M2 Statistics & Data Science

Advanced Statistics & Machine Learning

Faicel Chamroukhi Professeur

https://chamroukhi.com/

A B A A B A

æ

イロト イポト イヨト イヨト

Introduction on pattern recognition

Introduction on pattern recognition

- Concepts
- Machine learning context
- Objectives
- Generative/Discriminative

∃ ► < ∃ ►

Pattern recognition system

э

(日) (周) (日) (日)

• Data acquisition : the sensors part in which the rough data (e.g, speech signals, images ...) are acquired (e.g., measured) through dedicated sensors.

- Data acquisition : the sensors part in which the rough data (e.g, speech signals, images ...) are acquired (e.g., measured) through dedicated sensors.
- Data Preprocessing : *denoising*, *standardization*,... feature extraction for data *representation*.

- Data acquisition : the sensors part in which the rough data (e.g, speech signals, images ...) are acquired (e.g., measured) through dedicated sensors.
- Data Preprocessing : *denoising*, *standardization*,... feature extraction for data *representation*.
- Feature selection : optimization of the representation space by applying for example, *linear* or *nonlinear dimensionality reduction* techniques, in a *supervised* or *unsupervised* context.

- Data acquisition : the sensors part in which the rough data (e.g, speech signals, images ...) are acquired (e.g., measured) through dedicated sensors.
- Data Preprocessing : *denoising*, *standardization*,... feature extraction for data *representation*.
- Feature selection : optimization of the representation space by applying for example, *linear* or *nonlinear dimensionality reduction* techniques, in a *supervised* or *unsupervised* context.
- Classifier design : Given a training set of (selected) features (observations) → design of a *decision rule* with respect to a chosen optimality criterion

• • = • • = •

• **Classifier evaluation** : Once the classifier is designed, its performance has to be assesses for example by computing the *classification error rate* on new data examples, in order to evaluate its generalization capabilities.

- **Classifier evaluation** : Once the classifier is designed, its performance has to be assesses for example by computing the *classification error rate* on new data examples, in order to evaluate its generalization capabilities.
- these stages are not independent. They are highly interrelated and, depending on the results, one may go back to redesign earlier stages in order to improve the overall performance.
- There are some methods that combine stages, for example, a statistical learning at two stages (learning for feature extraction and learning for classification).
- Some stages can also be removed, for example when the classifier is directly built without feature extraction nor feature selection.

A B M A B M

Data representation

Speech signal representation :

- Linear Predictive Coding (LPC)
- Mel Frequency Cepstrum Coding (MFCC)

• . . .

Image representation :

- Histogram
- Local Binary Patterns (LBP)

• . . .

∃ ► < ∃ ►

• We talk about "direct" classification, e.g., K-NN

A B K A B K

- We talk about "direct" classification, e.g., K-NN
- Very often, the classification task involves a learning problem (e.g., Neural Networks, Support Vector Machines, Gaussian Discriminant Analysis, Gaussian Mixtures, Hidden Markov Models,...)

 \Rightarrow we learn a decision rule, or a functional mapping between possibly labeled features and the considered classes.

- We talk about "direct" classification, e.g., K-NN
- Very often, the classification task involves a learning problem (e.g., Neural Networks, Support Vector Machines, Gaussian Discriminant Analysis, Gaussian Mixtures, Hidden Markov Models,...)

 \Rightarrow we learn a decision rule, or a functional mapping between possibly labeled features and the considered classes.

• The main questions concerning the classifier design : the type of the approach (generative, discriminative,..), linear/non-linear separation, and the type of the criterion.

- We talk about "direct" classification, e.g., K-NN
- Very often, the classification task involves a learning problem (e.g., Neural Networks, Support Vector Machines, Gaussian Discriminant Analysis, Gaussian Mixtures, Hidden Markov Models,...)

 \Rightarrow we learn a decision rule, or a functional mapping between possibly labeled features and the considered classes.

• The main questions concerning the classifier design : the type of the approach (generative, discriminative,...), linear/non-linear separation, and the type of the criterion.

 \Rightarrow In this course, we focus on probabilistic classifiers in a *maximum likelihood estimation (MLE)* framework.

• Probabilistic approaches can easily address problems related to missing information and allows for the integration of prior knowledge (Bayesian approaches), such as experts information.

・ 伺 ト ・ ヨ ト ・ ヨ ト

- The paradigm for automatically (without human intervention) learning from raw data is known as *machine learning*
- acquisition of knowledge from rough data for analysis, interpretation, prediction.
- *automatically* extracting useful information, possibly unknown, from rough data :
 - features
 - simplified models
 - classes,...

A B K A B K

- Statistical learning = machine learning + Statistics
- distinguished by the fact that the data are assumed to be realizations of random variables ⇒ define probability densities over the data ⇒ statistical (probabilistic) models.
- take benefit from the asymptotic properties of the estimators, e.g., consistency (e.g., Maximum likelihood)
- To make accurate decisions and predictions for future data, there is an important need to understand the *processes generating the data*.

- Statistical learning = machine learning + Statistics
- distinguished by the fact that the data are assumed to be realizations of random variables ⇒ define probability densities over the data ⇒ statistical (probabilistic) models.
- take benefit from the asymptotic properties of the estimators, e.g., consistency (e.g., Maximum likelihood)
- To make accurate decisions and predictions for future data, there is an important need to understand the *processes generating the data*.
- ullet \Rightarrow This therefore leads us to *generative* learning

Supervised/Unsupervised :

- *Supervised learning* : both the input (observation) and the output (target : class in classification) are available
- The objective is to predict the class of new data given predefined learned classes : *classification (discrimination)* problem

Supervised/Unsupervised :

- *Supervised learning* : both the input (observation) and the output (target : class in classification) are available
- The objective is to predict the class of new data given predefined learned classes : *classification (discrimination)* problem
- In several application domains, we are confronted with the problem of missing information (class label missing, unknown, hidden).
- \Rightarrow an *unsupervised* learning problem
- The objective is to discover possible classes (exploratory analysis)
- main models : latent data models : e.g., mixture models, HMMs
 ⇒ a *clustering/segmentation* problem.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Static/Dynamic :

Two contexts for the classification problem :

- Static context : The classification rules are taken from *static* modeling techniques because the data are assumed to be independent
- this hypothesis may be restrictive regarding some real phenomena
- *dynamical* framework : building decision rules from sequential data (or time series).

Objectives

- machine learning concepts for data analysis
- overview of some statistical learning approaches from the literature, with a particular focus on generative learning (see how they work).
- How can we define an accurate discrimination rule by considering both homogeneous and dispersed data? (classification (discrimination)
- When expert information is missing, how can we automatically search for possible classes? unsupervised learning for segmentation, clustering..
- How can we model the underlying (dynamical) behavior from sequential data? (Sequential modeling)

Discriminative learning

- Two main approaches are generally used in the statistical learning literature : the *discriminative* approach and the *generative* approach
- Discriminative approaches (especially used in supervised learning (classification, regression)) learn a direct map from the inputs x to the output y, or they directly learn a model of the conditional distribution p(y|x).
- From the conditional distribution $p(y|\mathbf{x})$, we can make predictions of y for any new value of \mathbf{x} by using the Maximum A Posteriori (MAP) classification rule :

$$\hat{y} = \arg \max_{y \in \mathcal{Y}} p(y|\mathbf{x}).$$

Generative learning

- Generative classifiers learn a model of the joint distribution p(x, y)
 ⇒ model the class conditional density p(x|y) together with the prior probability p(y).
- The required posterior class probability is then computed using Bayes' theorem

$$p(y|\mathbf{x}) = \frac{p(y)p(\mathbf{x}|y)}{\sum_{y'} p(y')p(\mathbf{x}|y')}.$$

• the outputs y are not always available (i.e., they may be missing or hidden)

 \Rightarrow generative approaches are more suitable for unsupervised learning.

 \Rightarrow In this course we focus on probabilistic models for data modeling, discrimination and clustering.