Supervised learning of a regression model based on latent process. Application to the estimation of Fuel Cell lifetime

Raïssa Onanena $^{(1)}$ , <u>Faicel Chamroukhi</u> $^{(1)}$ , Latifa Oukhellou $^{(1)}$ , Denis Candusso $^{(1,3)}$ , Patrice Aknin $^{(1)}$ , Daniel Hissel $^{(2,3)}$ 







(1)INRETS-LTN, 2 av de la butte verte, 93166 Noisy le Grand Cedex, France (2)FEMTO-ST UMR CNRS 6174, Université de Franche-Comté, 90010 Belfort, France (3)FCLAB, Rue Ernest Thierry-Mieg, 90010 Belfort Cedex, France

December 15 2009

- Introduction
  - Context
  - Available data
- Peature extraction
  - A probabilistic approach
  - Parameter estimation
- Fuel Cell lifetime estimation
- 4 Conclusion

#### Context: Predictive maintenance of the Fuel Cells (FCs)

- ► Fuel Cells (FCs) are widely used in many domains including transport
- ► They can offer high fuel economy
- ► Lower CO<sub>2</sub> emissions
- ▶ The stack is affected by the operating conditions (temperature, mechanical constraints on the membrane, electrode assemblies etc.)
- $\Rightarrow$  a predictive maintenance policy is needed

#### Aim

FC lifetime estimation using specific measurements acquired during the ageing study of the stacks

#### The Electrochemical impedance spectrum (EIS)

► Measurements of the Electrochemical Impedance Spectrum (EIS) are generally used for FC characterization



The impedance spectrum for the Fuel Cell consists of three regimes:

- $\blacktriangleright$  a first capacitive arc (f < 130Hz) due to the diffusion phenomena
- a second capacitive arc (130Hz  $\leq$  f  $\leq$  4kHz) linked to the FC membrane charges
- a last inductive part arc which is present in high frequencies ( $4kHz \le f$ ) due to the inductive behavior of connections

## Evolution of the real and imaginary parts of the Electrochemical Impedance Spectrum (EIS) over time



#### Feature extraction from the imaginary part of the EIS

- ► The imaginary part of the spectrum is more informative and more complex than the real part
- Particularly, three regimes corresponding to the behaviour of the stack are perceptible:



▶ Smooth or abrupt changes between the different regimes

#### Feature extraction from the imaginary part of the EIS

- ► The imaginary part of the spectrum is more informative and more complex than the real part
- Particularly, three regimes corresponding to the behaviour of the stack are perceptible:



- ► Smooth or abrupt changes between the different regimes
- $\Rightarrow$  The proposed solution: use an adapted regression model whose parameters will be used as the feature vector for each EIS

The data:  $\{(x_1, f_1), \dots, (x_n, f_n)\}$ 

- $\triangleright$   $x_i$ : real dependent variable: Imaginary part of the EIS
- $f_i$ : independent variable representing the frequency

$$\forall i = 1, \ldots, n, \quad x_i = \boldsymbol{\beta}_{\mathbf{z}_i}^T \boldsymbol{r}_i + \sigma_{\mathbf{z}_i} \epsilon_i \quad ; \quad \epsilon_i \sim \mathcal{N}(0, 1),$$

- ▶  $z_i \in \{1, ..., K\}$  hidden variable: the class label of the component generating  $x_i$
- ▶  $\beta_{z_i} \in R^{p+1}$ : regression coefficients of the sub-model  $z_i$
- $ightharpoonup r_i = (1, f_i, \dots, f_i^p)^T$ : covariate vector in  $\mathbb{R}^{p+1}$

The data:  $\{(x_1, f_1), \dots, (x_n, f_n)\}$ 

- $\triangleright$   $x_i$ : real dependent variable: Imaginary part of the EIS
- $f_i$ : independent variable representing the frequency

$$\forall i = 1, \ldots, n, \quad x_i = \beta_{\mathbf{z}_i}^T \mathbf{r}_i + \sigma_{\mathbf{z}_i} \epsilon_i \quad ; \quad \epsilon_i \sim \mathcal{N}(0, 1),$$

- ▶  $z_i \in \{1, ..., K\}$  hidden variable: the class label of the component generating  $x_i$
- ▶  $\beta_{z_i} \in R^{p+1}$ : regression coefficients of the sub-model  $z_i$
- $ightharpoonup r_i = (1, f_i, \dots, f_i^p)^T$ : covariate vector in  $\mathbb{R}^{p+1}$

 $\mathbf{z} = (z_1, \dots, z_n)$  is a hidden logistic process

#### A regression model with a hidden logistic process

The data:  $\{(x_1, f_1), \dots, (x_n, f_n)\}$ 

- $\triangleright$   $x_i$ : real dependent variable: Imaginary part of the EIS
- $ightharpoonup f_i$ : independent variable representing the frequency

$$\forall i = 1, \ldots, n, \quad x_i = \boldsymbol{\beta}_{\mathbf{z}_i}^T \mathbf{r}_i + \sigma_{\mathbf{z}_i} \epsilon_i \quad ; \quad \epsilon_i \sim \mathcal{N}(0, 1),$$

- $ightharpoonup z_i \in \{1, \dots, K\}$  hidden variable: the class label of the component generating  $x_i$
- $\triangleright \beta_{z_i} \in R^{p+1}$ : regression coefficients of the sub-model  $z_i$
- $ightharpoonup r_i = (1, f_i, \dots, f_i^p)^T$ : covariate vector in  $R^{p+1}$

#### $\mathbf{z} = (z_1, \dots, z_n)$ is a hidden logistic process

$$z_i \sim \mathcal{M}(1, \pi_{i1}(\mathbf{w}), \dots, \pi_{iK}(\mathbf{w}))$$
; where

$$\pi_{ik}(\mathbf{w}) = p(z_i = k; \mathbf{w}) = \frac{\exp(w_{k0} + w_{k1}f_i)}{\sum_{\ell=1}^{K} \exp(w_{\ell0} + w_{\ell1}f_i)},$$

$$ightharpoonup$$
  $\mathbf{w}=(w_{10},w_{11},\ldots,w_{K0},w_{K1})\in R^{2K}$  the parameter vector for the  $K$  logistic functions

#### Flexibility of the logistic transformation

#### Variation of $\pi_{ik}(\mathbf{w})$ in relation to $\mathbf{w}$ :

- ▶ Use the notation  $\boldsymbol{w}_k = \left(w_{k0}, w_{k1}\right)^T = w_{k1}\left(\frac{w_{k0}}{w_{k1}}, 1\right)^T = \lambda_k (\alpha_k, 1)^T$
- ► Example of two components:



#### Flexibility of the logistic transformation

Variation of  $\pi_{ik}(\mathbf{w})$  in relation to  $\mathbf{w}$ :

- ▶ Use the notation  $\mathbf{w}_k = (w_{k0}, w_{k1})^T = w_{k1}(\frac{w_{k0}}{w_{k1}}, 1)^T = \lambda_k(\alpha_k, 1)^T$
- ► Example of two components:



 $\Rightarrow$  The parameter  $\lambda_k$  controls the quality of transitions (smooth/abrupt) between the regimes

#### Flexibility of the logistic transformation

#### Variation of $\pi_{ik}(\mathbf{w})$ in relation to $\mathbf{w}$ :

- ▶ Use the notation  $\mathbf{w}_k = (w_{k0}, w_{k1})^T = w_{k1}(\frac{w_{k0}}{w_{k1}}, 1)^T = \lambda_k(\alpha_k, 1)^T$
- ► Example of two components:





- $\Rightarrow$  The parameter  $\lambda_k$  controls the quality of transitions (smooth/abrupt) between the regimes
- $\Rightarrow$  The parameter  $\alpha_k$  is directly linked to the frequency at the transition point

#### Parameter estimation by maximum likelihood

▶ Derived mixture density

$$p(x_i; \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_{ik}(\mathbf{w}) \mathcal{N}(x_i; \boldsymbol{\beta}_k^T \mathbf{r}_i, \sigma_k^2)$$

Model parameters

$$\boldsymbol{\theta} = \left(\mathbf{w}, \boldsymbol{\beta}_1, \dots, \boldsymbol{\beta}_K, \sigma_1^2, \dots, \sigma_K^2\right)$$

▶ Log-likelihood of  $\theta$ :

$$L(\boldsymbol{\theta}; \mathbf{x}) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_{ik}(\mathbf{w}) \mathcal{N}(\mathbf{x}_{i}; \boldsymbol{\beta}_{k}^{T} \mathbf{r}_{i}, \sigma_{k}^{2}).$$

▶ Maximization of  $L(\theta; \mathbf{x})$  by a dedicated Expectation-Maximization (EM) algorithm [Dempster et al. 77].

Initialization:  $heta^{(0)}$ 

Initialization:  $\theta^{(0)}$ 

Expectation step: Compute the cond. expectation of the complete log-likelihood

$$Q(\theta, \theta^{(q)}) = E\left[L(\theta; \mathbf{x}, \mathbf{z}) | \mathbf{x}, \theta^{(q)}\right]$$

$$= \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \pi_{ik}(\mathbf{w})}_{Q_1(\mathbf{w})} + \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \mathcal{N}(\mathbf{x}_i; \beta_k^T \mathbf{r}_i, \sigma_k^2)}_{Q_2(\beta_k, \sigma_k^2 | k=1, \dots, K)}$$

where  $\tau_{ik}^{(q)} = p(z_i = k|x_i; \theta^{(q)})$  is the posterior probability of the kth regime

#### Initialization: $\theta^{(0)}$

Expectation step: Compute the cond. expectation of the complete log-likelihood

$$Q(\theta, \theta^{(q)}) = E\left[L(\theta; \mathbf{x}, \mathbf{z}) | \mathbf{x}, \theta^{(q)}\right]$$

$$= \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \pi_{ik}(\mathbf{w})}_{Q_1(\mathbf{w})} + \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \mathcal{N}(\mathbf{x}_i; \beta_k^T \mathbf{r}_i, \sigma_k^2)}_{Q_2(\beta_k, \sigma_k^2 | k=1, \dots, K)}$$

where  $\tau_{ik}^{(q)} = p(z_i = k|x_i; \theta^{(q)})$  is the posterior probability of the kth regime

**2** Maximization step: Compute  $\theta^{(q+1)} = \arg \max_{\theta} Q(\theta, \theta^{(q)})$ 

#### Initialization: $\theta^{(0)}$

Expectation step: Compute the cond. expectation of the complete log-likelihood

$$Q(\theta, \theta^{(q)}) = E\left[L(\theta; \mathbf{x}, \mathbf{z}) | \mathbf{x}, \theta^{(q)}\right]$$

$$= \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \pi_{ik}(\mathbf{w})}_{Q_1(\mathbf{w})} + \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \mathcal{N}(\mathbf{x}_i; \boldsymbol{\beta}_k^T \boldsymbol{r}_i, \sigma_k^2)}_{Q_2(\boldsymbol{\beta}_k, \sigma_k^2 | k=1, \dots, K)},$$

where  $\tau_{ik}^{(q)} = p(z_i = k|x_i; \theta^{(q)})$  is the posterior probability of the kth regime

- **2** Maximization step: Compute  $\theta^{(q+1)} = \arg \max_{\theta} Q(\theta, \theta^{(q)})$ 
  - **1** Maximization of  $Q_2$  w.r.t  $\{\beta_k, \sigma_k^2\}$  (k = 1 ..., K): Analytic solutions

#### Initialization: $\theta^{(0)}$

**1 Expectation step:** Compute the cond. expectation of the complete log-likelihood

$$Q(\theta, \theta^{(q)}) = E\left[L(\theta; \mathbf{x}, \mathbf{z}) | \mathbf{x}, \theta^{(q)}\right]$$

$$= \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \pi_{ik}(\mathbf{w})}_{Q_1(\mathbf{w})} + \underbrace{\sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \mathcal{N}\left(\mathbf{x}_i; \boldsymbol{\beta}_k^T \mathbf{r}_i, \sigma_k^2\right)}_{Q_2(\boldsymbol{\beta}_k, \sigma_k^2 | k=1, \dots, K)}$$

where  $au_{ik}^{(q)} = p(z_i = k|x_i; heta^{(q)})$  is the posterior probability of the kth regime

- **2** Maximization step: Compute  $\theta^{(q+1)} = \arg \max_{a} Q(\theta, \theta^{(q)})$ 
  - **1** Maximization of  $Q_2$  w.r.t  $\{\beta_k, \sigma_k^2\}$  (k = 1..., K): Analytic solutions
  - Maximization of  $Q_1$  w.r.t w: a multiclass weighted logistic regression problem  $\Rightarrow$  IRLS algorithm [Green 84, Jordan & jacobs 94]

#### Measurement approximation

As in standard regression, given the estimated parameters,  $x_i$  is approximated by its expectation:

$$\hat{x}_i = E(x_i; \hat{\boldsymbol{\theta}}) = \int_R x_i p(x_i; \hat{\boldsymbol{\theta}}) dx_i$$
$$= \sum_{k=1}^K \pi_{ik}(\hat{\mathbf{w}}) \hat{\boldsymbol{\beta}}_k^T \mathbf{r}_i$$

#### A sum of polynomials weighted by the logistic probabilities $\pi_{ik}(\hat{\mathbf{w}})$ 's

⇒ Adapted for a smooth or abrupt transitions between the regression models.

### Segmentation

▶ The estimated class label  $\hat{z_i}$  of  $x_i$  can be computed by the rule:

$$\hat{z}_i = \arg\max_{1 \leq k \leq K} \pi_{ik}(\hat{\mathbf{w}})$$

#### Case study:

- ▶ The impedance spectrums include 3 regimes which correspond to three behaviors of the stack  $\rightarrow$  The number of regressive components is then set to K=3
- ► The degree p of the polynomial regression is set to 3 which is adapted to the different regimes in the curves



#### The obtained approximation



## linear regression model for the FC lifetime estimation

$$LT_j = \alpha + \mathbf{b}^T \mathbf{y}_j + err_j$$
 for the EIS  $j$  where:

- $ightharpoonup LT_i$ : the duration time
- $ightharpoonup \mathbf{y}_i = (\mathbf{a}_i, \theta_i)^T$  features extracted from the real and the imaginary part
- $(\alpha, \mathbf{b})^T$  the vector of regression coefficients

## linear regression model for the FC lifetime estimation

$$LT_j = \alpha + \mathbf{b}^T \mathbf{y}_j + err_j$$
 for the EIS  $j$  where:

- $ightharpoonup LT_i$ : the duration time
- ightharpoonup  $\mathbf{y}_j = (\mathbf{a}_j, \mathbf{\theta}_j)^{\mathsf{T}}$  features extracted from the real and the imaginary part
- $(\alpha, \mathbf{b})^T$  the vector of regression coefficients

Mean error (in hours) of duration time estimation using different input descriptors:

|                                                                                       | Training set | Test set |
|---------------------------------------------------------------------------------------|--------------|----------|
| Real part (dim=1) $(a_2)$                                                             | 181.40       | 194.02   |
| Imag. part (dim=3) $(\beta_{23}, \beta_{32}, \beta_{34})$                             | 137.06       | 153.53   |
| Real + Imag. parts (dim=7) $(\beta_{21}, \beta_{23}, \beta_{24}, a_1, a_2, a_3, a_4)$ | 94.80        | 142.30   |

#### Duration time estimation obtained for the training set (left) and the test set (right):



#### Conclusion

- Supervised learning approach for Fuel Cell lifetime estimation from EIS measurements
- ► A probabilistic approach is used for feature extraction (from the imaginary part of the EIS)
  - The proposed model integrates a logistic process which makes possible to change smoothly within various possible regression models
  - Accurate modeling of the nonlinearities within the curves
  - Allows for automatically finding the three regimes corresponding to the behaviours of the stack

# Thank you!