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Introduction Context

Context: Predictive maintenance of the Fuel Cells (FCs)

» Fuel Cells (FCs) are widely used in many domains including transport

» They can offer high fuel economy

» Lower CO, emissions

» The stack is affected by the operating conditions (temperature, mechanical

constraints on the membrane, electrode assemblies etc.)

= a predictive maintenance policy is needed

Aim
FC lifetime estimation using specific measurements acquired during the ageing study of
the stacks
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Introduction  Available data
The Electrochemical impedance spectrum (EIS)

» Measurements of the Electrochemical Impedance Spectrum (EIS) are generally
used for FC characterization
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The impedance spectrum for the Fuel Cell consists of three regimes:
» a first capacitive arc (f < 130Hz) due to the diffusion phenomena
» a second capacitive arc (130Hz <= f < 4kHz) linked to the FC membrane charges

» a last inductive part arc which is present in high frequencies (4kHz <= f) due to
the inductive behavior of connections
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Introduction Available data

Evolution of the real and imaginary parts of the Electrochemical Impedance

Spectrum (EIS) over time
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Feature extraction Feature extraction from the imaginary part of the EIS
Feature extraction from the imaginary part of the EIS

» The imaginary part of the spectrum is more informative and more complex than
the real part

» Particularly, three regimes corresponding to the behaviour of the stack are
perceptible:
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» Smooth or abrupt changes between the different regimes

v
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Feature extraction Feature extraction from the imaginary part of the EIS
Feature extraction from the imaginary part of the EIS

» The imaginary part of the spectrum is more informative and more complex than
the real part

» Particularly, three regimes corresponding to the behaviour of the stack are
perceptible:

I/ o
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» Smooth or abrupt changes between the different regimes

= The proposed solution: use an adapted regression model whose parameters will be
used as the feature vector for each EIS
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Feature extraction A probabilistic approach

A regression model with a hidden logistic process

The data: {(x1,f), ..., (Xn, fa)}
» x;: real dependent variable: - Imaginary part of the EIS

» f;: independent variable representing the frequency

Vi=1,...,n, x,-:,BZ;r,-—i—az,.e,- ;e ~N(0,1),

» z € {1,...,K} hidden variable: the class label of the component generating x;

> 3, € RPTL: regression coefficients of the sub-model z;

> ri=(1,f,..., f,p)T: covariate vector in RP'?
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Feature extraction A probabilistic approach

A regression model with a hidden logistic process

The data: {(x1,f), ..., (Xn, fa)}
» x;: real dependent variable: - Imaginary part of the EIS

» f;: independent variable representing the frequency
Vi=1,...,n, X :,Bz;r,-—i—az,.e,- ;e ~N(0,1),

» z € {1,...,K} hidden variable: the class label of the component generating x;

> 3, € RPTL: regression coefficients of the sub-model z;

> ri=(1,f,..., f,p)T: covariate vector in RP'?

z=(zi,...,2) is a hidden logistic process

zi ~ M (1, i (w),. .., mik(w)); where

exp (Wko + Wi f;)
SO exp (wao + warfy)

> w = (wi, wi1, ..., Wko, wk1) € R?X the parameter vector for the K logistic functions

Ti(w) = p(zi = k;w) =
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Feature extraction A regression model with a hidden logistic process

Flexibility of the logistic transformation

Variation of my(w) in relation to w:

» Use the notation wy = (wWko, wk1)" = wia (e,

» Example of two components:
a1 = -2
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Feature extraction A regression model with a hidden logistic process
Flexibility of the logistic transformation
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= The parameter A\ controls the quality of transitions (smooth/abrupt) between
the regimes
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Feature extraction A regression model with a hidden logistic process

Flexibility of the logistic transformation

Variation of mi(w) in relation to w:
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= The parameter A\ controls the quality of transitions (smooth/abrupt) between

the regimes

= The parameter o is directly linked to the frequency at the transition point
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Feature extraction Parameter estimation

Parameter estimation by maximum likelihood

» Derived mixture density
K
p(xi; 0) = Z mi(W)N (xi; B/ ri, 0%)
k=1

» Model parameters
0= (w,B1,. -, Bk, 01, ,0k)
» Log-likelihood of 6:

n K
L(6;x) = Z log Z 7 (w)N (xi; B, ri, 0%).
il k=1

» Maximization of L(6;x) by a dedicated Expectation-Maximization (EM) algorithm
[Dempster et al. 77].
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Feature extraction EM algorithm

Dedicated EM algorithm
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Feature extraction EM algorithm
Dedicated EM algorithm

Initialization: 6
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Feature extraction EM algorithm
Dedicated EM algorithm

Initialization: 6

@ Expectation step: Compute the cond. expectation of the complete log-likelihood

Q(6,09) = E{L(O;x,z)\x,e(q)}
_ ZZ (‘7)|Ogﬂ.’k(w +ZZ |0gN leﬂkruai)
i=1 k=1 i=1 k=1
@ (w) Qz(ﬂk,a,ak:l,...,K)

where 7.7 = p(zi = k|x;; 8'?) is the posterior probability of the kth regime
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Feature extraction EM algorithm
Dedicated EM algorithm

Initialization: 6

@ Expectation step: Compute the cond. expectation of the complete log-likelihood

Q(0,69) = E[L(B;x,z)\x,B(q)}
0 K n K
= DD i togmu(w)+ YD i log N (i i of),
i=1 k=1 =l =
Q1 (w) Q(By02|k=1,...,K)

where Ti(kq) = p(z = k|x;; 8'?) is the posterior probability of the kth regime

© Maximization step: Compute 89*Y) = arg méaxQ(G, 0(‘7))
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Feature extraction EM algorithm
Dedicated EM algorithm

Initialization: 6

@ Expectation step: Compute the cond. expectation of the complete log-likelihood

Q(0,69) = E[L(B;x,z)\x,B(q)}
0 K n K
= DD i togmu(w)+ YD i log N (i i of),
i=1 k=1 =l =
Q1 (w) Q(By02|k=1,...,K)

where Ti(kq) = p(z = k|x;; 8'?) is the posterior probability of the kth regime

© Maximization step: Compute 89*Y) = arg méaxQ(G, 0(‘7))

@ Maximization of @ w.r.t {3,,02} (k=1...,K): Analytic solutions

® Maximization of @1 w.r.t w: a multiclass weighted logistic regression
problem = IRLS algorithm [Green 84, Jordan & jacobs 94]
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Feature extraction Measurement approximation

Measurement approximation

As in standard regression, given the estimated parameters, x; is approximated by its
expectation:

&= E(x,-;é) = /Xfp(Xi;é)dXi
R
K
BT
= > m(W)B,r
k=1

A sum of polynomials weighted by the logistic probabilities 7y (W)'s

= Adapted for a smooth or abrupt transitions between the regression models.

Segmentation
» The estimated class label Z; of x; can be computed by the rule:

% = arg I?ka<xK ik (W)
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Feature extraction Case study

Case study:
» The impedance spectrums include 3 regimes which correspond to three behaviors
of the stack — The number of regressive components is then set to K = 3

» The degree p of the polynomial regression is set to 3 which is adapted to the
different regimes in the curves
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Feature extraction Case study

The obtained approximation
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Fuel Cell lifetime estimation Fuel Cell lifetime estimation using a linear regression model

linear regression model for the FC lifetime estimation

LT;=a+b"y;+err; for the EIS j where:
» LT; : the duration time

>y = (aj,Oj)T features extracted from the real and the imaginary part

» (a,b)” the vector of regression coefficients
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Fuel Cell lifetime estimation Fuel Cell lifetime estimation using a linear regression model

linear regression model for the FC lifetime estimation

LTj=a+b"y;+err;  for the EIS j where:
» LT; : the duration time
>y = (aj,Gj)T features extracted from the real and the imaginary part

» (a,b)” the vector of regression coefficients

Mean error (in hours) of duration time estimation using different input descriptors:

Training set | Test set
Real part (dim=1) (a2) 181.40 194.02
Imag. part (dim=3) (8,3, B3, 334) 137.06 153.53
Real + Imag. parts (dim=7) (8, 823, Bos, a1, a2, a3, as) 94.80 142.30
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Fuel Cell lifetime estimation Fuel Cell lifetime estimation using a linear regression model

Duration time estimation obtained for the training set (left) and the test set (right):
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Conclusion

Conclusion

» Supervised learning approach for Fuel Cell lifetime estimation from EIS
measurements

> A probabilistic approach is used for feature extraction (from the imaginary part of
the EIS)

e The proposed model integrates a logistic process which makes possible
to change smoothly within various possible regression models

e Accurate modeling of the nonlinearities within the curves

o Allows for automatically finding the three regimes corresponding to the
behaviours of the stack

Faicel Chamroukhi (INRETS-LTN France) ICMLA 2009 December 15 2009 17 / 18



Thank you!
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