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Clustering is a useful tool for finding structure in a data set. The mixture likelihood approach to

clustering is a popular clustering method, in which the EM algorithm is the most used method.

However, the EM algorithm for Gaussian mixture models is quite sensitive to initial values and the

number of its components needs to be given a priori. To resolve these drawbacks of the EM, we develop

a robust EM clustering algorithm for Gaussian mixture models, first creating a new way to solve these

initialization problems. We then construct a schema to automatically obtain an optimal number of

clusters. Therefore, the proposed robust EM algorithm is robust to initialization and also different

cluster volumes with automatically obtaining an optimal number of clusters. Some experimental

examples are used to compare our robust EM algorithm with existing clustering methods. The results

demonstrate the superiority and usefulness of our proposed method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Data analysis is a science for analyzing data in real world, and
cluster analysis is a useful tool for data analysis. Cluster analysis is
a method for finding clusters within a data set characterized by
the greatest similarity within the same cluster and the greatest
dissimilarity between different clusters. Hierarchical clustering
was the earliest clustering method used by biologists and social
scientists, whereas cluster analysis became a branch of statistical
multivariate analysis. Many theories and methods for cluster
analysis have been presented in the literature [1–3]. In general,
learning and recognition mostly start from clustering, so that
cluster analysis becomes a type of unsupervised learning in
pattern recognition and has been widely applied in various
areas [4].

From the statistical point of view, clustering methods may be
divided into probability model-based approaches and nonpara-
metric approaches. The probability model-based approach
assumes that the data set follows a mixture model of probability
distributions so that a mixture likelihood approach to clustering
may be used [2]. For a mixture model, the expectation and
maximization (EM) algorithm [5] is commonly used. For a non-
parametric approach, clustering methods may be based on an
objective function of similarity or dissimilarity measures, and
these can be divided into hierarchical and partitional methods. A
hierarchical clustering method is a procedure for transforming a
ll rights reserved.
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data set into a diagram, known as a dendrogram, based on the
similarity or dissimilarity matrix of the data set. Most partitional
methods suppose that the data set can be represented by finite
cluster prototypes with their own objective functions. Therefore,
defining the dissimilarity (or distance) between a point and a
cluster prototype is essential for partition methods. The most
popular partition methods with cluster prototypes are k-means
[6,7], trimmed k-means [8,9], fuzzy c-means (FCM) [10,11], and
mean shift [12,13].

In this paper we focus on clustering based on probability
models, and in particular, we propose a robust type of EM
algorithm for Gaussian mixture models. We know that the EM
algorithm is quite sensitive to initial values, in which the number
of components needs to be given a priori. In this paper we present
a robust EM clustering algorithm which will be robust to initials
and different cluster volumes with automatically obtaining an
optimal number of clusters. Although some authors have con-
sidered the initial problems for the EM algorithm [14,15] and
some have considered estimation of the number of components
[15,16], there has been less consideration about robustness to
initial values associated with the number of components for the
EM algorithm. Since this robustness property is very important
for the EM, we present a new means of solving these initial
problems by automatically finding an optimal number of compo-
nents. We first propose a new objective function based on
mixture distributions and then create new update equations for
the EM algorithm. We also construct a learning schema to
automatically obtain an optimal number of components.

The rest of the paper is organized as follows. In Section 2, we
briefly review the EM algorithm. In Section 3, we propose a robust
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EM clustering algorithm. In Section 4, we use our algorithm with
some artificial datasets and real datasets to demonstrate that this
algorithm is effective in Gaussian mixture models. Finally, we
state conclusions in Section 5.
2. The EM clustering algorithm

Let the data set {X1, X2,y,Xn} be a random sample of size n

from the d-variate mixture model

f ðx;a,yÞ ¼
Xc

k ¼ 1

akf ðx; ykÞ ð1Þ

where ak40 denotes mixing proportions with the constraintPc
k ¼ 1

ak ¼ 1 and f(x;yk) denotes the density of x from kth class with

corresponding parameters yk. Let Z¼{Z1, Z2,y,Zn} be the missing
data in which ZiA{1, 2,y,c}. If Zi¼k, it means that the ith data
point belongs to the kth class. Thus, the joint pdf of the complete
data {X1, X2,y, Xn, Z1, Z2,y,Zn} becomes

f ðx1,. . .,xn,z1,. . .,zn;a,yÞ ¼ P
n

i ¼ 1
P
c

k ¼ 1
½akf ðxi; ykÞ�

zki ð2Þ

where zki ¼
1, if Zi ¼ k

0, if Ziak

(
. The log likelihood function is obtained

as follows:

Lða,y; x1,. . .,xn,z1,. . .,znÞ ¼
Xn

i ¼ 1

Xc

k ¼ 1

zki ln½akf ðxi; ykÞ� ð3Þ

E-step: Since the latent variables zki are unknown, according to
Dempster et al. [5], the conditional expected value E(Zki9xi;a,y) is
substituted for zki. By Baye’s Theorem, we have

ẑki ¼ EðZki9xi;a,yÞ ¼
akf ðxi; ykÞPc

s ¼ 1 asf ðxi; ysÞ
ð4Þ

M-step: Under the constraint
Pc

k ¼ 1 ak ¼ 1, to maximize

~Lða,y; x1,. . .,xnÞ ¼
Xn

i ¼ 1

Xc

k ¼ 1

ẑki ln½akf ðxi; ykÞ� ð5Þ

We can obtain the updated equation for mixing proportions
with

ak ¼

Pn
i ¼ 1 ẑki

n
ð6Þ

We now consider the d-variate Gaussian mixture model

f ðx;a,yÞ ¼
Xc

k ¼ 1

akf ðx; ykÞ

¼
Xc

k ¼ 1

akð2pÞ�ðd=2Þ9Sk9
�ð1=2Þ

e�ð1=2Þðx�mkÞ
0S�1

k ðx�mkÞ ð7Þ

The parameter yk consists of a mean vector mk and a covariance
matrix Sk. Then the update equations for those parameters are as
follows:

mk ¼

Pn
i ¼ 1 ẑkixiPn

i ¼ 1 ẑki

ð8Þ

Sk ¼

Pn
i ¼ 1 ẑkiðxi�mkÞðxi�mkÞ

TPn
i ¼ 1 ẑki

ð9Þ

Thus, the EM clustering algorithm can be summarized as
follows.

EM clustering algorithm for normal mixtures

Step 1: Fix 2rcrn and fix any e40.
Give initials ẑ
ð0Þ
¼ ðẑ

ð0Þ
1 ,. . .,ẑ

ð0Þ
c Þ and let s¼1.
Step 2: Compute a(s) and m(s) with ẑ
ðs�1Þ

using (6) and (8).
Step 3: Compute

P(s) with ẑ
ðs�1Þ

and m(s) using (9).
Step 3: Update ẑ

ðsÞ
with (a(s), m(s),

P(s)) using (4).
Step 4: Compare ẑ

ðsÞ
to ẑ

ðs�1Þ
in a convenient matrix norm:U:.

IF :ẑ
ðsÞ
�ẑ
ðs�1Þ:oe, STOP

ELSE s¼sþ1 and return to step 2.
We mention that the convergence properties of the EM algo-
rithm had been well discussed in Wu [17]. Afterwards, Xu and
Jordan [18] considered more convergence properties of the EM
algorithm for Gaussian mixtures. Ma et al. [19] considered the
convergence rate of the EM algorithm for Gaussian mixtures. Since
the EM algorithm is quite sensitive to initialization, in which the
cluster numbers need to be given a priori, Figueiredo and Jain [20]
proposed an algorithm to deal simultaneously with the number of
clusters and also the estimates of parameters for mixture models
by using the particular form of a minimum message length (MML)
criterion. This criterion is the minimization of the following cost
function via EM estimators

Kða,y; x1,. . .,xnÞ ¼
P

2

X
m:am 40

ln
nam

12

� �
þ

cnz

2
ln

n

12

� �
þ

cnz Pþ1ð Þ

2

�
Xn

i ¼ 1

ln
Xc

k ¼ 1

akf ðxi; ykÞ

" #
ð10Þ

where P is the number of parameters specifying each component
and cnz denotes the number of non-zero-probability components.
Then the update equation for the proportion is as follows:

ak ¼max 0,
Pn

i ¼ 1 ẑki�
P
2

� �
Pc

s ¼ 1 max 0,
Pn

i ¼ 1 ẑsi�
P
2

� � ð11Þ

In the d-variate Gaussian mixture model, yk¼(mk,Sk), P¼ dþ

ðdðdþ1Þ=2Þ and the update equations of ẑki, mk, and Sk are the
same as the formulas (4), (8) and (9), respectively. For updating
parameters, Figueiredo and Jain [20] used the component-wise EM
method proposed by Celeux et al. [21], in which the parameters
are sequentially updated. The algorithm proposed by Figueiredo
and Jain [20] performs first by inputting larger cluster numbers
and then by using the formula (11) to eliminate these smaller
clusters to reduce the cluster number. After that, they use the
criterion (10) to find the clustering that best minimizes the
criterion. However, using random initial conditions for the EM in
Figueiredo and Jain [20] still has an initialization problem in which
using larger initial cluster numbers only makes this initialization
problem lighter. We give an example to illustrate it as follows.

Example 1. In this example we use a data set, as shown in
Fig. 1(a), generated from a two-component Gaussian mixture
distribution with a sample size 800 and the parameters

a1 ¼ a2 ¼ 0:5, m1 ¼ ð0 0 ÞT , m2 ¼ ð20 0 ÞT ,

S1 ¼
1 0

0 1

� �
, and S2 ¼

9 0

0 9

� �
:

We use the starting cluster number cinitial¼30 and 100 differ-
ent random initial conditions for the algorithm of Figueiredo and
Jain [20]. Finally we have 78 of 100 with the results of cn¼2,
as shown in Fig. 1(b), another 11 of 100 with the results of cn¼3,
and the other 11 of 100 with the results of cn43. Fig. 1(c)
demonstrates an incorrect clustering result of cn¼3. In fact, if a
data set with a larger cluster number is considered, then the
initialization problem for the algorithm of Figueiredo and Jain
[20] will become more serious. In next section, we will compare
the algorithm in Figueiredo and Jain [20] with our proposed
robust EM clustering algorithm.
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Fig. 2. The plot of functionf ðaÞ ¼ a ln a, 0oar1.
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3. A robust EM clustering algorithm

In this section, we first consider the ak terms to adjust the EM
mixture objective function (3). We know that the proportion ak can
be the probability of one data point belonged to the kth class. Hence,
we can use �ln ak as the information in the occurrence of one data
point belonged to the kth class, and �

Pc
k ¼ 1 ak ln ak is the average

of information, which is generally called entropy. When ak¼1/c,
8k¼1,2,y,c, we say that there is no information about ak. At this
point, we have the entropy achieve the maximum value. Therefore,
we first add this term to the original EM objective function. We then
use a learning process to estimate ak by minimizing the entropy to
get the most information for ak. To minimize �

Pc
k ¼ 1 ak ln ak is

equivalent to maximizing
Pc

k ¼ 1 ak ln ak. For this reason, we usePc
k ¼ 1 ak ln ak as a penalty term for the EM mixture objective

function. Thus our first proposed EM mixture objective function is
to maximize

Jða,yÞ ¼
Xn

i ¼ 1

Xc

k ¼ 1

ẑki ln½akf ðxi; ykÞ�þb
Xn

i ¼ 1

Xc

k ¼ 1

ak lnak, bZ0: ð12Þ

We know that the EM is a very good algorithm for estimating
parameters when good initial conditions are given. In formula

(12), the penalty term
Pn

i ¼ 1

Pc
k ¼ 1 ak ln ak is just used to adjust

the EM algorithm in which it is always negative. Hence, at the end

of performing this algorithm, we let b be zero to obtain the
original EM estimate. The ak proportions can be derived by

maximizing J(a,y) with respect to ak under the constraintPc
k ¼ 1 ak ¼ 1 (see Appendix) with the following update equation:

aðnewÞ
k ¼ aEM

k þba
ðoldÞ
k ðln aðoldÞ

k �
Xc

s ¼ 1

aðoldÞ
s ln aðoldÞ

s Þ ð13Þ

where aEM
k ¼

Pn
i ¼ 1 ẑki=n.

We should mention that the Eq. (13) created above is impor-
tant for our proposed robust EM clustering method. In Eq. (13),Pc

s ¼ 1 as ln as is the weighted mean of ln ak with the weights
a1,y,ac. For the kth mixing proportion aðoldÞ

k , if ln aðoldÞ
k is less than

the weighted mean, then the new mixing proportion aðnewÞ
k will

become smaller than the old aðoldÞ
k . That is, the smaller proportion

will decrease and the bigger proportion will increase in the next
iteration and then competition will occur. This situation is like
formula (11) used in Figueiredo and Jain [20]. If akr0 or ako1/n
for some 1rkrc(old), they are considered to be illegitimate
proportions. In this situation, we discard those clusters (or set
those proportions to become zero) and then update the cluster
number c(old) to

cðnewÞ ¼ cðoldÞ�9ak9ako1=n, k¼ 1, � � � ,cðoldÞ9 ð14Þ
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Fig. 1. (a) Data set; (b) clustering results of
Furthermore, in order to retain the constraints
PcðnewÞ

k0 ¼ 1 ak0 ¼ 1
and

PcðnewÞ

k0 ¼ 1 ẑk0i ¼ 1, we adjust ak0 and ẑk0 i by

ak0 ¼
ak0PcðnewÞ

s ¼ 1 as

ð15Þ

ẑk0 i ¼
ẑk0 iPcðnewÞ

s ¼ 1 ẑsi

ð16Þ

Under our competition schema setting, the algorithm can
automatically reduce the number of clusters and also simulta-
neously get the estimates of parameters. On the other hand, the
parameter b can help us control the competition. We discuss
the variable b as follows. The plot of the function f ðaÞ ¼ a ln a is
shown in Fig. 2. We can derive that

�e�1rak ln ako0 ð17Þ

If 0oakr1, 8k¼1,2,y,c, and let

E¼
Xc

s ¼ 1

as ln aso0 ð18Þ

then

akE¼ ak

Xc

s ¼ 1

as ln aso0 ð19Þ
5 20 25 30

58; C = 2
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cn¼2 and (c) clustering results of cn¼3.
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Using the formula (17) and (19), we can have

�e�1bobak ln ak�
Xc

s ¼ 1

as ln as

 !
obð�akEÞ ð20Þ

Under the constraint
Pc

k ¼ 1 ak ¼ 1, and only when ako1/2, we
can have that ðln ak�

Pc
s ¼ 1 as ln asÞo0. To avoid the situation

where all akr0, the left hand of inequality (20) must be larger
than �maxak9ako1=2, k¼ 1,2, � � � ,c. We now have an elemen-
tary condition of b as follows:

�e�1b4�maxak9ako1=2, k¼ 1,2, � � � ,c

bomaxake9ako1=2, k¼ 1,2, � � � ,coe=2: ð21Þ

Therefore, to prevent b from being too big, we can use bA[0,
1]. Furthermore, if the difference between a(new) and a(old) is small,
then b must become large in order to enhance its competition. If
the difference between a(new) and a(old) is large, then b will
become small to maintain stability. Thus, we define an updated
formula for b as

b¼
Pc

k ¼ 1 exp�Zn9aðnewÞ
k �aðoldÞ

k 9
c

ð22Þ

where Z can be set to be min 1, 0:5
d
2�1
� 	
 �

, where ab c denotes

the largest integer that is no more than a. By combining formula

(13) and the right hand of inequality (20) to avoid aðnewÞ
ð1Þ ¼

max
1rkr c

aðnewÞ
k 41, we let aEM

ð1Þ ¼ max
1rkr c

aEM
k , aðoldÞ

ð1Þ ¼ max
1rkr c

aðoldÞ
k , and

E¼
Pc

k ¼ 1

aðoldÞ
k ln aðoldÞ

k . Then

aEM
ð1Þ þbð�a

ðoldÞ
ð1Þ EÞr1

br ð1�aEM
ð1Þ Þ=ð�a

ðoldÞ
ð1Þ EÞ ð23Þ

Therefore, we obtain the formula for b as follows:

b¼min

Pc
k ¼ 1 expð�Zn9aðnewÞ

k �aðoldÞ
k 9Þ

c
,
ð1�aEM

ð1Þ Þ

ð�aðoldÞ
ð1Þ EÞ

8<
:

9=
; ð24Þ

Now, let us consider the Gaussian mixture model

f ðx;a,yÞ ¼
Xc

k ¼ 1

akf ðx;mk,SkÞ

¼
Xc

k ¼ 1

akð2pÞ�ðd=2Þ9Sk9
�ð1=2Þ

e�ð1=2Þðx�mkÞ
0S�1

k ðx�mkÞ

The updated equations for parameters mk and Sk can be
derived as follows:

mk ¼

Pn
i ¼ 1 ẑkixiPn

i ¼ 1 ẑki

ð25Þ

Sk ¼

Pn
i ¼ 1 ẑkiðxi�mkÞðxi�mkÞ

TPn
i ¼ 1 ẑki

ð26Þ

Because the b can jump at any time, we let b¼0 when the
cluster number c is stable. When cluster number c is stable, that
means c is no longer decreasing. In our setting, we use all data
points as initial means mk¼xk, i.e. cinitial

¼n, and we use ak¼

1/cinitial, 8k¼1, 2, ..., cinitial as the initial mixing proportions. We
also choose a feasible initial covariance matrix. Let

Dk ¼ sortfd2
ki ¼ :xi�mk:

2
: d2

ki40, iak, 1r irng

¼ fd2
kð1Þ,d

2
kð2Þ,. . .,d

2
kðn0 Þg
and

Sk ¼ d2

k
ffiffiffiffiffiffiffiffiffi
cinitial
p
 �� �Id ð27Þ

where Id is a dxd identity matrix.
When we use a larger cluster number to the EM for Gaussian

distribution, the covariance matrix of the cluster with a very small
proportion ak may be close to singular. To avoid this problem, we
use a constrain covariance matrix ~Sk as follows:

~Sk ¼ ð1�gÞSkþgQ ð28Þ

where g is a small positive number and Q is also a diagonal matrix
with small positive numbers on its diagonal. In this paper, we
use g¼0.0001, Q ¼ d2

minId, d2
min ¼minfd2

ij : d2
ij ¼ :xi�xj:

2
40, 1r i,

jrng. Thus, the proposed robust EM clustering algorithm can be
summarized as follows.

Robust EM clustering algorithm

Step 1: Fix e40.
Give initial b(0)

¼1, c(0)
¼n, að0Þk ¼ 1=n, and m(0)

¼X.
Step 2: Compute Sð0Þk by (27).

Step 3: Compute ẑ
ð0Þ
ki with að0Þk , mð0Þk , and Sð0Þk by (4) and set t¼1.

Step 4: Compute mðtÞk with ẑ
ðt�1Þ
k1 ,. . .,ẑ

ðt�1Þ
kn by (25).

Step 5: Update aðtÞk with ẑ
ðt�1Þ
k1 ,. . .,ẑ

ðt�1Þ
kn and aðt�1Þ

k by (13).

Step 6: Compute b(t) with a(t) and a(t�1) by (24).
Step 7: Update c(t�1) to c(t) by discard those clusters with
aðtÞk r1=n and adjust aðtÞk and ẑ

ðt�1Þ
ki by (15) and (16).

IF tZ60 and c(t�60)
�c(t)

¼0, THEN let b(t)
¼0.
Step 8: Update SðtÞk with mðtÞk and ẑ
ðt�1Þ
k1 ,. . .,ẑ

ðt�1Þ
kn by (26) and (28).

Step 9: Update ẑ
ðtÞ
ki with aðtÞk , mðtÞk , and SðtÞk by (4).

Step 10: Update mðtþ1Þ
k with ẑ

ðtÞ
k1,. . .,ẑ

ðtÞ
kn by (25).

Step 11: Compare m(tþ1) and m(t).

IF max
1rkr cðtÞ

:mðtþ1Þ
k �mðtÞk :oe, THEN Stop.

ELSE t¼tþ1 and return to Step 5.
In the Step 1 of the proposed robust EM clustering algorithm, we
had assigned all data points as initial values with c(0)

¼n, að0Þk ¼ 1=n,
and m(0)

¼X. In fact, we can let our robust EM clustering algorithm
have the same running way as the method of Figueiredo and Jain
[20] that uses some random initial values by only inputting a larger
cluster number, but not assigning all data points as initial values.
In this case, we may randomly choose cinitial data points from the
data set that cinitial may be less than n with the initial means
mð0Þ1 ,mð0Þ2 ,:::, mð0Þcinitial

. Then the initial proportions will become að0Þk ¼

1=cinitial for k¼1, 2, ..., cinitial. The other steps (i.e. Step 2–11) in our
robust EM clustering algorithm keep no change.

We next compare the proposed robust EM clustering algo-
rithm with the EM and the algorithm proposed by Figueiredo and
Jain [20] (called the FJ algorithm).

Example 1 (Continued). In this example, we continue Example
1 in Section 2, implementing our robust EM clustering algorithm for
the data set of Fig. 1(a). This robust EM clustering algorithm uses all
data points as the initial clustering centers, as shown in Fig. 3(a).
After the iteration has been implemented once, we can see that the
cluster number decreases rapidly from 800 to 587, as shown in
Fig. 3(b), then from 587 to 59 after 10 iterations, and so forth.
Finally, this data set is successfully grouped in 2 clusters by the
robust EM when iteration¼41, as shown in Fig. 3(f). In this sense,
our robust EM clustering algorithm does not depend on initial
cluster centers and can easily obtain correct clustering results.
Furthermore, we use the same parameters to generate 100 data sets
from the two-component Gaussian mixture distribution and then
implement our robust EM clustering algorithm for these 100 data
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Fig. 3. (a) Initialization of the robust EM; (b)–(e) processes of the robust EM after 1, 10, 20, and 30 iterations and (f) convergent results of the robust EM after 41 iterations.
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sets. We find that there are 80 of 100 data sets in which our robust
EM clustering algorithm gives correct clustering with cn¼2. We
recall that there are 78 out of 100 initials with the correct results of
cn¼2 for the FJ algorithm [20], as shown in Fig. 1(b), so that the FJ
algorithm is dependent on initialization.

Furthermore, we also compare our robust EM clustering algo-
rithm with the FJ algorithm under the same initial values by starting
cluster number cinitial¼30 and 100 different random initial con-
ditions that had been done in Example 1 of Section 2. For the FJ
algorithm, we know that there are 78 of 100 with the results of
cn¼2 and the average iteration is 209.49. For our robust EM
clustering algorithm, there are 94 of 100 with the results of cn¼2
and the average iteration is 43.48. We also generate 100 data sets
and then use cinitial¼30 and 100 different random initial condi-
tions to each data set. We find that the FJ algorithm obtains the
accuracy rate 0.7816 with the results of cn¼2. For our robust EM
clustering algorithm, the accuracy rate 0.7954 with results of
cn¼2. Totally, our robust EM clustering algorithm actually pre-
sents better than the FJ algorithm.

Example 2. The data set shown in Fig. 4(a) is generated from a
two-dimensional, three-component Gaussian mixture distribu-
tion with sample size n¼300 and the parameters

a1 ¼ a2 ¼ a3 ¼ 1=3, m1 ¼ ð0 3 ÞT , m2 ¼ ð0 5 ÞT ,

m3 ¼ ð0 7 ÞT , S1 ¼S2 ¼S3 ¼
1:2 0

0 0:01

� �

This is a well-separated data set. If the clustering number 3 is
given for implementing the EM algorithm with different random
initials, then the EM algorithm most has perfect clustering results
with cn¼3, as shown in Fig. 4(b). If we use the FJ algorithm [20] with
random initials and the starting clustering number 20, then it also
obtain perfect clustering results with cn¼3, as shown in Fig. 4(b). If we
use the proposed robust EM, it also obtain perfect clustering results
with cn¼3 without an initial cluster number, as shown in Fig. 4(b).
Now, we add a two-dimensional Gaussian data set with the

sample size 100, and the parameters m4 ¼ ð 0 5 ÞT and S4 ¼

0:01 0

0 0:8

� �
, as shown in Fig. 4(c). By implementing the EM

algorithm with the clustering number 4 and 100 different initials,
there are 85 of 100 to obtain correct clustering results, as shown
in Fig. 4(d). By implementing the FJ algorithm with the initial
clustering number 20 and 100 different initializations, 92 of 100
obtain correct clustering results, as shown in Fig. 4(d). However,
when the starting clustering number is changed to 30, only 81 of
100 obtain correct clustering results, as shown in Fig. 4(d). Then
Figs. 4(e) and 4(f) are two other clustering results with cn¼4
obtained by the FJ algorithm. By implementing the robust EM to
the data set as shown in Fig. 4(c) can obtain correct clustering
results, as shown in Fig. 4(d) without an initial cluster number. If
we generate 100 data sets with the same parameters and then
implement the robust EM algorithm, 90 of 100 data sets obtain
correct clustering results, as shown in Fig. 4(d).

Furthermore, we also compare our robust EM clustering algorithm
with the FJ algorithm under the same initial values by starting cluster
number cinitial¼20 and 100 different random initial conditions. For
the FJ algorithm, we know that there are 92 of 100 with the results of
cn¼4 and the average iteration is 122.33. For our robust EM
clustering algorithm, there are 94 of 100 with the results of cn¼4
and the average iteration is 39.95. We increase the cluster number
cinitial¼30 and also use 100 different random initial conditions. For the
FJ algorithm, we find that there are only 81 of 100 with the results of
cn¼4 and the average iteration is 181.41. For robust EM clustering
algorithm, there are higher 96 of 100 with the results of cn¼4 and the
average iteration is 39.34. Moreover, we generate 100 data sets and
then use cinitial¼20 and 100 different random initial conditions to
each data set. We find that the FJ algorithm obtains the accuracy rate
0.7816 with the results of cn¼4. For our robust EM clustering
algorithm, the accuracy rate 0.7954 with results of cn¼4. We then
use cinitial¼30 and 100 different random initial conditions to each
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data set. We find that the FJ algorithm obtains the accuracy rate
0.5281 with the results of cn¼4. For our robust EM clustering
algorithm, we have the accuracy rate 0.8592 with results of cn¼4.

Example 3. In this example, the data set is a two-dimensional,
four-component Gaussian mixture distribution from Figueiredo
and Jain [20] with parameters

a1 ¼ a2 ¼ a3 ¼ 0:3, a4 ¼ 0:1; m1 ¼ m2 ¼ ð�4 �4 ÞT ,

m3 ¼ ð2 2 ÞT ; m4 ¼ ð�1 �6 ÞT , S1 ¼
1 0:5

0:5 1

� �
,

S2 ¼
6 �2

�2 6

� �
, S3 ¼

2 �1

�1 2

� �
, S4 ¼

0:125 0

0 0:125

� �
:

We generate a data set from this Gaussian mixture model with
a sample size n¼1000, as shown in Fig. 5(a). This data set can be
clustered into 4 clusters, as shown in Fig. 5(b). On the other hand,
if we do not know the true clustering number, this data set can be
viewed as two bigger clusters and one smaller cluster. Now we
use Figueiredo and Jain’s method for this data set with 100
different random initials. In our implementation, only 68 of
100 obtain the clustering results for 4 clusters, as shown in
Fig. 5(b) and the other 32 of 100 obtain with more than 4 clusters.
For this data set, implementing the proposed robust EM has the
results shown in Fig. 5(b). If we further generate 100 data sets
where each data set has 1000 sample points, we find that the
proposed robust EM algorithm for these 100 data sets obtains 78
of 100 with 4 clusters, as shown in Fig. 5(b), 2 of 100 with
5 clusters, 16 of 100 with 3 clusters as shown in Fig. 5(c), and 4 of
100 with 2 clusters.

Furthermore, we also compare our robust EM clustering
algorithm with the FJ algorithm with the same initial values
by starting cluster number cinitial¼20 and 100 different random
initial conditions. For the FJ algorithm, we know that there are 68
of 100 with the results of cn¼4 and the average iteration is
198.62. For our robust EM clustering algorithm, there are 81 of
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100 with the results of cn¼4 and the average iteration is 178.92.
We also generate 100 data sets and then use cinitial¼20 and 100
different random initial conditions to each data set. We find that
the FJ algorithm obtains the accuracy rate 0.6113 with the results
of cn¼4. For our robust EM clustering algorithm, we have the
accuracy rate 0.6507 with results of cn¼4. As a whole, our robust
EM clustering algorithm actually presents better than the FJ
algorithm.
4. Examples and experimental results

In this section, some experimental examples are used to
demonstrate the effectiveness of the proposed robust EM cluster-
ing algorithm. In all examples, we give e¼0.0001.

Example 4. The data set used in this example is from a one-
dimensional, three-component Gaussian mixture distribution
[22] with parameters

a1 ¼ a2 ¼ a3 ¼ 1=3; m1 ¼�11, m2 ¼ 0,

m3 ¼ 13; s2
1 ¼ 4, s2

2 ¼ 16, s2
3 ¼ 9

We generate 1000 sample points, whose histogram is shown in
Fig. 6(a). The robust EM algorithm is implemented for the data
set. After 50 iterations, the cluster number cn¼3 is obtained and
the estimates of parameters are as follows:

â1 ¼ 0:3475, â2 ¼ 0:2989, â3 ¼ 0:3536, m̂1 ¼�10:8118,

m̂2 ¼ 0:0843, m̂3 ¼ 12:5974, ŝ2
1 ¼ 4:4722, ŝ2

2 ¼ 13:8800,

ŝ2
3 ¼ 9:2170:

In Fig. 6(e), we use a red curve to show the real model and use
the blue line to show the estimated model. We find that the
estimated model is very close to the real model. In Fig. 6(f), the
values of the objective function are demonstrated in that it has
stably achieved its optimal value.
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Example 5. In this example, we generate 1000 data points from a
two-dimensional, five-component Gaussian mixture distribution
with parameters

a1 ¼ a2 ¼ a3 ¼ a4 ¼ a5 ¼ 0:2, m1 ¼ ð0 0 ÞT , m2 ¼ ð0 0 ÞT ,

m3 ¼ ð�1:5 1:5 ÞT

m4 ¼ ð1:5 1:5 ÞT , m5 ¼ ð0 �2 ÞT , S1 ¼
0:01 0

0 1:25

� �
,

S2 ¼
8 0

0 8

� �
, S3 ¼

0:2 0

0 0:015

� �
, S4 ¼

0:2 0

0 0:015

� �
,

S5 ¼
1 0

0 0:2

� �

where Geva [23] used it to imitate the so-called ‘‘face’’ data as
shown in Fig. 7(a). We implement the robust EM algorithm for the
data set. The clustering results after different iterations are shown
in Figs. 7(b)–7(e), respectively, indicating that the number of
clusters will gradually decrease. The algorithm is convergent after
149 iterations with the optimal cluster number cn¼5, as shown in
Fig. 7(e). In Fig. 7(f), we can see that the curve for the values of the
objective function becomes horizontal, which is because the
number of clusters is stable and b is equal to zero. The estimates
of parameters are finally as follows:

â1 ¼ 0:2148, â2 ¼ 0:1731, â3 ¼ 0:2024,

â4 ¼ 0:1921, â5 ¼ 0:2176

m̂1 ¼
0:0010

�0:0348

� �
, m̂2 ¼

�0:0549

�0:1078

� �
, m̂3 ¼

�1:4633

1:5139

� �
,

m̂4 ¼
1:5396

1:4893

� �
, m̂5 ¼

�0:0799

�1:9000

� �
, Ŝ1 ¼

0:0083 0:0008

0:0008 1:3381

� �

Ŝ2 ¼
6:5406 0:0327

0:0327 8:4815

� �
, Ŝ3 ¼

0:1996 �0:0084

�0:0084 0:0145

� �
,

10 20 30
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cn¼3 in which the blue curve is our estimating model and the red curve is the real



-5 0 5
-8

-6

-4

-2

0

2

4

6

8
Data Set

-5 0 5
-8

-6

-4

-2

0

2

4

6

8
Iteration =1; C = 531

-5 0 5
-8

-6

-4

-2

0

2

4

6

8
Iteration =7; C = 149

-5 0 5
-8

-6

-4

-2

0

2

4

6

8
Iteration =41; C = 9

-5 0 5
-8

-6

-4

-2

0

2

4

6

8
Iteration =149; C = 5

0 25 50 75 100 125 150
-14000

-12000

-10000

-8000

-6000

-4000

-2000

iteration

Fig. 7. (a) The original data set; (b) results with c¼531 after one iteration; (c) results with c¼149 after 7 iterations; (d) results with c¼41 after 9 iterations; (e) results with

cn¼5 after 149 iterations to convergence and (f) the values of objective function.

M.-S. Yang et al. / Pattern Recognition 45 (2012) 3950–3961 3957
Ŝ4 ¼
0:2438 0:0013

0:0013 0:0167

� �
, Ŝ5 ¼

1:3988 0:0238

0:0238 0:2591

� �
:

If we further use the same parameters to generate 100 data
sets, we find that the robust EM algorithm obtain 90 of 100 data
sets to have good clustering results, as shown in Fig. 7(e) with
cn¼5.

Example 6. In this example, we use an artificial data set as shown
in Fig. 8(a). There are 16 clusters and each cluster has 50 data
points. Even though these 16 clusters seem to be clearly sepa-
rated, if we use the EM algorithm with the cluster number c¼16,
it always obtains a bad clustering result shown in Fig. 8(b) unless
good initial values are given for the EM algorithm. When we
implement the robust EM algorithm for the data set, we find that
not only can we obtain correct clustering number with cn¼16, but
we also can obtain good clustering results after 31 iterations, as
shown in Fig. 8(f).

Example 7. In this example, we use the robust EM algorithm for
the data set shown in Fig. 9(a), which has three dimensions and
nine clusters with different shapes. After implementing the
robust EM algorithm with 140 iterations, we obtain final cluster-
ing results in convergence, as shown in Fig. 9(b). The clustering
results by the robust EM algorithm are good even though the data
set has different cluster shapes.

Example 8. The real data set of flea beetle data from Lubischew
[24] is used in this example. The data set has 74 data points with
three species: concinna (21), heikertingeri (31) and heptapotamica

(22). Each data point was obtained by measuring two charac-
teristics of a beetle: the maximal width of the aedeagus in the
fore-part in microns and the front angle of the aedeagus
(1 unit¼7.51). The flea beetle data set is shown in Fig. 10(a). By
implementing the EM algorithm for this data set with 100
random initials, we have 49 of 100 with the clustering results
shown in Fig. 10(b), 20 of 100 with the clustering results shown in
Fig. 10(c), and 31 of 100 with various other clustering results.
By implementing the robust EM algorithm, we obtain the cluster-
ing results shown in Fig. 10(d) with cn¼3, where there is only
1 concinna incorrectly classified as heikertingeri, as shown in
Fig. 10(e).

Example 9. In this example, the real data set with three-dimen-
sional data from Reaven and Miller [25] is considered. There are
145 observations of diabetes patients and three measurements on
each patient: the plasma glucose response to oral glucose, the
plasma insulin response to oral glucose, and the degree of insulin
resistance. They were clinically classified into three groups:
normal (76), chemical diabetes (36), and overt diabetes (33). The
classified 3D graph is shown in Fig. 11(a). By implementing the
robust EM algorithm for this data set, we get the clustering results
shown in Fig. 11(b) in convergence after 133 iterations with cn¼3.
There are 20 misclassifications out of 145 observations.

Finally, we analyze the computational complexity for the
proposed robust EM algorithm. In fact, the robust EM has the same
computational complexity as the original EM. The difference of
computational complexity between these two methods is the initial
cluster number c, where c varies from n to cfinal. The computational
complexity is calculated per iteration from two parts, E-step and
M-step. In the E-step, the computational complexity for computing
the ẑki is O(nc). In the M-step, the computational complexities for
computing the proportions ak and the means mk are both O(c).
For computing the covariance matrices Sk, the computational
complexity is O(nd2c). Thus, the computational complexity in each
iteration is O(ncþcþnd2c)¼O(nc(1þd2)þc) where c varies from n

to cfinal. Although the robust EM uses the number of data points
c¼n as the cluster number in the beginning of implementation, the
time per iteration will decrease rapidly after several iterations. This
is because the cluster number c decreases rapidly by discarding
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those clusters with aðtÞk r1=n during implementation. To demon-
strate this phenomenon, we show the computation time in seconds
per iteration for the data sets of Example 4, 5 and 7 as shown in
Fig. 12 and Table 1. We find that the computation time decreases
rapidly after the 10th iteration for Examples 4, 5 and 7.
5. Conclusions and discussion

We know that the EM algorithm is sensitive to initial values.
In this paper we propose a new schema for the EM without
initialization. The proposed robust EM algorithm for Gaussian
mixture models uses all data points as initials to solve the problem
of choosing initial values. We then use a penalty term to construct
a competition schema. When a cluster during implementing the
algorithm has an illegitimate proportion, we can discard it based
on the construction. If the cluster number does not decrease, we
achieve an appropriate cluster number and also parameter estima-
tions so that an optimal cluster number can be automatically found
according to the structure of data. Several examples with numer-
ical and real data sets demonstrate the superiority of the proposed
robust EM clustering algorithm for Gaussian mixture models. We
had mentioned that some convergence properties of the EM
algorithm (for Gaussian mixtures) had been constructed by Wu
[17] and Xu and Jordan [18]. Although we had considered the
maximum solution of Eq. (12) with the penalized function J(a,y)
based on the necessary conditions of the Lagrangian ~J , we had
added some formula and also adjusted ak0 and ẑk0i to have a
competition schema setting such that the algorithm can automa-
tically reduce the number of clusters and also simultaneously get
the estimates of parameters. In this case, the convergence proper-
ties of our robust EM clustering algorithm cannot be proved by a
similar way as Wu [17] and Xu and Jordan [18]. However, we may
borrow some results from dynamical systems. If we can reform the
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Table 1
Running time (s) of the first ten iterations for the data sets in Examples 4, 5 and 7 with different dimensions.

Data set Iteration

1 2 3 4 5 6 7 8 9 10

Example 4 (d¼1) 0.202 0.189 0.135 0.133 0.124 0.097 0.073 0.058 0.049 0.037

Example 5 (d¼2) 2.428 2.412 2.164 1.776 1.373 1.065 0.673 0.533 0.438 0.313

Example 7 (d¼3) 9.385 9.272 7.976 6.119 4.895 3.956 2.784 2.149 1.743 1.373
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proposed robust EM algorithm in a language of dynamical systems,
we may obtain some convergence properties of the proposed
robust EM algorithm. This will be our future research topic.

On the other hand, Gaussian distribution is not robust for
outliers. Some distributions, such as t-distribution and Pearson
type VII distribution, are more robust to outliers than Gaussian
distribution. In the literature, there are several ways to re-
construct the EM as a robust clustering algorithm for outliers.
There are some by replacing a mixture of Gaussian distributions
with a mixture of t-distributions [26,27], with a mixture of skew-
normal distributions [28] or with a mixture of Pearson type VII
distributions [29]. Some others consider by using robust estima-
tors, such as the trimmed likelihood estimator [30], trimmed
k-means with trimmed data set [31] or modified t-factor analyzer
[32], and so forth. We know that the proposed robust EM
algorithm is robust for initial values and cluster number. In our
further work, we will advance our robust EM algorithm as a more
robust algorithm for outliers. We may consider application of our
robust EM algorithm to the mixture of t-distributions and Pearson
type VII distributions, or further consider those robust estimators.
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Appendix

To derive the update equation for ak under the constraintPc
k ¼ 1 ak ¼ 1, the Lagrangian ~J of Jshould be

~Jða,yÞ ¼
Xn

i ¼ 1

Xc

k ¼ 1

ẑki ln½akf ðxi; ykÞ�

þb
Xn

i ¼ 1

Xc

k ¼ 1

ak ln ak�l
Xc

k ¼ 1
ak�1

� �

We take the first derivative of the Lagrangian ~J with respect
to ak and set it to be zero. We derive an equation for ak, as
follows:Pn

i ¼ 1 ẑki

ak
þnb ln akþnb�l¼ 0

Then we have

Xn

i ¼ 1

ẑkiþnbak ln akþnbak�lak ¼ 0 ðA1Þ

Xc

k ¼ 1

Xn

i ¼ 1

ẑkiþnb
Xc

k ¼ 1

ak ln akþnb
Xc

k ¼ 1

ak�l
Xc

k ¼ 1

ak ¼ 0

l¼ nþnb
Xc

k ¼ 1

ak ln akþnb ðA2Þ
Embedding (A2) into Eq. (A1), we have

Xn

i ¼ 1

ẑkiþnbaklnakþnbak�ðnþnb
Xc

s ¼ 1

as ln asþnbÞak ¼ 0

Xn

i ¼ 1

ẑkiþnbak ln ak�nak�nbak

Xc

s ¼ 1

as ln as ¼ 0

Then the updated equation for ak is

aðnewÞ
k ¼

Pn
i ¼ 1 ẑki

n
þbaðoldÞ

k ðln aðoldÞ
k �

Xc

s ¼ 1

aðoldÞ
s ln aðoldÞ

s Þ
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