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m The term “Data Science” has surged in popularity

m Data science is increasingly commonly used with “big data.”

m Data science, including Big Data has recently attracted an enormous
interest from the scientific community
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m What does Data Science mean?

m What about Statistics in the Data Science “area” ?

m There is not yet a consensus on what precisely constitutes Data Science
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Use of the term "data science” is increasingly common, as is "big
data.” But what does it mean? Is there something unique about
it? What skills do "data scientists" need to be productive in a
world deluged by data? What are the implications for scientific
inquiry? Here, I address these questions from the perspective of
predictive modeling.
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statstics, are emerging as foundational to data science: ()

o and organization of data resources, (i)

Statistics and Machine Learning convert data into knowledge, and (i) Distributed and Parallel Systems
provide the computational infrastructure to carry out data analysis.

m For a review, see the report of D. Donoho (2015): “50 years of Data Science”
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m There is not yet a consensus on what precisely constitutes Data Science, but

m Data Science can be seen (defined ?7) as®:

the study of the generalizable extraction of knowledge from data.
requires an integrated skill set spanning mathematics, machine
learning, artificial intelligence, statistics, databases, and optimization

“Vasant Dhar (2013): Communications of the ACM, Vol. 56 No. 12: 64-73

m Data Science clearly has an interdisciplinary nature and requires substantial
collaborative effort

m Databases, statistics and machine learning, and distributed systems are
emerging as foundational to data science

(i) Databases: organization of data resources,
(i) Statistics and Machine Learning: convert data into knowledge,

(iii) Distributed and Parallel Systems: computational infrastructure
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Statistics play a central role in data science
m Allow to quantify the randmoness component in the data

m A well-established background to deal with uncertainty (probabilistic frame-
work) and to establish generizable methods for prediction and estimation

m allow soft decision: e.g. confidence interval in regression and posterior
probabilities in classification

m help for understanding the underlying generative process
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Data science models/algorithms

New problems (big data, etc) but ... classical methods ?

Our Core Algorithms Remain the Same

* Regression, decision trees, and cluster analysis continue to form a triad of
core algorithms for most data miners. This has been consistent since the first
Data Miner Survey in 2007.

0%  10%  20%  30%  40%  50%  60%  70%  80%  90%  100%

Regression I SN % W% @R
Decision trees INET N 32% 23% Coo%
Cluster analysis T3 3% 7% o
Time Series MNEETIN 2% 29% e
Ensemble methods WEECE 1% 18% %
Random forests. 7% 2% e
Text mining 16% 26% 2%
Factor analysis 15% % [T
Anomaly detection 1% 2% T
Neural nets 14% 19% o a%
Proprietary algorithms 10% FEVR T
Bayesian methods 13% 26% %
Association rules 18% 2% S m%

Support Vector Machines (SVM) 12%
urvival analysis 10% w0 A%

Social Network Analysis 9% 1% s
Monte Carlo methods 1% 20% o wx
Rule induction 9% 7% oo
Deep Learning 7% s

a%
Link analysis 7%
Upliftmodeling 7% % [oaas
Genetic & Evolutionary algorithms 4%
MARS I 5%

mMost of the time Often Sometimes = Rarely

Selectall that apply)
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Statistical modeling for data science

The observed data {x1,...,z,} where z; € X C R? are assumed to
represent samples from random variables X with unknown probability
distribution f

The main questions are i) how to define flexible and generic models for f ii)
construct estimators with desirable properties to learn f from the data iii) to
deal with the computational and practical issues for “complex” data

The area of statistical learning for the analysis of complex data.

Data : Complex data < heterogeneous, temporal/dynamical, functional,
incomplete, high-dimensional,...

Objective: Transform the data into knowledge :
— Reconstruct hidden structure/information, groups/hierarchy of groupes,
summarizing prototypes, underlying dynamical processes, etc
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Topics and goals

— exploratory analysis: segmentation/clustering/dimensionality
reduction /vizualisation

— decisional analysis: make decision and prediction for future data
(regression /classification)

Modeling framework

m Latent variable models : f(z]0) = [ f(x,2|0)dz
Generative formulation :
z ~ q(20)
x|z ~ f(z]2,0)
< Mixture models : f(z|0) = Zszl P(z = k) f(x|z = k,0%) and

extensions

— Algorithms for inferring @ from the data
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Temporal data segmentation
Clustering of functional data

Bayesian (non-)parametric mixtures for spatial and multivariate data
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Temporal data

Temporal data with regime changes

s50f

Power (Watt)

Accelerations (m/S?)

2 3 @ 5 - 5 10 15 20
Time (Second) Time (5)

Railway data Human activity data

m Data with regime changes over time
m Abrupt and/or smooth regime changes

m Multidimensional temporal data

Objectives

Temporal data modeling and segmentation J
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Regression with hidden logistic process

Let y = (y1,...,Yn) be a time series of n univariate observations y; € R
observed at the time points t = (¢1,...,t,) governed by K regimes.

The Regression model with Hidden Logistic Process (RHLP) [1]

Yy = ,BZIEZ +o.6 ;5 6~N(01), (i=1,...,n)
Z,L' o~ M(l,ﬂ'l(ti;W)7...,’/TK(ti;W))
Polynomial segments ﬁzTisci with z; = (1,¢;,...,t)T with logistic probabilities
l;
T (ti;w) = P(Z; = klti;w) = xpllnsh o)

SO exp (wert; + wio)

K

Flyilti; 0) = mi(ts; wN (yi; Br @i, 07)

k=1
m Both the mixing proportions and the component parameters are time-varying

m Parameter estimation via a the EM algorithm: EM-RHLP

FA1cEL CHAMROUKHI
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EM-RHLP

Parameter estimation via a the EM algorithm: EM-RHLP
m Parameter estimation via a the EM algorithm (EM-RHLP)

M-Step: includes a weighted logistic regression problem < IRLS
(and weighted polynomial regressions)

m EM-RHLP algorithm complexity: O(IgwIiris K>2p®n) (more advantageous
than dynamic programming).

Time series approximation and segmentation

. TP
Approximation: a curve prototype §; = Ely;|t;; 0] = Zszl i (ti; W) B x4

< The RHLP can be used as nonlinear regression model y; = f(t;;0) + ¢;
by covering functions of the form f(¢;;6) = Zszl m(ti; w)Br e [3]

Curve segmentation: 2, = arg maxy, E[z;|t;; W] = arg maxy, 7y (t;; W)

Model selection: Application of BIC, ICL (vg = K(p+4) — 2.)
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Application to temporal data modeling and segmentation
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Joint segmentation of multivariate time series

Multiple hidden process regression
m Data: (y,,...,y,,) a time series of n multidimensional observations
Y, = (ygl) . ,yZ@)T € R? observed at instants t = (¢1,...,t,).

m Modely, =B’ z; +e; ; e~N(0,%.), (i=1,...,n)

z = (z1,...,2) A latent process generating the data

< Multiple regression with hidden logistic process: Multiple RHLP [6]
< Multiple Hidden Markov model regression (MHMMR) [7]

Application to human activity time series
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Data with atypical features

m Data with possible atypical observations

m Data with possibly asymmetric and heavy-tailed distributions
Objectives

m Derive robust models to fit at best the data

m Deal with other possible features like skewness, heavy tails
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Non-normal mixtures of experts

Non-normal mixtures of experts (NNMoE)

the ¢ MoE (TMoE) (Robustness, heavy tails) [11]
the skew-normal MoE (SNMoE) (skewness) [14]
the skew-t MoE (STMoE) (skewness, robustness, heavy tails) [15]

Non-normal mixtures

o=

Mature donsty

g T
apsoraton

7w = [0.4,0.6], up, = [—1,2]; o = [1,1]; v, = [3,7]; A\ = [14, —12];
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The skew ¢ mixture of experts (STMoE) model

m A K-component mixture of skew ¢ experts (STMoE) is defined by:

K

flylr, @ ®) = > m(r;a) ST(y: p(@: By), o7, Aiy 12)
k=1

m kth expert: has a skew ¢ distribution (Azzalini and Capitanio, 2003):

F(ylm; s By), 0% A v) = % iy () Tons </\ @ ’/‘I;‘%}m))

Model characteristics
— For {v;} — o0, the STMoE reduces to the SNMoE
— For {\;} — 0, the STMOoE reduces to the TMoE.
— For {v;,} — oo and {\;} — 0, it approaches the NMoE.

— The STMOoE is flexible as it generalizes the previously described models
to accommodate situations with asymmetry, heavy tails, and outliers.
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Robustness of the NNMoE

o3| S e

5 o8 o6 —0s 02 o o0z 043 06 08 3T o8 o6 w04 02 o o0z 01 06 08

Figure: Fitted MoE to n = 500 observations generated according to the NMoE with 5% of
outliers (z;y = —2): NMoE fit (top), TMoE fit (middle), STMoE fit (bottom).
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Tone perception data set (noisy case)
m Consider the same scenario used in Bai et al. (2012) and Song et al. (2014) (the
last and more difficult scenario) by adding 10 identical pairs (0,4)

SNMoE

NMoE
© Cluster 1 © Cluster 1
© Cluster 2 © Cluster 2
Export mean 1 Expert mean 1
35| Expert mean 2

Expert mean 2

1.5 o 1.5 o
o 05 1 5 B 25 ) 05 1 s B 25 E
TMoE STMoE
© Cluster 1 © Cluster 1
© Cluster2 © Cluster2
Expert mean 1 Expert mean 1
3.5 —— Expert mean 2 3.5 —— Expert mean 2

Figure: Fitting MoLE to the tone data set with ten added outliers (0, 4).
< In this noisy case the ¢ mixture of regressions fails (is affected severely by the

On some statistical data analysis and learning problems in Data Science
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Outline

Clustering of functional data
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Functional data analysis context

Many curves to analyze

B ) O g
Time (Second)

Railway switch curves  Yeast cell cycle curves

Phonemes curves Satellite waveforms
Objectives
m Curve clustering/classification (functional data analysis framework)

m Deal with the problem of regime changes — Curve segmentation
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Functional data analysis context

Data
m The individuals are entire functions (e.g., curves, surfaces)
m A set of n univariate curves ((z1,Y1),.- -, (Zn,Y,,)

m (x;,y,;) consists of m; observations y, = (¥i1, . .., Yim,;) observed at the
independent covariates, (e.g., time ¢ in time series), (zi1,. .., Tim,)

Objectives: exploratory or decisional

Unsupervised classification (clustering, segmentation) of functional data,
particularly curves with regime changes: [4] [9], [C11] [16]

Discriminant analysis of functional data: [2], [5]

Functional data clustering/classification tools
m A broad literature (Kmeans-type, Model-based, etc)

= Mixture-model based cluster and discriminant analyzes
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Mixture modeling framework for functional data

m The functional mixture model:

K
fyle; ) = > afr(yle; @)

k=1

m fi(y|x) are tailored to functional data: can be polynomial (B-)spline
regression, regression using wavelet bases etc, or Gaussian process
regression, functional PCA

< more tailored to approximate smooth functions

— do not account for segmentation

Here fi(y|x) itself exhibits a clustering property via hidden variables (regimes):
Riecewise regression model (PWR)
Regression model with a hidden Markov process (HMMR)
Regression model with hidden logistic process (RHLP)
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Piecewise regression mixture model (PWRM) [9]

m A probabilistic version of the K-means-like approach of (Hébrail et al., 2010)
K

Ry,
fyles ) => o[ 1] Nwisi Browis, o)

k=1 r=1j€l,

PWR
Iy = (&kr, Ek,r+1] are the element indexes of segment r for component k

m — Simultaneously accounts for curve clustering and segmentation

Parameter estimation
Maximum likelihood estimation: EM-PWRM

Maximum classification likelihood estimation: CEM-PWRM
— a generalization of the K-means-like algorithm of Hébrail et al. (2010):
M-step: includes wighted piecewise regressions < dynamic programming

Complexity in O(IgmK Rnm?p?): Significant computational load for large m

Curve clustering: 2; = arg maxy, 7,5 (W) with 7,1 (¥) = P(Z;|xi, y;; P)
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Application to switch operation curves

Data set: n = 146 real curves of m = 511 observations.
Each curve is composed of R = 6 electromechanical phases (regimes)

CEM-PWRM partition

Power (Wat)
Power (Watt)

B B 2 3
Time (Second) Time (Second)

Cluster 1 Cluster 2

o 1 4 5 0 1 4 5

2 3 2 3
Time (Second) Time (Second)

EM-GMM  EM-PRM  EM-PSRM  K-means-like =~ CEM-PWRM

721.46 738.31 734.33 704.64 703.18
Table: Estimated intra-cluster inertia for the switch curves.
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Application to Topex/Poseidon satellite data

The Topex/Poseidon radar satellite datal contains n = 472 waveforms of
the measured echoes, sampled at m = 70 (number of echoes)

We considered the same number of clusters (twenty) and a piecewise linear
approximation of four segments per cluster as in Hébrail et al. (2010).

Original data
250 T T

200f 1
-
150 -

100E

50

10 20 30 40 50 60 70

!Satellite data are available at
http://wuw.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html

FA1cEL CHAMROUKHI
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CEM-PWRM clustering of the satellite data

,.\,,/s‘:m‘  | 4 ’1‘ O H A al)
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Mixture of hidden logistic process regressions [4]

m The mixture of regressions with hidden logistic processes (MixRHLP):

my Rk
f(y;|lzi; ¥ Zak H Zﬂkr(l‘j; Wk)N(yithgrwjv Jl%r)
= j=1r=1

RHLP
exp (Wiro + Wer15)

Ry )
D1 XD (Whrro + Whpr175)

Thr (255 W) = P(Hij = r|Zi = k25 wi) =

m Two types of component memberships:
— cluster memberships (global) Z;, = 1iff Z, = k
— regime memberships for a given cluster (local): H;;» = 1iff H;; =r
MixRHLP deals better with the quality of regime changes

m Parameter estimation via the EM algorithm: EM-MixRHLP

m EM-MixRHLP has complexity in O(IemIiris K R3*nmp3) (K-means type for
piecewise regression is in O(IxmK Rnm?p3) — EM-MixRHLP is
computationally attractive for large values of m and moderate values of R.
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EM-MixRHLP clustering of simulated data
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Functional Linear Discriminant Analysis [8]
Functional Mixture Discriminant Analysis [5]

‘Sub-Class 1 of Class 1 ‘Sub-Class 2 of Class 1 Class 2

B 3 O
Time (Seconc)

B 3 0
Time (Seconc)

£ £ £
Approach Classification error rate (%) Intra-class inertia
FLDA-PR 11.5 10.7350 x 10°
FLDA-SR 9.53 9.4503 x 10°
FLDA-RHLP 8.62 8.7633 x 10
FMDA-PRM 9.02 7.9450 x 107
FMDA-SRM 8.50 5.8312 x 10°
FMDA-MixRHLP 6.25 3.2012 x 10°
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Regularized regression mixtures [8]

m Penalized log-likelihood criterion:

JON®) = logL(¥)—AH(z), A>0
n K K
= ZIOgZﬂ'kN(Yi;XiﬂkaU]%Im)+)\nz7rk10g7rk:
=1 k=1 =1

m H(Z) = —E[logP(Z)]: - entropy accounting for model complexity

m A > 0 is a smoothing parameter

EM-like algorithm for unsupervised learning [8]

initialization : K = n; w,(co) = K}O), ( (0),0,3(0)) polynomial regression
E-step: Posterior component memberships T(Q) P(Z; = k|:cz,yl,¢)

M Step' Tr](gq+1) — n ;,n 1 z(lg) + )\7-‘-((1) <10g7T Zh 17Thq) lOg 7T}<q)>

(@

-1 2
+1 n n 2(g+1 1 B lyi —X;Bgll
1856‘1 ):[Zz 1 L(S)XTX :| Zz 1 L(IiI)XT Uk?(q ): lmg yl (Z) .

The penalization coefficient X is set in an adaptive way

— However, does not guarantee the ascent property of the objective function
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Phonemes data

Phonemes data set used in Ferraty and Vieu (2003)?
1000 log-periodograms (200 per cluster)

phonemes aa, ao, dcl, iy sh aa

log-periodograms

00 120 140 20 40 00 120 140

)
requencies

log-periodograms

20 0 W 00 120 140 20 40 00 120 140

0 80 O]
requencies frequencies

Figure: Original phoneme data and curves of the five classes: '

?Data from http://www.math.univ-toulouse.fr/staph/npfda/
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EM-like clustering results for Phonemes

Phonemes data set used in Ferraty and Vieu (2003)°
1000 log-periodograms (200 per cluster)

phonemes aa, ao, dol, iy sh

Robust EM-MixReq Clustering - teration 31; K - 5

Robust EM-MixReg clustering : eration 31; K = 5

H

20

Robust EM-MixRog clustering : teration 31; K =5

) 20 140
requencies

EM-PRM EM-SRM EM-bSRM
Estimated K 5 5 5
Misc. error rate  14.29 % 14.09 % 142 %
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EM-like clustering results for yeast cell cycle data

m Time course Gene expression data as in Yeung et al. (2001)*

m 384 genes expression levels over 17 time points.

Flobust EM-MixReq clustering : teration 84; K - § Robust EM-MixFieg clustering - leration 84: K = 5

Transerpt Levels

Figure: EM-like clustering results with the bSRM model.

Rand index: 0.7914 which indicates that the partition is quite well defined.

4
http://faculty.washington.edu/kayee/model/
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Outline

Bayesian (non-)parametric mixtures for spatial and multivariate data
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Bayesian spatial spline regression with mixed-effects

m Data: ((z1,91),---,(®n,y,)) a sample of n surfaces y;, = (Yi1, - - -, Yim, )"
and their spatial coordinates =; = (%411, Zi12); - - - » (Tim; 15 Tim,2)) T

m Propose regression and regression mixtures, with three additional features:

Include random effects
Models for spatial functional data

A full Bayesian inference

Bayesian spatial spline regression with mixed-effects [Esann 2016, 13]

Y, = Sl(,@—‘rbl) +e; e N./\/'(O,O'lei), (’L = 1,...,7’L)

m 3: fixed-effects regression coefficients

m b;: random subject-specific regression coefficients b; 1 e; ~ N (0, &%1,,,)

m S, is a spatial design matrix.
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m S; constructed from the Nodal basis functions (NBF) (Malfait and Ramsay, 2003)
used in (Ramsay et al., 2011; Sangalli et al., 2013; Nguyen et al., 2014)

m NBFs extend the univariate B-spline bases to bivariate surfaces.

s(x1;c1) s(e1;c2) -+ s(wi;cq)

s(x2;c1) s(x2;c2) -+ s(w2;cq)
,L' =

$(®m;;c1)  S(®m;;c2) oo s(Tm,;Cq)

d: number of basis functions d
@;; = (2451, Tij2) the two spatial coordinates of y;;
c = (c1,c2) is a node center parameter, with v/h shape parameters §; and d;

x2 -1 X1

Figure: Nodal basis function s(z, c, §1,2), where ¢ = (0,0) and §; = d2 = 1.
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Bayesian mixture of spatial spline regressions

Data: A sample of n surfaces (yq,...,¥,,) and their spatial covariates
(S1,...,S,) issued from K sub-populations

m Bayesian mixture of spatial spline regression models with mixed-effects
(BMSSR):

y1|sl7!p Zﬂ-k y’L’ IBk+b'Lk) UkImt)

— Useful for density estimation and model-based clustering of
heterogeneous surfaces

Hierarchical prior from for the BMSSR

21y ~ D(ay,...,0K)
B, ~  N(po,%o)
birléf  ~  N(04,&714)

i ~  ZG(ao,bo)
o ~  ZG(go,ho).
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Bayesian inference of the BMSSR

m For the BMSSR, the parameter ¥ is augmented by the unknown
components labels z = (z1,..., z,)

Bayesian inference of the BMSSR using Gibbs sampling
m Sample from the analytic full conditional distributions:

Zi|oo ~ MLy 7151, .oy Tike) with 7. (1 < k < K) =P(Z; = kly;,Si; ¥)
7l.. ~D(as +ny,...,ax +ng)

By|... ~ N(vo, Vo)

big|... ~ N(v1, V1)

Tl ~ TG (g1, )

&r|... ~IG (a1, b1)

m relabel the obtained posterior parameter samples if label switching by
the K-means-like algorithm of (Celeux, 1999; Celeux et al., 2000).
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Handwritten digit clustering using the BMSSR

m BMSSR applied on a subset of the ZIPcode data set (issued from MNIST)

m Each individual y,; contains m; = 256 observations
A subset of 1000 digits randomly chosen from the test set

iy
-

&

Figure: Cluster mean images obtained by the BMSSR model with 12 mixture components.

The best solution is selected in terms of the Adjusted Rand Index (ARI) values,
which promotes a partition with K = 12 clusters (ARI: 0.5238).
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Multivariate data

Diabetes Benchmark

Spectrum of bioacoustic data

Objectives
m Clustering

m Dimensionality reduction
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Model-Based clustering of multidimensional data

m Data: (x1,...,2,) A sample of n i.i.d observations in R? from K
sub-populations, with K possibly unknown

m Objective: clustering and dimensionality reduction

Parsimonious mixtures

= Finite Gaussian mixtures: f(x;;0) = > v, mx N(2i; g, Si)
m Eigenvalue decomposition of the covariance matrix® 3 = /\kaAkDf

ool |O9 |= QQQO

AL AA AL

0D 2 U/ 100

ADA ;DT Ap,DA, DT Ap A ADADT A,DADT

N 1IN IR 1

AD,A.DI  AyDpA;D} AD,AD} ADpADY

9 Celeux and Govaert (1995); Banfield and Raftery (1993)
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Dirichlet Process Parsimonious Mixtures

m Bayesian parametric inference: (Bensmail, 1995; Bensmail and Celeux, 1996;
Bensmail et al., 1997; Bensmail and Meulman, 2003)

m — Mixture models for multivariate data in a fully Bayesian framework

m < Dirichlet Process and Parsimonious Mixtures [C5,6,8], [11]

Dirichlet Processes (DP)
DP(a, Go) (Ferguson, 1973) is a distribution over distributions:
0:|G~G; Gla,Go~DP(a,Go) ,i=1,2,...

Pélya urn representation (Blackwell and MacQueen, 1973)
AI 1

0|017-- -1 o~ rGO—FZma

DP places its probablllty mass on an infinite mixture of Dirac deltas

G—Zﬂ'k(s‘gk 0k|G0NGo, k—1,2 i WIchTK‘kzl

k=1

<> The generated parameters 0, for a DP process exhibit a clustering property
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DPM: Generative model
Gla,Go ~ DP(a,Go)
éi|G ~ G
zil0; ~ f(16:)

Chinese Restaurant Process mixtures (Pitman, 2002; Samuel and Blei, 2012)
m Latent variables (z1,...,2x,)
m Predictive distribution: x
i—1
el n
0(zi, Kica +1) + —§(zi, k) -

a+1i—1 Pt a+1i—1

p(Zi = k|Z1, "'7Zi—1;a) =

onwl.an;'_" .@

Parameters. -

m Generative model: zla ~ CRP(z;a)

6..|Go ~ Go
X0, ~ f(162)
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Implemented parsimonious models

‘ Decomposition ‘ Model-Type ‘ Prior ‘ Applied to ‘
Al Spherical g A
Al Spherical g Ak
AA Diagonal g each diagonal element of AA
A A Diagonal g each diagonal element of A\ A
ADADT General w = = ADADT
AxDADT General ZG and W A and = = DADT
/\DAkDT* General g each diagonal element of XA,
A DA DT* General g each diagonal element of \j A
ADkADg General g each diagonal element of AA
)\kaADE General g each diagonal element of A\ A
AD, A DY * General ZG and ZW Xand B = DyA, DY
Ay DAL DY General w =) = A\,Dp A, DT )

Bayesian inference using Gibbs sampling
m Posterior distribution for the component labels:
p(zi = k|lz—;, X, O, ) x p(x;|zi; O)p(zi|z—_i; ) with p(z;]z_;; «) the CRP prior
m Posterior distribution for the component parameters:

p(Ok|2, X, ©_g, 05 H) o< [, —p P(xi|2i = k; 05)p(Oy; H) with p(8y; H) = Prior
distribution over 0y

Bayesian model comparison by using Bayes Factors

_ p(X|M1)p(My) . p(X[My) . _ ; Aot
BF12 = SXn)p(its) ~ p(X| M) with the Laplace-Metropolis approximation

R | R .
P(XIMm) = [ p(X[0m, Mim)p(0m|Mm)d0y, = (21) 2 [H|2p(X|0m, M )p(8:m|Mm)
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Clustering of benchmarks

Diabetes data set, Geyser data set, Crabs data set

g

2 log BF: \iD,AD! vs AD,AD? = 199.58 (Decisive)

2 log BF: ADAD” vs A\,D,AD} = 5 (Substantial)

" log 2BF: \,D,AD? vs A\, DAD” = 36.08 (Decisive)
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Humpback whale song decomposition

m Real fully unsupervised problem

m Data: 8.6 minutes of a Humpback whale song recording (with MFCC)

I \:‘ |
PR
A
0N R
R
A\ \: (/AN ‘
RN
Humpback Whale Spectrum of a signal (20 s). )

Objectives
m Discovering “call units”, which can be considered as a whale “alphabet”

m Find a partition of the whale song into clusters (segments), and
automatically infer the unknown number of clusters from the data.
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Unsupervised decomposition of whale song signals
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m Sound demo of Unit 5 DPPM AIL: (sec. 0) (sec. 12)
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Unsupervised decomposition of whale song signals
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Unsupervised decomposition of whale song signals

Freq [0, 5500] Hz
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Unsupervised decomposition of whale song signals

Freq [0, 5500] Hz
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Some ongoing research and perspectives

m Model-based co-clustering for high-dimensional functional data J

FunCtiona| |atent b|OCk m0de| (FLBM) available soon on arXiv

Data: Y = (y,;): n individuals defined on a set Z with d continuous functional

variables defined on a set J where y;;(t) = p(z;;(t); ) + €(t), t defined onT.
m FLBM model:

[YIX;w) = Y P(Z,W)f(Y|X,Z,W;0)
(z,w)EZXW

Z H ’/Tzik szuje H f(yij|wij§ Ore) it
G2

(z,w)EZXW i,k .5,k

m An RHLP is used as a conditional block distribution f(y;;|%i;; Oxe)

m Model inference using Stochastic EM
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Some ongoing research and perspectives

Mixtures for massive data
m Mixture density estimation for massive data clustering
m Regularized mixture of experts (lasso-like penalties)
m Ensemble methods to distribute data of big volume
— Bag of Little Boostraps (BLB) (Kleiner et al., 2014)

— Aggregate local estimators from BLB sub-samples: Hierarchical (mixture) of
experts aggregation

Latent variable models for unsupervised learning of feature hierarchies
m Hierarchical Mixture of experts for data representation:
m Mixture of experts are universal approximators (Nguyen et al., 2016).
— Hierarchical (deep) mixtures of experts (MoE) Eigen et al. (2014)
— Hierarchical (deep) mixtures of factor analysers (MoE) Tang et al. (ICML,2012)

m Patel et al. (2015) probabilistic answers to some questions on deep learning
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