Apprentissage statistique en vue du passage à l'echelle: représentation, inférence et sélection

Faïcel Chamroukhi

Séminaire, le 09 mai 2022

Recherche et contributions

- Contexte : Données complexes
 → hétérogènes, temporelles dynamiques, fonctionnelles, peu ou non-annotées , de grande dimension, et disponibles en masse
- Objectif : Transformation de telles données en connaissances inteprétables :
 → Reconstruction/révélation de structures cachées : groupes, hiérarchie de groupes, prototypes résumant bien les données, sélection de modèles, parcimonie

Actions :

- \hookrightarrow Un cadre scientifique et technique pour les traiter, analyser et exploiter
- \hookrightarrow Avec une visibilité à l'international
- \hookrightarrow Applications et dans des activités contractuelles

Axe de recherche : Apprentissage statistique et analyse de données complexes

- I. Apprentissage à partir de données hétérogènes, de grande dimension et massives;
- II. Apprentissage en présence de variables et co-variables fonctionnelles hétérogènes ;
- III. Apprentissage non-supervisé de représentations.

Cadre scientifique général

- $\hookrightarrow \ {\rm Modèles} \ {\rm a} \ {\rm variables} \ {\rm latente} \ : \ f(x|{\pmb{\theta}}) = \int_{{\mathcal Z}} f(x,z|{\pmb{\theta}}) {\rm d}z$
- $\hookrightarrow \ \text{Inférence, Sélection et représentation non supervisées et à l'échelle}$

Modélisation non supervisée à l'échelle par des MVL

- Apprentissage génératif de modèles à variables latentes ((non)-supervisé)
- Excellentes capacités de représentation
- Représenter explicitement la structure latente des données brutes et la révéler
- Cadre de choix en apprentissage non-supervisé (Clustering, Représentation)
 - $\hookrightarrow \exists$ fondement théorique solide
 - $\hookrightarrow \mathsf{Outils} \text{ afférents d'inférence et de choix de modèle}$
- * Défis pour des traitements et analyses en grande dimension et en masse

Modèles de mélanges de lois

- **Data** : *n* observations $\{x_i\}$ d'une v.a $X \in \mathbb{X} \subset \mathbb{R}^d$ à population potentiellement hétérogène de densité inconnue $f \in \mathcal{F} = \{f : \mathbb{X} \to \mathbb{R}_+ | \int_{\mathbb{X}} f(x) d\lambda(x) = 1\}$,
- **Objectif** : approcher la densité cible f (et représenter les données, e.g. clustering)
- Solution : Approcher f dans la classe H^φ = U_{K∈ℕ[⋆]} H^φ_K des mélanges finis h^φ_K (à K-composants) de translatées dilatées d'une densité φ (e.g., gaussienne), où

$$\mathcal{H}_{K}^{\varphi} = \left\{ \left[h_{K}^{\varphi}\left(\boldsymbol{x}\right) := \sum_{k=1}^{K} \pi_{k} \frac{1}{\sigma_{k}^{d}} \varphi\left(\frac{\boldsymbol{x} - \boldsymbol{\mu}_{k}}{\sigma_{k}}\right) \right], \boldsymbol{\mu}_{k} \in \mathbb{R}^{d}, \sigma_{k} \in \mathbb{R}_{+}, \pi_{k} > 0 \,\forall k \in [K], \sum_{k=1}^{K} \pi_{k} = 1 \right\}$$

Théorème : Approximation universelle des mélanges finis de translatés dilatées

- (a) Pour toute f.d.p $f, \varphi \in C$ et un ensemble compact $\mathbb{X} \subset \mathbb{R}^d$, il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}^{\varphi}$, telle que $\lim_{K \to \infty} \sup_{x \in \mathcal{X}} |f(x) h_K^{\varphi}(x)| = 0$.
- (b) Pour $p \in [1, \infty)$, si $f \in \mathcal{L}_p$ (f.d.p de Lebesgue) et $\varphi \in \mathcal{L}_\infty$ (f.d.p essentiellement bornée), il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}^{\varphi}$, telle que $\lim_{K \to \infty} \|f h_K^{\varphi}\|_{\mathcal{L}_p} = 0$.
- [J-] T Nguyen, F Chamroukhi, H Nguyen, and G McLachlan. Approximation of probability density functions via location-scale finite mixtures in lebesgue spaces. Communications in Statistics - Theory and Methods, 2022. doi:10.1080/03610926.2021.2002360.
- [Thèse] T Nguyen. Model Selection and Approximation in High-dimensional Mixtures of Experts Models : From Theory to Practice . Thèse de Doctorat de Normandie Université, 2021. Directeur.

Apprentissage/Optimisation

Maxi. de Vraisemblance : $\widehat{\theta}_{MLE} \in \arg \max_{\theta} L(\theta; \mathbf{x})$ with $L(\theta; \mathbf{x}) = \sum_{i=1}^{n} \log h_{K}^{\varphi}(\boldsymbol{x}_{i}; \theta)$

- $\hookrightarrow \text{ Algorithme.s EM}: \boldsymbol{\theta}^{(\mathsf{new})} \in \arg \max_{\boldsymbol{\theta}} \mathbb{E} \left[L_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{z}) | \mathbf{x}; \boldsymbol{\theta}^{(\mathsf{old})} \right]$
 - Régularisation en apprentissage non-supervisé
- → Inférence bayésienne de mélanges à effet mixtes
 - [J-13] Journal of Statistical Computation and Simulation, 2015.
 [J-14] arXiv :1508.00635, 2015. et ESANN 2016

Apprentissage bayésien non-paramétrique

- Classification de séquences bio-acoustiques
- Mélanges parcimonieux de Processus de Dirichlet
- $\hookrightarrow \ \ \mathsf{Cadre \ non-paramétrique} \ : \ \mathsf{inférence \ et \ s\'election}$
 - [J-15] FC et al. Dirichlet Process Parsimonious Gaussian Mixture for clustering. arXiv :1501.03347v2, 2018
 - [Thèse] Marius BARTCUS, 2015, UTLN, Co-encadrant. 70%

Diabetes data set Clustering et choix de modèle

Unsupervised decomposition of whale song signals

 [-] Roger, Bartcus, Chamroukhi, Glotin. Unsupervised Bioacoustic Segmentation by Hierarchical Dirichlet Process Hidden Markov Model. Multimedia Tools and Applications for Environmental & Biodiversity Informatics, pp :113-130, 2018
 [-] Bartcus, C., Glotin. Hierarchical Dirichlet Process HMM for Unsupervised Bioacoustic Analysis. IJCNN15. & wkp ICNL14.
 [-] Chamroukhi, Bartcus, Glotin. Bayesian non-parametric parsimonious Gaussian mixture for clustering. ICPR 2014.

Apprentissage par Modèles de Mélanges d'Experts (ME)

- **Contexte** : *n* observations $\{x_i, y_i\}$ d'un couple $(X, Y) \in \mathbb{X} \times \mathbb{Y}$ lié via une f.d.p conditionnelle inconnue $f \in \mathcal{F} = \{f : \mathbb{X} \times \mathbb{Y} \to \mathbb{R}_+ | \int_{\mathbb{Y}} f(y|x) d\lambda(y) = 1, \forall x \in \mathbb{X}\}$
- Scénario de grande dimension : $\mathbb{X} \subseteq \mathbb{R}^d$, $\mathbb{Y} \subseteq \mathbb{R}^q$, avec $d, q \gg n$ et hétérogène.
- Objectifs : Regression ; Clustering ; Sélection de modèle
- Solution : Approcher f dans la classe des mélanges d'experts :

Soit une f.d.p φ (et un support compact $\mathbb{Y} \subseteq \mathbb{R}^q$), on déifinit les classes suivantes :

- Transaltées-dilatées : $\mathcal{E}_{\varphi} = \left\{ \phi_q(\boldsymbol{y}; \boldsymbol{\mu}, \sigma) := \frac{1}{\sigma^q} \varphi\left(\frac{\boldsymbol{y}-\boldsymbol{\mu}}{\sigma}\right); \boldsymbol{\mu} \in \mathbb{Y}, \sigma \in \mathbb{R}_+ \right\}.$
- Mélanges d'experts transaltées-dilatés à réseau d'activation softmax : SGaME :

$$\mathcal{H}_{S}^{\varphi} = \left\{ \left| h_{K}^{\varphi}(\boldsymbol{y}|\boldsymbol{x}) := \sum_{k=1}^{K} g_{k}\left(\boldsymbol{x};\boldsymbol{\gamma}\right) \phi_{q}\left(\boldsymbol{y};\boldsymbol{\mu}_{k},\sigma_{k}\right) \right|; \quad \phi_{q} \in \mathcal{E}_{\varphi} \cap \mathcal{L}_{\infty}, g_{k}\left(\cdot;\boldsymbol{\gamma}\right) \in \left\{ \mathsf{softmax} \right\} \right\}$$

Théorème : Capacités d'approximation des mélanges d'experts SGaME

- (a) Pour $p \in [1, \infty)$, $f \in \mathcal{F}_p \cap \mathcal{C}$, $\varphi \in \mathcal{F} \cap \mathcal{C}$, $\mathbb{X} = [0, 1]^d$, il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}_S^{\varphi}$ telle que $\lim_{K \to \infty} \left\| f h_K^{\varphi} \right\|_{\mathcal{L}_p} = 0$.
- (b) Pour toute $f \in \mathcal{F} \cap \mathcal{C}$, si $\varphi \in \mathcal{F} \cap \mathcal{C}$, d = 1, il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}_S^{\varphi}$ telle que $\lim_{K \to \infty} h_K^{\varphi} = f$ presque uniformément.

[J-] Nguyen, Chamroukhi, Forbes. Neurocomputing, 366, pp 208-214, 2019

[J-] NguyenH, NguyenT, Chamroukhi, McLachlan. Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models. *Journal of Statistical Distributions and Applications*, Springer, 8(1), pp :1–15, 2021

Time Series Modeling and Segmentation

Temporal data with unknown abrupt and/or smooth regime changes

Hidden Process Regression Models

$$y_i = \beta_{z_i}^T \boldsymbol{x}_i + \sigma_{z_i} \epsilon_i \quad ; \epsilon_i \underset{\text{id}}{\sim} \mathcal{N}(0, 1), \quad \mathbf{z} = (z_1, \dots, z_n) : \text{a hidden process}$$
$$h_K^{\mathcal{N}}(y_i | \boldsymbol{x}_i; \boldsymbol{\theta}) = \sum_{k=1}^K g_k(\boldsymbol{x}_i; \mathbf{w}) \mathcal{N}(y_i; \boldsymbol{\beta}_k^T \boldsymbol{x}_i, \sigma_k^2); \quad g_k(\boldsymbol{x}_i; \mathbf{w}) = \mathbb{P}(Z_i = k | \boldsymbol{x}_i; \mathbf{w})$$

Optimization for Learning : $\widehat{\theta}_{MLE} \in \arg \max_{\theta} \sum_{i=1}^{n} \log m(y_i | x_i; \theta)$

• MLE via the EM algorithm :
$$\theta^{(q+1)} \in \arg \max_{\theta} \mathbb{E} \left[L_c(\theta; \mathbf{x}, \mathbf{y}, \mathbf{z}) | \mathbf{x}, \mathbf{y}; \theta^{(q)} \right]$$

[J-] WIRES DMKD 2018 — [J-] Neurocomputing 2010 & 2013 — [J-] ADAC 2011, [J-] IEEE TASE 2013, [J-] Sensors 2015

Time-Series Analysis Applications

Transport : Railway switch operating state prediction {Collab. avec la SNCF; Projet Switch-Rdf}

Energy : Fuel cell lifetime prediction {Collab. avec Femto-ST, Phd de R. Onanena, 2012}

Health & well being : Human activity recognition {Collab. avec Paris 12-LiSSi}

[Thèse] Thèse de Dorra TRABELSI, 2013, Paris 12, Co-encadrnt]

SaMUraiS : open source software for statistical time-series analysis

+11K téléchargements (à partir du canal R uniquement) depuis juillet 2019 https://cranlogs.r-pkg.org/badges/grand-total/samurais

SaMUraiS : StAtistical Models for the UnsupeRvised segmentAtIon of time-Series

Available algorithms and Packages

RHLP : Regression with Hidden Logistic Process HMMR : Hidden Markov Model Regression PWR : Piece-Wise Regression MRHLP : Multivariate RHLP MHMMR : Multivariate HMMR

 $\texttt{MPWR}: \texttt{Multivariate} \ \texttt{PWR}$

Include estimation, segmentation, approximation, model selection, and sampling

Robust learning with mixtures-of-experts models

- Questionings : Prediction (non-linear regr., classification) & clustering in presence of Outliers, with potentially skewed, heavy-tailed distributions
- Answering : Robust MoE that accommodate asymmetry, heavy tails, and outliers

$$m(y|\boldsymbol{r}, \boldsymbol{x}; \boldsymbol{\theta}) = \sum_{k=1}^{K} g_k(\boldsymbol{r}; \boldsymbol{\alpha}) \underbrace{\mathcal{ST}(y; \boldsymbol{\mu}(\boldsymbol{x}; \boldsymbol{\beta}_k), \sigma_k, \boldsymbol{\lambda}_k, \nu_k)}_{\text{Skew-t Expert Network}}$$

 $\pi_k = [0.4, 0.6], \, \mu_k = [-1, 2] \, ; \, \sigma_k = [1, 1] \, ; \, \textbf{\textit{\nu}}_k = [3, 7] \, ; \, \lambda_k = [14, -12] \, ; \,$

Flexible and robust generalization of the standard MoE models

For $\{\nu_k\} \to \infty$, STMoE reduces to SNMoE; For $\{\lambda_k\} \to 0$, STMoE reduces to TMoE. For $\{\nu_k\} \to \infty$ and $\{\lambda_k\} \to 0$, StMoE approaches the NMoE.

[J-] F. Chamroukhi. Skew t mixture of experts. Neurocomputing, 266 :390-408, 2017.

[J-] F. Chamroukhi. Robust mixture of experts modeling using the t-distribution. Neural Networks, 79:20-36, 2016c.

[C-] F. Chamroukhi. Skew-normal mixture of experts. IJCNN 2016b.

Robustness in regression and clustering

n = 500 observations with 5% of outliers (x; y = -2) : Normal fit

n = 500 observations with 5% of outliers (x; y = -2) : Robust fit

Tone data with 10 outliers (0, 4) : Robust fit

MEteorits : open-source soft. for mixtures-of-experts

+12K téléchargements R depuis janvier 2020

https://cranlogs.r-pkg.org/badges/grand-total/meteorits

MEteorits : Mixtures-of-ExperTs modEling for cOmplex and non-noRmal dIsTributionS

Available algorithms and Packages

- NMoE : Normal Mixture-of-Experts
- SNMoE : Skew-Normal Mixture-of-Experts
- tMoE : Robust modeling of MoE using the t-distribution
- StMoE : Skew-t Mixture-of-Experts

- Meteorits include sampling, fitting, prediction, clustering with each MoE model
- Non-normal mixtures (and MoE) is a very recent topic in the field

Apprentissage à partir de fonctions

Transport : Railway switch curves

Speech recognition : Phonemes curves

Genomics : Yeast cell cycle curves

Remote Sensing : Satellite waveforms

Health : Medical images

Dual-energy computed tomography

- Data : Entire functions (e.g., curves, surfaces) $((\boldsymbol{x}_1, \boldsymbol{y}_1), \dots, (\boldsymbol{x}_n, \boldsymbol{y}_n)$
- $y_i = (y_{i1}, \dots, y_{im_i})$ observed at covariates, (e.g., time), $(x_{i1}, \dots, x_{im_i})$
- Functional regression, classification, clustering/segmentation
- $\,\hookrightarrow\,$ (Un)supervised analysis of heterogeneous functions with hidden structures

(Un)supervised analysis of heterogeneous functions with hidden structures

Functional Mixture Models

$$m(\boldsymbol{y}|\boldsymbol{x}; \boldsymbol{ heta}) = \sum_{k=1}^{K} lpha_k f_k(\boldsymbol{y}|\boldsymbol{x}; \boldsymbol{ heta}_k)$$

- standard $f_k(y|x)$ tailored to functional use (B-)spline regression, regression using wavelet bases etc, or Gaussian process regression, functional PCA
- more tailored to approximate smooth functions; do not account for segmentation
- \hookrightarrow Here $f_k(y|\boldsymbol{x})$ itself exhibits a clustering property via hidden variables (regimes)

$$m(\boldsymbol{y}_i|\boldsymbol{x}_i;\boldsymbol{\theta}) = \sum_{k=1}^{K} \alpha_k \prod_{r=1}^{T_k} \prod_{j \in I_{kr}} \mathcal{N}(y_{ij};\boldsymbol{\beta}_{kr}^T \boldsymbol{x}_{ij}, \sigma_{kr}^2)$$

Piecewise Regressors (PWR)

with $I_{kr}=]\xi_{kr}..\xi_{k,r+1}]$ index elements of segment r in cluster k

$\,\hookrightarrow\,$ Simultaneously accounts for curve clustering and segmentation

[J] C. & Nguyen. Model-Based Clustering and Classification of Functional Data. WIREs Data Mining and Knowl. Discov. 2019
 [J] C. Piec. Reg. Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation. Journal of Classification2016
 [J] C. Unsupervised learn. of regression mixture models with unknown number of components. J. of Stat. Comp. and Sim. 2016

(Un)supervised analysis of heterogeneous functions with hidden structures

Functional Mixture Models

$$m(\boldsymbol{y}|\boldsymbol{x}; \boldsymbol{ heta}) = \sum_{k=1}^{K} lpha_k f_k(\boldsymbol{y}|\boldsymbol{x}; \boldsymbol{ heta}_k)$$

- standard $f_k(y|x)$ tailored to functional use (B-)spline regression, regression using wavelet bases etc, or Gaussian process regression, functional PCA
- more tailored to approximate smooth functions; do not account for segmentation
- \hookrightarrow Here $f_k(y|x)$ itself exhibits a clustering property via hidden variables (regimes)

• Mixture of regressions with hidden logistic processes (MixRHLP) : $m_i R_k$

$$m(\boldsymbol{y}_{i}|\boldsymbol{x}_{i};\boldsymbol{\theta}) = \sum_{k=1}^{K} \alpha_{k} \underbrace{\prod_{j=1}^{K} \sum_{r=1}^{T} \pi_{kr}(\boldsymbol{x}_{j}; \boldsymbol{w}_{k}) \mathcal{N}(\boldsymbol{y}_{ij}; \boldsymbol{\beta}_{kr}^{T} \boldsymbol{x}_{j}, \sigma_{kr}^{2})}_{\text{RHLP}}$$

with $\pi_{kr}(x_j; \mathbf{w}_k) = \mathbb{P}(H_{ij} = r | \mathbf{Z}_i = \mathbf{k}, x_j; \mathbf{w}_k) \propto \exp(w_{kr0} + w_{kr1}x_j)$

 $\,\hookrightarrow\,$ Simultaneously accounts for clustering and segmentation, in a probabilistic sense

[J] C. & Nguyen. Model-Based Clustering and Classification of Functional Data. WIREs Data Mining and Knowl. Discov. 2019
 [J] C. Piec. Reg. Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation. Journal of Classification2016
 [J] C. Unsupervised learn. of regression mixture models with unknown number of components. J. of Stat. Comp. and Sim. 2016

Clustering of functional data : Topex/Poseidon satellite data

Topex/Poseidon satellite data : n = 472 waveforms of m = 70 measured echoes

FIGURE - Original data and clustering results from C. 2016 with the same setting as in Hebrail et al. 2010 : twenty clusters and a piecewise linear approximation of four segments.

Clustering an segmentation of functional data : high-speed railway-switch curves

Data set : n = 146 real curves of m = 511 observations.

Each curve is composed of R = 6 electromechanical phases (regimes)

FLaMingoS : open source software for statistical functional data analysis

+12K téléchargements R depuis août 2019

https://cranlogs.r-pkg.org/badges/grand-total/flamingos

FLaMingoS : Functional Latent datA Models for clusterING heterogeneOus time-Series

Available algorithms and Packages

mixRHLP : Mixture of Regressions with HLPs
mixHMM : Mixture of Hidden Markov Models (HMMs)
mixHMMR : Mixture of HMM Regressions
PWRM : Piece-Wise Regression Mixture
uReMix : Unsupervised Regression Mixtures

 \hookrightarrow A flexible full generative modeling for FDA

 \hookrightarrow Could be extended to the multivariate case without a major effort

Spatial mixture of functional regressions for dual-energy CT images {Collab avec McGill} $m(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{v}; \boldsymbol{\theta}) = \sum_{k=1}^{K} \alpha_k(\boldsymbol{v}; \boldsymbol{\alpha}) f_k(\boldsymbol{y}|\boldsymbol{x}; \boldsymbol{\theta}_k) \text{ où } \alpha_k(\boldsymbol{v}; \boldsymbol{\alpha}) = \frac{w_k \phi_3(\boldsymbol{v}; \boldsymbol{\mu}_k, \mathbf{R}_k)}{\sum_{\ell=1}^{K} w_\ell \phi_3(\boldsymbol{v}; \boldsymbol{\mu}_\ell, \mathbf{R}_\ell)}$

2D slices of VMIs at 40,65,140keV with tumor contour in red.

Examples of decay curves for different body locations.

Original slice SgMFR Clustering, Dice score=0.84 Clustering with SgMFR. Note the robustness of the result in the presence of a metallic artifact in the RHS of the anatomical image.

[J] Brivet, Chamroukhi, Coates, Forghani and Savadjiev. Spectral image clustering on dual-energy CT scans using functional regression mixtures. Under review in *IEEE Trans. on Medical Imaging.* arXiv:2201.13398, Jan, 2022 — [C] CMStatistics. 2021
 [S] Source codes are publicly available on Github : https://github.com/segobrivet/DECT_clustering

Difference between clustering and co-clustering

- Simultaneous clustering of lines/indiv. (Z) and columns/var. (W)
- Can be used as a way to reduce dimensionality (var. \rightarrow W)

FIGURE – Binary data set with n = 500, d = 300, K = M = 3

Co-Clustering of highly multivariate functional data [Chamroukhi & Biernacki, ISI, 2017]

■ Data continuously recorded for different subjects from multiple subject' sensors e.g : KPI collected from different network elements (transceivers, cells, sites...) :

Data Zoom FIGURE – An example with d = 30 and n = 20 daily observations [BenSliman 2016].

(1) Model-based co-clustering embedding (2) functional data modeling

- Simultaneous clustering of lines/indiv. (Z) and columns/var. (W)
- Functional Latent Block Model for Co-clustering :

$$f(\boldsymbol{Y}|\boldsymbol{X};\boldsymbol{\theta}) = \sum_{(z,w)\in\mathcal{Z}\times\mathcal{W}} \mathbb{P}(\boldsymbol{Z};\boldsymbol{\pi})\mathbb{P}(\boldsymbol{W};\boldsymbol{\rho}) \underbrace{f(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{Z},\boldsymbol{W};\boldsymbol{\theta})}_{\text{functional data model}}$$

Apprentissage génératif non supervisé à l'échelle

[A.] Inférence en grande dimension

Questioning : Prediction (non-linear regr., classification) & clustering in presence of

- [1.] **High-dimensional** predictors : $X_i \in \mathbb{R}^p$ with $p \gg n$
- [2.] Functional predictors : $X_i(t)$, $t \in T \subseteq \mathbb{R}$ {eg. continuous recorded variables}
- ↔ Méthodes d'Inférence et Sélection parcimonieuses, Soucis d'interprétabilité

[1.] HDME : High-Dimensional Mixtures-of-Experts

- Learning : PMLE $\widehat{\theta}_n \in rg \max_{\theta} \sum_{i=1}^n \log h_K^{\varphi}(y_i | x_i; \theta) pen(\theta)$
- $\,\hookrightarrow\,$ encourages sparse solutions & performs estimation and feature selection
- \hookrightarrow computationally attractive (Avoid matrix inversion; univariate CF updates)
 - High-Dimensional Clustering and Regression (with Gaussian and Poisson outputs)
 - High-Dimensional Classification (Categorical outputs)
 - EM algorithms with proximal Newton and Coordinate Ascent for optimization

Software Toolbox HDME on Github (GaussRMoE, LogisticRMoE, PoissonRMoE)

[Thèse] Bao Tuyen Huynh. Estimation and Feature Selection in High-Dimensional Mixtures-of-Experts Modesls. Thèse de Doctorat de Normandie Université, 2019. Directeur.

[J] Chamroukhi &Huynh. Regularized Maximum Likelihood Estimation and Feature Selection in Mixtures-of-Experts Models. Journal de la Société Francaise de Statistique, Vol. 160(1), pp :57–85, 2019

[J] Huynh & C. Estimation and Feature Selection in Mixtures of Generalized Linear Experts Models. arXiv :1810.12161, 2019

Theorem : Non-asymptotic oracle inequality for collection of MoE models

Hypothèses : Pour une collection $(\mathcal{H}_{\mathbf{m}})_{\mathbf{m}\in\mathcal{M}}$ de mélanges d'experts, $\rho \in (0,1)$, $C_1 > 1$, $\xi = \sum_{\mathbf{m}\in\mathcal{M}} e^{-z_{\mathbf{m}}} < \infty, z_{\mathbf{m}} \in \mathbb{R}^+, \forall \mathbf{m} \in \mathcal{M}.$

 $\begin{array}{l} \textbf{Résultat}: \text{il existe des constantes } C \text{ and } \kappa\left(\rho,C_{1}\right) > 0 \text{ t.q chaque fois que pour } \mathbf{m} \in \mathcal{M}, \\ \textbf{pen}(\mathbf{m}) \geq \kappa\left(\rho,C_{1}\right) \left[(C+\ln n)\dim\left(\mathcal{H}_{\mathbf{m}}\right) + z_{\mathbf{m}} \right], \text{l'estimaeur PMLE } \widehat{h}_{\widehat{\mathbf{m}}} \text{ satisfait} \end{array}$

$$\mathbb{E}\left[\mathrm{JKL}_{\rho}^{\otimes \mathrm{n}}\left(f,\widehat{h}_{\widehat{\mathbf{m}}}\right)\right] \leq C_{1} \inf_{\mathbf{m} \in \mathcal{M}} \left(\inf_{h_{\mathbf{m}} \in \mathcal{H}_{\mathbf{m}}} \mathrm{KL}^{\otimes \mathrm{n}}\left(f,h_{\mathbf{m}}\right) + \frac{\mathrm{pen}(\mathbf{m})}{n}\right) + \frac{\kappa\left(\rho,C_{1}\right)C_{1}\xi}{n}$$

- Résultat non-asymptotique
- Si pen(m) est bien choisie, alors notre PMLE se comporte de manière comparable au meilleur modèle (oracle) H_{m*} de la collection, minimisant le risque : inf_{m∈H} (inf_{hm∈Hm} KL^{⊗n} (f, h_m) + pen(m)/n), f est inconnue.
- (i) Choix de K étant donnée n; (i) utiliser quelques experts complexes vs. combiner plusieurs experts simples, compte tenu du nombre total de paramètres.
 - pen (m) $\propto \dim(\mathcal{H}_m)$: pénalisant les modèles complexes.

[Thèse] Trung-Tin Nguyen. Thèse de Doctorat de Normandie Université, 2021. Directeur.

[J] NguyenT, NguyenH, Chamroukhi, McLachlan. An l_1-oracle inequality for the Lasso in mixture-of-experts regression models. Under revision, ESAIM : Probability and Statistics arXiv :2009.10622, 2020.

[J] Nguyen, Nguyen, Chamroukhi, Forbes. A non-asymptotic penalization criterion for model selection in mixture of experts models. Under revision, *Electronic Journal of Statistics*, arXiv :2104.02640. 2021c

[J] Nguyen, Chamroukhi, Nguyen, Forbes. Non-asymptotic model selection in block-diagonal mixture of polynomial experts models. **Under revision**, *Journal of Multivariate Analysis*. arXiv :2104.08959. 2021b

[2.] Learning with functional predictors

FIGURE – n = 35 daily mean temperature measurement curves (X_i) in different stations (Left) and the log of precipitation values (Y_i) visualized with the climate regions (Z_i) (Right).

- Relate functional predictors $\{X(t) \in \mathbb{R}; t \in \mathcal{T} \subset \mathbb{R}\}$ to a scalar response $Y \in \mathcal{Y} \subset \mathbb{R}$
- Regression and classification of <u>heterogeneous responses</u> given <u>functional predictors</u>
 (1) generative functional modeling, sparsity and feature selection (high-dimension)
 - (2) User guideline : keep an interpretable fit

[2.] Functional Mixtures-of-Experts (and Different Learning strategies, in particular)

$$I Y_i = \beta_{\boldsymbol{z}_i,0} + \int_{\mathcal{T}} X_i(t) \beta_{\boldsymbol{z}_i}(t) dt + \varepsilon_i \text{ avec } h_{\boldsymbol{z}}(X_i(.)) = \alpha_{\boldsymbol{z}_i,0} + \int_{\mathcal{T}} X_i(t) \alpha_{\boldsymbol{z}_i}(t) dt$$

• Lasso-type Regularized MLE w.r.t the <u>derivatives</u> of the $\alpha(\cdot)$ and $\beta(\cdot)$ functions

[Conf] Chamroukhi, Pham, Hoang, McLachlan. Mixtures-of-experts with functional predictors. CMStatistics 2021 [Preprint] —. Functional Mixtures-of-Experts. arXiv :2202.02249, Feb, 2022 (Under Review, Statistics and Computing)

Representation of the functional ME (FME) model

Basis expansion of the expert regressor network and the gating network :

$$Y_{i} = \beta_{z_{i},0} + \int_{\mathcal{T}} X_{i}(t) \beta_{z_{i}}(t) dt + \varepsilon_{i} = \beta_{z_{i},0} + \underbrace{\mathbf{x}_{i}^{\top} \left(\int_{\mathcal{T}} \mathbf{b}_{r}(t) \mathbf{b}_{p}^{\top}(t) dt \right)}_{\mathbf{x}_{i}^{\top}} \underbrace{\boldsymbol{\eta}_{z_{i}}}_{\boldsymbol{\tau}_{i}^{\ast} \sim \mathcal{N}(0,\sigma_{z_{i}}^{\ast})^{2}} \left(\int_{\mathcal{T}} \mathbf{b}_{r}(t) \mathbf{h}_{p}^{\top}(t) dt \right) \mathbf{h}_{z}(X_{i}(t), t \in \mathcal{T}; \mathbf{\alpha}) = \alpha_{z_{i},0} + \int_{\mathcal{T}} X_{i}(t) \alpha_{z_{i}}(t) dt = \alpha_{z_{i},0} + \underbrace{\mathbf{x}_{i}^{\top} \left(\int_{\mathcal{T}} \mathbf{b}_{r}(t) \mathbf{b}_{q}^{\top}(t) dt \right)}_{\mathbf{r}_{i}^{\top}} \mathbf{\zeta}_{z_{i}}$$

Different Learning strategies, in particular

• Lasso-type Regularized MLE w.r.t the <u>derivatives</u> of the $\alpha(\cdot)$ and $\beta(\cdot)$ functions

iFME : determine whether the *d*th derivative of $\beta_{z_i}(t)$ is zero or not at each point t_j .

 $\label{eq:started_s$

[Conf] Chamroukhi, Pham, Hoang, McLachlan. Mixtures-of-experts with functional predictors. CMStatistics 2021 [Preprint] —. Functional Mixtures-of-Experts. arXiv :2202.02249, Feb, 2022 (Under Review, Statistics and Computing) Let D^d be the *d*th finite difference operator defined recursively as

$$D^{1}\mathbf{b}(t_{j}) = p[\mathbf{b}(t_{j}) - \mathbf{b}(t_{j-1})],$$

$$D^{2}\mathbf{b}(t_{j}) = D[D\mathbf{b}(t_{j})] = p^{2}[\mathbf{b}(t_{j}) - 2\mathbf{b}(t_{j-1}) + \mathbf{b}(t_{j-2})],$$

$$D^{d}\mathbf{b}(t_{j}) = D[D^{d-1}\mathbf{b}(t_{j})].$$

• $D^d \mathbf{b}(t_j)$ is an approximation for $\mathbf{b}^{(d)}(t_j) = [b_1^{(d)}(t_j), \dots, b_p^{(d)}(t_j)]^\top$

- $\mathbf{A}_p = [D^d \mathbf{b}(t_1), D^d \mathbf{b}(t_2), \dots, D^d \mathbf{b}(t_p)]^\top$ (the approximate derivative matrix)
- Let $\gamma_{z_i} = \mathbf{A}_p \eta_{z_i}$
- $\hookrightarrow \ \, {\rm If} \ \beta^{(d)}_{z_i}(t)=0 \ {\rm over} \ {\rm a} \ {\rm large} \ {\rm regions} \ {\rm of} \ t \ {\rm for} \ {\rm some} \ d, \ {\rm then} \ {\pmb \gamma}_{z_i} \ {\rm is} \ {\rm sparse}.$

 $\hookrightarrow \ \boldsymbol{\gamma}_{z_i} = [\gamma_{z_i,1}, \dots, \gamma_{z_i,p}]^\top \text{ provides a sparse estimate for } [\beta_{z_i}^{(d)}(t_1), \dots, \beta_{z_i}^{(d)}(t_p)]^\top.$

Functional expert' network of iFME

$$Y_{i} = \beta_{z_{i},0} + \boldsymbol{\eta}_{z_{i}}^{\top} \mathbf{x}_{i} + \varepsilon_{i}^{\star} = \beta_{z_{i},0} + (\mathbf{A}_{p}^{-1}\boldsymbol{\gamma}_{z_{i}})^{\top} \mathbf{x}_{i} + \varepsilon_{i}^{\star}$$
$$= \beta_{z_{i},0} + (\mathbf{x}_{i}^{\top}\mathbf{A}_{p}^{-1})\boldsymbol{\gamma}_{z_{i}} + \varepsilon_{i}^{\star}$$
$$= \beta_{z_{i},0} + \mathbf{v}_{i}^{\top}\boldsymbol{\gamma}_{z_{i}} + \varepsilon_{i}^{\star}.$$

and we now have $oldsymbol{ heta}_k = (eta_{k,0},oldsymbol{\gamma}_k^ op,\sigma_k^{\star 2})^ op$ parameter vector of expert density k

Gating network of interpretable FME

Similarly, let $\boldsymbol{\omega}_k = \mathbf{A}_q \boldsymbol{\zeta}_k$ where $\mathbf{A}_q = [D^d \mathbf{b}(t_1), D^d \mathbf{b}(t_2), \dots, D^d \mathbf{b}(t_q)]^\top$ \hookrightarrow we get $\boldsymbol{\zeta}_k = \mathbf{A}_q^{-1} \boldsymbol{\omega}_k$.

The gating network probabilities become

$$\pi_k(\boldsymbol{\nu}_i; \mathbf{w}) = \frac{\exp\left\{\alpha_{k,0} + \boldsymbol{\zeta}_k^{\top} \mathbf{r}_i\right\}}{1 + \sum_{k'=1}^{K-1} \exp\left\{\alpha_{k',0} + {\boldsymbol{\zeta}_{k'}}^{\top} \mathbf{r}_i\right\}} = \frac{\exp\left\{\alpha_{k,0} + {\boldsymbol{\nu}_i}^{\top} \boldsymbol{\omega}_k\right\}}{1 + \sum_{k'=1}^{K-1} \exp\left\{\alpha_{k',0} + {\boldsymbol{\nu}_i}^{\top} \boldsymbol{\omega}_{k'}\right\}} \quad (1)$$

with $\boldsymbol{\nu}_i = \mathbf{r}_i^{\top} \mathbf{A}_q^{-1}$ is the new predictor and the new gating network parameter vector $\mathbf{w} = ((\alpha_{1,0}, \boldsymbol{\omega}_1^{\top}), \dots, (\alpha_{K-1,0}, \boldsymbol{\omega}_{K-1}^{\top}))^{\top}$ and $(\alpha_{K-1,0}, \boldsymbol{\omega}_K^{\top})^{\top}$ is a null vector.

The resulting FME distribution and parameter estimation

$$f(y_i|u_i(.);\boldsymbol{\Psi}) = \sum_{k=1}^{K} \pi_k(\boldsymbol{\nu}_i;\mathbf{w})\phi(y_i;\beta_{k,0} + \boldsymbol{\gamma}_k^{\top}\mathbf{v}_i,{\sigma_k^{\star}}^2)$$
(2)

where $oldsymbol{\Psi} = (\mathbf{w}^T, oldsymbol{\Psi}_1^T, \dots, oldsymbol{\Psi}_K^T)^T$ the unknown parameter vector of the model

 $\,\hookrightarrow\,$ Apply the EM-Lasso algorithm developed previously with :

- Predictors : $\mathbf{v}_i = \mathbf{x}_i^\top \mathbf{A}_p^{-1}$ and $\boldsymbol{\nu}_i = \mathbf{r}_i^\top \mathbf{A}_q^{-1}$
- Regularization : on $\boldsymbol{\omega}$'s and $\boldsymbol{\gamma}$'s : $\operatorname{Pen}_{\lambda,\chi}(\boldsymbol{\Psi}) = \lambda \sum_{k=1}^{K} \|\boldsymbol{\gamma}_k\|_1 + \chi \sum_{k=1}^{K-1} \|\boldsymbol{\omega}_k\|_1$

Illustratin : Interpretable fits using iFME

 $\rm FIGURE$ – Expert and gating network estimated by FME-FLIRTI with penalization giving for zeroth derivative and first (top)/ second (bottom) derivative

 FIGURE - FME-MLE (left), FME-Lasso (middle) and iFME (right) on Canadian weather data

[Conf] Chamroukhi, Pham, Hoang, McLachlan. Mixtures-of-experts with functional predictors. CMStatistics 2021 [Preprint] —. Functional Mixtures-of-Experts. arXiv :2202.02249, Feb, 2022 (Under Review, Statistics and Computing)

 FIGURE - FME-MLE (left), FME-Lasso (middle) and iFME (right) on Canadian weather data

[Conf] Chamroukhi, Pham, Hoang, McLachlan. Mixtures-of-experts with functional predictors. CMStatistics 2021 [Preprint] —. Functional Mixtures-of-Experts. arXiv :2202.02249, Feb, 2022 (Under Review, Statistics and Computing)

Latent Variable Models (LVM) for Large-Scale Unsupervised Learning

[B.] Données de gros volume : Clustering for an informative summary of the data

- la distribution des calculs est une façon naturelle de s'y prendre
- Stratégie : inférence (et échantillonnage) pour l'agrégation de modèles DLVM

 \hookrightarrow New statistical issues in <u>estimation</u> and <u>model selection</u> and <u>computational</u> issues Statistical guidelines

- collaborative mixtures for large-scale model-based clustering
- aggregate local estimators to provide an overall proven aggregated estimator
- $\,\hookrightarrow\,\, \hookrightarrow\,\, e.g$ minimize the KL divergence between mixtures

Computational guidelines

- Distributed and Parallel processing is a natural way to proceed
- $\blacksquare \ \hookrightarrow$ key question : how to distribute data while controlling the quality of estimators
- \hookrightarrow ensemble methods (BLB effective in scaled supervised learning ^a

a. Kleiner et al. "A scalable bootstrap for massive data." JRSS B(2014) 76 :795-816

[Prep.] Pham & Chamroukhi In progress, Distributed Mixtures-of-Experts, 2022 [Thèse] Pham. Latent Data Models for Large-Scale Clustering. Thèse en cours, apr.2018-2022. Directeur. [Contrat] ANR SMILES

Aggregating distributed mixtures-of-experts models

MK components

- Local estimators : $\hat{f}_m = f(\cdot | \mathbf{x}, \widehat{\boldsymbol{\theta}}_m) = \sum_{k=1}^{K} g_k(\mathbf{x}, \widehat{\boldsymbol{\alpha}}^{(m)}) \phi(\cdot; \mathbf{x}^\top \widehat{\boldsymbol{\beta}}_k^{(m)}, \widehat{\sigma}_k^{2(m)}),$
- weighted average : $\bar{f} = f(y|\mathbf{x}; \bar{\theta}) = \sum_{m=1}^{M} \lambda_m \hat{f}_m$ where $\lambda_m = \frac{N_m}{N}$ the sample proportion. \bar{f} is related to MK componentsso not our direct target.

 $\hookrightarrow \text{ Reduced estimator }: \bar{f}^R = \underset{h_K \in \mathcal{M}_K}{\operatorname{arg inf}} \rho\left(h_K, \sum_{m=1}^M \lambda_m \hat{f}_m\right) : \text{ we seek for a} \\ K\text{-component ME } h \text{ that is closest to the } MK\text{-component ME } \bar{f} = \sum_{m=1}^M \lambda_m \hat{f}_m \\ \text{w.r.t a transportation divergence } \rho(\cdot, \cdot), \text{ e.g. KL.}$

[Prep.] Pham & Chamroukhi In progress, Distributed Mixtures-of-Experts, 2022
[Thèse] Pham. Latent Data Models for Large-Scale Clustering. Thèse en cours, apr.2018-2022. Directeur.
[Contrat] ANR SMILES

Numerical results in Distributed clustering and Prediction

 ${
m FIGURE}$ – Global (G), Distributed (D) and Median (M) approaches (with different number of machines and sample sizes).

	Dataset size	1M	500k	100k
	Global	$.0738_{(.0008)}$	$.0737_{(.0011)}$	$.0738_{(.0025)}$
Clurstering Error	Distributed, 16 machines	$.0738_{(.0009)}$	$.0737_{(.0012)}$.0740(.0028)
	Distributed, 32 machines	$.0738_{(.0008)}$	$.0738_{(.0012)}$	$.0742_{(.0034)}$
	Distributed, 64 machines	$.0738_{(.0009)}$.0739(.0012)	.0786(.0282)
	Dataset size	1M	500k	100k
	Dataset size Global	1M .1215 _(.0017)	500k .1212 _(.0023)	100k .1215 _(.0051)
	Dataset size Global Distributed, 16 machines	1M .1215(.0017) .1219(.0024)	500k .1212(.0023) .1212(.0023)	100k .1215(.0051) .1248(.0277)
Prediction Error	Dataset size Global Distributed, 16 machines Distributed, 32 machines	$\begin{array}{r} 1 \text{M} \\ \hline .1215_{(.0017)} \\ .1219_{(.0024)} \\ .1222_{(.0032)} \end{array}$	500k .1212(.0023) .1212(.0023) .1217(.0034)	100k .1215(.0051) .1248(.0277) .1262(.0294)

Faicel Chamroukhi	Séminaire Université Paris 13 ,	/ UMR LIPN
-------------------	---------------------------------	------------

Deep Latent Variable Models

■ densité marginale des observations : $p_{\theta}(\mathbf{x}) = \int_{\mathbb{R}^d} p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z} = \int_{\mathbb{R}^d} p(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z}$ intègre, dans ce contexte de représentation, des construction neuronales.

 FIGURE - Variational Auto-Encoders (figure taken from Tschannen et al. 2018.)

• si $q^*(\mathbf{z}|\mathbf{x}) = \arg \max_{q \in \mathcal{Q}} \mathcal{L}[q(\mathbf{z}|\mathbf{x})]$ (\mathcal{L} étant l'ELBO) la meilleure approximation variationnelle dans une famille de distributions \mathcal{Q} , l'écart d'inférence \mathcal{G} se décompose :

$$\mathcal{G} = \underbrace{\mathrm{KL}\left(q_{\phi}^{*}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})\right)}_{\text{Écart d'approximation}} + \underbrace{\mathrm{KL}\left(q_{\phi}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})\right) - \mathrm{KL}\left(q_{\phi}^{*}(\mathbf{z}|\mathbf{x})||p_{\theta}(\mathbf{z}|\mathbf{x})\right)}_{\text{Écart d'approximation}}.$$

 \hookrightarrow une façon de réduire \mathcal{G} est de réduire l'écart d'amortissement via une famille \mathcal{Q} plus large d'une distribution variationnelle non gaussienne pour l'encodeur $q_{\phi}(\mathbf{z}|\mathbf{x})$. \hookrightarrow L'utilisation de mélanges (capacité d'approximation), contribuerait à réduire cet écart.

Motivation : Learn multimodal representation spaces and data spaces

Proposal : Mixture of Prior-Decoder Variational Autoencoders (MPDVAE)

\hookrightarrow warranty for estimation via Stochastic GD or Stochastic EM

 \hookrightarrow Our MPDVAE would be the first? model that captures the heterogeneous relationships in both data space and latent space \hookrightarrow Pb. Posterior collapse : L'effondrement de la postérieure q_{ib} couramment observé dans les VAEs

 \hookrightarrow [Wang et al. Neurips 2021] : c'est un problème non spécifique à l'utilisation des réseaux de neurones ou de l'inférence variationnelle : le postérieur s'effondre si et seulement si les variables latentes sont non-identifiables dans le modèle génératif.

 \hookrightarrow Pistes de fonctions enforçant l'identifiabilité faisant appel au transport monotone de Brenier.

AICEL CHAMROUKHI Séminaire Université Paris 13 / UMR LIPN

Merci pour votre attention !