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The aim of this practical work is to show how we learn the HMM parameters with the EM algorithm for
sequential data.

1 EM for updating the Markov chain parameters for an HMM

1.1 Updating the initial state distribution {7} for an HMM

Consider the problem of maximizing the following function
Qr(m; W) = ZT(Q) log 7,

with respect to the initial state distribution « = (7mq,...,7k) subject to the constraint Zle T = 1,

where Tl(Z) are the posterior probabilities of the initial state k£ at the gth iteration of EM.

e To perform this constrained maximization, introduce the Lagrange multiplier A and derive the
resulting unconstrained maximization problem (the Lagrangian function).

e To maximize the Lagrangian with respect to m, (k = 1,...,K), first set the derivative of the
Lagrangian with respect to 7 to zero, determine the Lagrange multiplier A\, and then the resulting

value 7T,(cq+1) (k=1,...,K) that corresponds to the maximum (the updating formula for the initial
state distribution 7 (k =1,..., K))

1.2 Updating the transition probabilities (transition matrix) A for an HMM

Now consider the problem of maximizing the following function
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with respect to the transition probabilities A subject to the constraint Zle A, = 1, where Tt(g) (resp.

552,1) are the posterior probabilities (resp. the joint posterior probabilities) at the gth iteration of EM.

e To perform this constrained maximization, introduce the Lagrange multiplier A and derive the
resulting unconstrained maximization problem (the Lagrangian function).

e To maximize the Lagrangian with respect to Ay, (I,k = 1,..., K), first set the derivative of the
Lagrangian with respect to A to zero, determine the Lagrange multiplier A, and then the resulting

value AZ(ZH) (I,k = 1,...,K) that corresponds to the maximum (the updating formula for the
transition matrix.

2 Discrete HMM

Here we consider a hidden Markov model having discrete observations (xi,...,X,) governed by a multi-
variate Bernoulli distribution. Consider the case where the HMM outputs are multiple binary variables
(x4 is a binary vector in R?); each variable is governed by a Bernoulli conditional distribution.

For the vector x;, whose d components are binary. For example, for d = 5, we can have x; =
(0,1,0,1,0,1)T. Each variable Z¢j,J = 1...,d is therefore binary and governed by a Bernoulli condi-
tional distribution.

We recall that a binary variable  has a Bernoulli distribution z means
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or equivalently p(z) = p*(1 — p)t=%, x € {0,1}

1. by assuming that the variables of each vector x; are independent, give the conditional distribution
of the observed data (xi,...,%,) given the hidden states at iteration g of the EM algorithm:

2?21 2521 Tf;i’) log p(x¢|py,) where x; = (mtla“vl'tjw'-xtd) and p, = (,U*klvmvﬂkjvmnukd) is the
parameter of state k

2. give the corresponding M-step updating formula for maximum likelihood solutions of {;}



