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The aim of this practical work is to show how we learn the HMM parameters with the EM algorithm for
sequential data.

1 EM for updating the Markov chain parameters for an HMM

1.1 Updating the initial state distribution {π} for an HMM

Consider the problem of maximizing the following function

Qπ(π; Ψ(q)) =

K∑
k=1

τ
(q)
1k log πk

with respect to the initial state distribution π = (π1, . . . , πK) subject to the constraint
∑K
k=1 πk = 1,

where τ
(q)
1k are the posterior probabilities of the initial state k at the qth iteration of EM.

• To perform this constrained maximization, introduce the Lagrange multiplier λ and derive the
resulting unconstrained maximization problem (the Lagrangian function).

• To maximize the Lagrangian with respect to πk (k = 1, . . . ,K), first set the derivative of the
Lagrangian with respect to πk to zero, determine the Lagrange multiplier λ, and then the resulting

value π
(q+1)
k (k = 1, . . . ,K) that corresponds to the maximum (the updating formula for the initial

state distribution πk (k = 1, . . . ,K))

1.2 Updating the transition probabilities (transition matrix) A for an HMM

Now consider the problem of maximizing the following function

QA(A; Ψ(q)) =

n∑
t=2

K∑
k=1

K∑
l=1

ξ
(q)
tlk log Alk

with respect to the transition probabilities Alk subject to the constraint
∑K
k=1 Alk = 1, where τ

(q)
tk (resp.

ξ
(q)
t`k) are the posterior probabilities (resp. the joint posterior probabilities) at the qth iteration of EM.

• To perform this constrained maximization, introduce the Lagrange multiplier λ and derive the
resulting unconstrained maximization problem (the Lagrangian function).

• To maximize the Lagrangian with respect to Alk (l, k = 1, . . . ,K), first set the derivative of the
Lagrangian with respect to Alk to zero, determine the Lagrange multiplier λ, and then the resulting

value A
(q+1)
lk (l, k = 1, . . . ,K) that corresponds to the maximum (the updating formula for the

transition matrix.

2 Discrete HMM

Here we consider a hidden Markov model having discrete observations (x1, . . . ,xn) governed by a multi-
variate Bernoulli distribution. Consider the case where the HMM outputs are multiple binary variables
(xt is a binary vector in Rd); each variable is governed by a Bernoulli conditional distribution.

For the vector xt, whose d components are binary. For example, for d = 5, we can have xt =
(0, 1, 0, 1, 0, 1)T . Each variable xtj , j = 1 . . . , d is therefore binary and governed by a Bernoulli condi-
tional distribution.

We recall that a binary variable x has a Bernoulli distribution x means

p(x) =

{
µ if x = 1,
1− µ if x = 0,

(1)
1



or equivalently p(x) = µx(1− µ)1−x, x ∈ {0, 1}

1. by assuming that the variables of each vector xt are independent, give the conditional distribution
of the observed data (x1, . . . ,xn) given the hidden states at iteration q of the EM algorithm:∑n
t=1

∑K
k=1 τ

(q)
tk log p(xt|µk) where xt = (xt1, .., xtj , ...xtd) and µk = (µk1, ..., µkj , ..., µkd) is the

parameter of state k

2. give the corresponding M-step updating formula for maximum likelihood solutions of {µkj}
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