Processing Systems, 33, 7910-7921. Read Online 8

- Donon, B. (2022). Deep statistical solvers & power systems applications (Doctoral dissertation, Université Paris-Saclay). Read Online


https://proceedings.neurips.cc/paper/2020/hash/5a16bce575f3ddce9c819de125ba0029-Abstract.html
https://theses.hal.science/tel-03624628v1/document

Contributions @ SystemX: The Research Program |1A2

Intelligence
artificielle
et ingénierie
augmentée

Artificial Intelligence
an Augmented Engineering

HSA: Simulation/machine learning hybrid modeling
How industrials solvers and learned models can enrich each other ?

AFS: Agility and fidelity of simulations
How to imporve agility and fidelity of simulation in complex
systems design?

S2I: Industrial infrastructure supervision
How to improve decision-making on distubuted industrial
systems via machine learning technices ?

e aprogram with 6
R&D collaborative
projects based
on concrete industrial
use cases

SAA: Augmented multi-agent simulation
How can multi-agent models benefit from real data and bring
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SMD: Business Semantics for Multi-source Data Mining

How to link heterogeneous data with established practical
knowledge?

e Area: Hybrid Al

CAB: Cockpit and Bidirectional Assistant
How to develop a virtual assistant that learns from expert and
learns the expert

Credit to IA2 Program 10



https://www.irt-systemx.fr/programmes-de-recherche/ia2

Challenges

» Augementing/Replacing physical solvers with data-driven models that integrate
physical constraints

» Building model architecture adapted to the complex physical structures/systems MICHELIN

e Reducing the simulation cost

Q
N AIRBUS
Possible solutions (studied as part of the HSA project): e
e Hybrid Machine Learninrg as surrogate models for physical
simulation, aiming to Replace physical solvers with [—=
E= Different . PDEs FEM . Ground Truth
- Physical Parameters Mesh Data

DATA GENERATION
Errors

* Deep learning models intergrating physical constraints (eg. DL Model ~ —  Predictions

Deep Graph Nets for PDEs) T Optimizing

Data-driven methods to solve PDEs. PhD thesis of W. Liu 2023 (LISN, INRIA/SystemX). ). Read Online
11


https://theses.hal.science/tel-04156859/

HSA Project : Simulation/machine learning hybrid modeling ::‘::;;:'::,ie

* Augementing/Replacing physical solvers with data-driven models

that integrate physical constraints

* Hybrid Machine Learninrg as surrogate models for physical
simulation

=> Deal with high-dimensional, non-linear, and complex structured
systems (e.g reduced modeling, ..)

Different FEM . Ground Truth
Physical Parameters FDIES Mesh Data

DATA GENERATION
Errors

» DL Model — " Predictions

I Optimizing

Deep Graph Neural Networks for Numerical Simulation of PDEs
PhD thesis de W. Liu. 2023 (LISN, Inria/SystemX). Read Online

@ airLiquide ﬁ@lgm{y AIRBUS

Intelligence

augmentée

https://www.irt-systemx.fr/projets/HSA/

POD
Space

Memory

S B=

Space

Time Convolution

High-Dimensional non-linear Physical Equations

Reduced models and deep learning for PDEs

PhD Thesis of E. Menier (in progress) (LISN, Inria/SystemX)

E. Menier et al., 2023. CD-ROM: Complementary Deep-Reduced Order
Model. Computer Methods in Applied Mechanics and Engineering 410. Read Online
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https://theses.hal.science/tel-04156859/
https://arxiv.org/pdf/2202.10746.pdf

Intelligence

Project HSA : simulation and deep learning of graphs et

augmentée

Graph Neural Nets for 3D meshes
More suitable, as they operate by
construction on graphs

Ground Truth Graph U-Net Absolute Error
Prediction of the airflow profile around an

aircraft wing (Air Foil) .

Physics: Navier-Stokes equations

PhD theis of W. Liu, 2023 (LISN, Inria/SystemX)

13



Intelligence

HSA Project: Hybridization and transfer learning sl
augmentée
* Generic nature of the learned models
: . Wheel contact profile
e Transfer learning for improved results
* Prediction can be improved via transfer learning: from low fidelity Physics: contact equations
(coarse mesh) to high fidelity (finer mesh) models
Transfer §§ :::Z
Model ft Q Oi:: Oizzz
+ Pred Uy Ground Truth Uy Absolute Error o

Physical X
Quantities

000 00021
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PhD Thesis of W. Liu, 2023 (LISN, Inria/SystemX)

Pre-trained
Model f,

14
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Interpretable learning of effective dynamics (ILED) architecture:

E %20 D

The high-dimensional system

High-Dimensional non-linear Dymical

Systems: zmiD | -
=
G . d ' t—s)A,
oals: —2=[A 2H|¥0, |2 et W, ,(z) ds|| @
Recover the dynamics, non-linearity in a - °
. . . . . g €]
high-dimensitonal setting FAo Hon=lneas
Zn D &

The lower-dimensional representation (z) is
propagated in time using a linear and a non-
linear part based on the Mori-Zwanzig formalism

The decoder D reconstructs
the high-dimensional systems.

Menier, E., et al. (2023). Interpretable learning of effective dynamics for multiscale systems. arXiv preprint arXiv:2309.05812. Read Online =


https://arxiv.org/abs/2309.05812

Perspectives worth exploring

16



Topics for progress: Uncertainty Quantification (UQ)

. . . . samples  —-- sample mean —- baseline
=>» UQ should be inherent to hybrid models and systems engineering NS (Huser et al. 1993) x x observations
- quantify and guarantee desirable learning and prediction L 1.0

performance, by characterizing/controlling data and model bias o

0.6 0.6

=» Bayesian learning is a principled framerwork to account <
for uncertainty 04

0.2

=
~
b

0.4

0.2

Eg. posterior ensemble mean prediction improves upon

0.0 0.0

0.25 0.5 0.75 1

prior ensemble mean and the baseline 0 =0 /Mwy ! 0 uihs ufhs050,
RANS - Reynolds-Averaged Navier—Stokes prediction (Left) Prior velocity ensemble and (Right) posterior velocity ensemble

with comparison to baseline (RANS) and benchmark results

Xiao, H. et al., .(2016). Quantifying and reducing

model-form uncertainties in Reynolds-

averaged Navier-Stokes simulations: A data-driven, physics-informed Bayesian
approach. Journal of Computational Physics, 324, 115-136. Read Online

=>» Beyond the Bayesian approach of learning

Frequency

CNN f(x;0)
- e.g.,, UQ anomaly detection, monitoring, through deep architectures
Energy Function

with probabilistic constructions to detect distribution deviations X —| Exn

f
(|
lout-of-distribution

in-distribution

(Out OF Distribution - OOD)

Liu et al. (2020), Energy-based Out-of-distribution

Negative Eneng;
threshold T
Detection, NeurlPS. Read Online

17


https://proceedings.neurips.cc/paper/2020/hash/f5496252609c43eb8a3d147ab9b9c006-Abstract.html
https://www.sciencedirect.com/science/article/abs/pii/S0021999116303394

Hybrid Generative Al: a topic worth exploring

1. Generative approach to Improve the quality of physical simulation samples

—— Stochastic process

—— Reverse stochastic process

Yang Song Blog

* Denoising Diffusion Probabilistic Model : a principle that is
not very intuitive at first: progressively destructure the input

until it is completely degraded, then reconstruct it by
reversing the process.

=» Excellent in image synthesis, despite a costly training
(MCMC to learn the iverse transition distribution g(.|.))

Ho et al. 2022. Denoising diffusion probabilistic models. Adv. NeurIPS., 33 (2020),
pp. 6840-6851. Read Online

high-fidelity CFD data reconstruction from low-fidelity data
using DDPM- Denoising Diffusion Probabilistic Model model

data

ﬁ.--ﬁ

po(xealxy) Do (x1]x2) po (xolx1)

=P forward diffusion process

guidance g(x)

model training

noise intermediate high-fidelity
sample result of ground truth [
denoising sample |4
1 4
x_'r_> Do (xp_q|x7,C) P oo mmPpl po (x; 241, C) Do (xe_1lxp, ) [ oo m=p x,

I Y : L Y3 : A

L —— V,.G(xr) EPPTPPS \AB ) RALIILL VG (xt)

update model weights: ]
0 « 0+ Vglle, — eo(x, O)II* )

c: physics-informed conditioning variable

D. Shu et al., 2023. A physics-informed diffusion model for high-fidelity flow field reconstruction,
Journal of Computational Physics, 478, 2023. Read Online

sample

=P bHackward diffusion process

18


https://www.sciencedirect.com/science/article/pii/S0021999123000670
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

Hybrid Generative Al: a topic worth exploring

e 2. Generative Models for the augmentation of physical simulation

e 3. Data augmentation to improve learning quality and reduce the cost of physical simulation

Physical Laws
(Simulation Parameters {6;} Physical
E.g. Kirshoff Law representation Wpy,
Y Vi= )[ E.dl=0

7 >
Physical Parameters: {0, } | J i

Domain-Specific NN Architecture

Bidirectionnel Loss Regularization
C(Ds 0, WPhya wNet)

Observed Data: {(x,,y,)}‘ 1
Productlon Consumptlon
e

Data (e.g. Graph Network)
representation Wit

= ¥
Data- Specmc NN Architecture

Physical
Generator
Architecture:
(e.g XVAE or xGAN)

Graph Network
Generator
—> Architecture:
(e.g XxGAN or xGNN)

e

Physical Augmentation
Physical Simulations {6;}"
Generated Physical Parameters

|

Hybrid Genora}lonslProdietlons
(D, )

Network Flow
Generated Data: {(x;,y:)}",
Generated Data Domain

A potential architecture for a generative hybdrid ML/physical model to augmented simulation 19



An upcoming workshop on the topic

Call for participation and abstract contributions:

3rd International Workshop on
Artificial Intelligence Advanced Engineering (AIAE’2023)

7/12/2023 at Institut Pascale Saclay. Free registration [WORKSHOP] 3rd International Workshop on Actificial Intelligence

and Augmented Engineering (AIAE'23)

Possible abstract contribution and presentation
Deadline for abstracts 16/11,

DECEMBER 7, 2023
8:30 AM - 5:30 PM

Website: https://aiae23.sciencesconf.org/ INSTITUT PASCAL

350 RUE ANDRE RIVIERE - 91400 ORSAY- FRANCE

Intelligence ( s
artificielle Sustemx 'f €nergies | 4 systematic 2 | 8 I
- . universite =
@ et mgén:::e lI ; @nouvelles ?nsﬂeumnﬂeeulecnfcusyslem PARIS-SACLAY eDgTB!n
augmen
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https://aiae23.sciencesconf.org/

Thank you for your attention!



