Hierarchical dynamical mixtures models for high-dimensional data

FAICEL CHAMBOUKHI

February 2nd, 2017

Temporal data

Temporal data with regime changes

- Data with regime changes over time
- Abrupt and/or smooth regime changes

Objectives

Temporal data modeling and segmentation

Functional data

Many curves to analyze

Objectives

- Curve clustering/classification (functional data analysis framework)
- lacktriangle Deal with the problem of regime changes \hookrightarrow Curve segmentation

Scientific context

- The area of statistical learning and analysis of complex data.
- Data : Complex data

 heterogeneous, temporal/dynamical, high-dimensional/functional, incomplete,...
- Objective: Transform the data into knowledge :
 - → Reconstruct hidden structure/information, groups/hierarchy of groups, summarizing prototypes, underlying dynamical processes, etc

Modeling framework

- Latent variable models : $f(x|\theta) = \int_z f(x,z|\theta) \mathrm{d}z$ Generative formulation : $z \sim q(z|\theta)$
 - $x|z \sim f(x|z,\theta)$
- \hookrightarrow Mixture models : $f(x|\theta) = \sum_{k=1}^K \mathbb{P}(z=k) f(x|z=k, \theta_k)$ and extensions

Mixture modeling framework

Mixture modeling framework

■ Mixture density: $f(x|\theta) = \sum_{k=1}^{K} \pi_k f_k(x|\theta_k)$

■ Generative model

$$z \sim \mathcal{M}(1; \pi_1, \dots, \pi_K)$$

 $x|z \sim f(x|\boldsymbol{\theta}_z)$

 \hookrightarrow Algorithms for inferring heta from the data

Outline

- 1 Mixture models for temporal data segmentation
- Mixture models for functional data analysis

Outline

- Mixture models for temporal data segmentation
 - Regression with hidden logistic process

Temporal data with regime changes

Energy data

Mixture models for temporal data segmentation

 $y=(y_1,\ldots,y_n)$ a time series of n univariate observations $y_i\in\mathbb{R}$ observed at the time points $\mathbf{t}=(t_1,\ldots,t_n)$

Times series segmentation context

- Time series segmentation is a popular problem with a broad literature
- Common problem for different communities, including statistics, detection, signal processing, machine learning, finance
- The observed time series is generated by an underlying process

 ⇒ segmentation ≡ recovering the parameters the process' states.
- Conventional solutions are subject to limitations in the control of the transitions between these states
- → Propose generative latent data modeling for segmentation and approximation
- ullet \hookrightarrow segmentation \equiv inferring the model parameters and the underlying

Regression with hidden logistic process

Let $y=(y_1,\ldots,y_n)$ be a time series of n univariate observations $y_i\in\mathbb{R}$ observed at the time points $\mathbf{t}=(t_1,\ldots,t_n)$ governed by K regimes.

The Regression model with Hidden Logistic Process (RHLP) [1]

$$y_i = \boldsymbol{\beta}_{z_i}^T \boldsymbol{x}_i + \sigma_{z_i} \epsilon_i \; ; \quad \epsilon_i \sim \mathcal{N}(0, 1), \quad (i = 1, \dots, n)$$

$$Z_i \sim \mathcal{M}(1, \pi_1(t_i; \mathbf{w}), \dots, \pi_K(t_i; \mathbf{w}))$$

Polynomial segments $\boldsymbol{\beta}_{z_i}^T \boldsymbol{x}_i$ with $\boldsymbol{x}_i = (1, t_i, \dots, t_i^p)^T$ with logistic probabilities

$$\pi_k(t_i; \mathbf{w}) = \mathbb{P}(Z_i = k | t_i; \mathbf{w}) = \frac{\exp(w_{k1}t_i + w_{k0})}{\sum_{\ell=1}^K \exp(w_{\ell1}t_i + w_{\ell0})}$$

$$f(y_i|t_i;\boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k(t_i; \mathbf{w}) \mathcal{N}(y_i; \boldsymbol{\beta}_k^T \boldsymbol{x}_i, \sigma_k^2)$$

- Both the mixing proportions and the component parameters are time-varying
- Parameter vector of the model : $\theta = (\mathbf{w}^T, \boldsymbol{\beta}_1^T, \dots, \boldsymbol{\beta}_K^T, \sigma_1^2, \dots, \sigma_{\kappa}^2)^T$

Illustration

 Modeling with the logistic distribution allows activating simultaneously and preferentially several regimes during time

$$\pi_k(t_i; \mathbf{w}) = \frac{\exp(\lambda_k(t_i + \gamma_k))}{\sum_{\ell=1}^K \exp(\lambda_\ell(t_i + \gamma_\ell))}$$

- \Rightarrow The parameter w_{k1} controls the quality of transitions between regimes
- \Rightarrow The parameter w_{k0} is related to the transition time point
- Ensure time series segmentation into contiguous segments

Illustration

Illustration

K=5 polynomial components of degree $p=2\,$

Parameter estimation: MLE via EM: EM-RHLP

- \blacksquare Parameter vector: $\pmb{\theta} = (\mathbf{w}^T, \pmb{\beta}_1^T, \dots, \pmb{\beta}_K^T, \sigma_1^2, \dots, \sigma_K^2)^T$
- Maximize the observed-data log-likelihood:

$$\log L(\boldsymbol{\theta}; \boldsymbol{y}, \mathbf{t}) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \pi_k(t_i; \mathbf{w}) \mathcal{N}(y_i; \boldsymbol{\beta}_k^T \boldsymbol{x}_i, \sigma_k^2)$$

■ Complete-data log-likelihood

$$\log L_c(\boldsymbol{\theta}; \boldsymbol{y}, \mathbf{t}, \mathbf{z}) = \sum_{i=1}^n \sum_{k=1}^K Z_{ik} \log[\pi_k(t_i; \mathbf{w}) \mathcal{N}(y_i; \boldsymbol{\beta}_k^T \boldsymbol{x}_i, \sigma_k^2)]$$

 $Z_{ik} = 1$ if $Z_i = k$ (i.e., when y_i belongs to the kth component)

■ The *Q*-function

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(q)}) = \mathbb{E}\left[\log L_c(\boldsymbol{\theta}; \boldsymbol{y}, \mathbf{t}, \mathbf{z}) | \boldsymbol{y}, \mathbf{t}; \boldsymbol{\theta}^{(q)}\right]$$
$$= \sum_{i=1}^n \sum_{k=1}^K \frac{\tau_{ik}^{(q)}}{\left[\log \pi_k(t_i; \mathbf{w}) \mathcal{N}\left(y_i; \boldsymbol{\beta}_k^T \boldsymbol{x}_i, \sigma_k^2\right)\right]}$$

EM-RHLP

■ E-Step: compute the posterior component memberships:

$$\tau_{ik}^{(q)} = \mathbb{P}(Z_i = k | y_i, t_i; \boldsymbol{\theta}^{(q)}) = \frac{\pi_k(t_i; \mathbf{w}^{(q)}) \mathcal{N}(y_i; \boldsymbol{\beta}_k^{T(q)} \boldsymbol{x}_i, \sigma_k^{2(q)})}{\sum_{\ell=1}^K \pi_\ell(t_i; \mathbf{w}^{(q)}) \mathcal{N}(y_i; \boldsymbol{\beta}_\ell^{T(q)} \boldsymbol{x}_i, \sigma_\ell^{2(q)})} \cdot$$

■ M-Step: compute the parameter update $m{ heta}^{(q+1)} = rg \max_{m{ heta}} Q(m{ heta}, m{ heta}^{(q)})$

$$oldsymbol{eta}_k^{(q+1)} = \left[\sum_{i=1}^n au_{ik}^{(q)} oldsymbol{x}_i oldsymbol{x}_i^T
ight]^{-1} \sum_{i=1}^n au_{ik}^{(q)} y_i oldsymbol{x}_i \quad ext{weighted polynomial regression}$$

$$\sigma_k^{2(q+1)} = \frac{1}{\sum_{i=1}^n \tau_{ik}^{(q)}} \sum_{i=1}^n \tau_{ik}^{(q)} (y_i - \boldsymbol{\beta}_k^{T(q+1)} \boldsymbol{x}_i)^2$$

$$\mathbf{w}^{(q+1)} = \arg\max_{\mathbf{w}} \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \pi_k(t_i; \mathbf{w})$$
 weighted logistic regression

EM-RHLP algorithm

M-Step: Weighted multi-class logistic regression

$$\mathbf{w}^{(q+1)} = \arg\max_{\mathbf{w}} \sum_{i=1}^{n} \sum_{k=1}^{K} \tau_{ik}^{(q)} \log \pi_k(t_i; \mathbf{w})$$

- A convex optimization problem
- Solved with a multi-class Iteratively Reweighted Least Squares (IRLS) algorithm (Newton-Raphson)

$$\mathbf{w}^{(l+1)} = \mathbf{w}^{(l)} - \left[\frac{\partial^2 Q_{\mathbf{w}}(\mathbf{w}, \boldsymbol{\theta}^{(q)})}{\partial \mathbf{w} \partial \mathbf{w}^T} \right]_{\mathbf{w} = \mathbf{w}^{(l)}}^{-1} \frac{\partial Q_{\mathbf{w}}(\mathbf{w}, \boldsymbol{\theta}^{(q)})}{\partial \mathbf{w}} \bigg|_{\mathbf{w} = \mathbf{w}^{(l)}}$$

- Analytic calculation of the Hessian and the gradient
- EM-RHLP algorithm complexity: $\mathcal{O}(I_{\mathsf{EM}}I_{\mathsf{IRLS}}K^3p^3n)$ (more advantageous than dynamic programming).

Time series approximation and segmentation

1 Approximation: a prototype mean curve

$$\hat{y}_i = \mathbb{E}[y_i|t_i; \hat{\boldsymbol{\theta}}] = \sum_{k=1}^K \pi_k(t_i; \hat{\mathbf{w}}) \hat{\boldsymbol{\beta}}_k^T \boldsymbol{x}_i$$

- \hookrightarrow A smooth and flexible approximation thanks to the the logistic weights
- \hookrightarrow The RHLP can be used as nonlinear regression model $y_i = f(t_i; \boldsymbol{\theta}) + \epsilon_i$ by covering functions of the form $f(t_i; \boldsymbol{\theta}) = \sum_{k=1}^K \pi_k(t_i; \mathbf{w}) \boldsymbol{\beta}_k^T \boldsymbol{x}_i$ [3]
- 2 Curve segmentation:

$$\hat{z}_i = \arg\max_{1 \le k \le K} \mathbb{E}[z_i | t_i; \hat{\mathbf{w}}] = \arg\max_{1 \le k \le K} \pi_k(t_i; \hat{\mathbf{w}})$$

Model selection Application of BIC, ICL

$$\begin{aligned} \mathsf{BIC}(K,p) &= \log L(\hat{\boldsymbol{\theta}}) - \frac{\nu_{\boldsymbol{\theta}} \log(n)}{2}; \ \mathsf{ICL}(K,p) = \log L_c(\hat{\boldsymbol{\theta}}) - \frac{\nu_{\boldsymbol{\theta}} \log(n)}{2} \ \mathsf{where} \\ \nu_{\boldsymbol{\theta}} &= K(p+4) - 2. \end{aligned}$$

Evaluation in modeling and segmentation

Approximation error as a function of the speed of transitions

Computing time

Evaluation in approximation and segmentation

Application to real data

Outline

- Mixture models for temporal data segmentation
- 2 Mixture models for functional data analysis
 - Mixture of piecewise regressions
 - Mixture of hidden logistic process regressions
 - Functional discriminant analysis

Functional data analysis context

Many curves to analyze

Objectives

- Curve clustering/classification (functional data analysis framework)
- lacktriangle Deal with the problem of regime changes \hookrightarrow Curve segmentation

Functional data analysis context

Data

- The individuals are entire functions (e.g., curves, surfaces)
- lacksquare A set of n univariate curves $((oldsymbol{x}_1, oldsymbol{y}_1), \dots, (oldsymbol{x}_n, oldsymbol{y}_n)$
- (x_i, y_i) consists of m_i observations $y_i = (y_{i1}, \dots, y_{im_i})$ observed at the independent covariates, (e.g., time t in time series), $(x_{i1}, \dots, x_{im_i})$

Objectives: exploratory or decisional

- Unsupervised classification (clustering, segmentation) of functional data, particularly curves with regime changes: [4] [9], [C11] [16]
- 2 Discriminant analysis of functional data: [2], [5]

Functional data clustering/classification tools

- A broad literature (Kmeans-type, Model-based, etc)
 - ⇒ Mixture-model based cluster and discriminant analyzes

Mixture modeling framework for functional data

The functional mixture model:

$$f(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\Psi}) = \sum_{k=1}^{K} \alpha_k f_k(\boldsymbol{y}|\boldsymbol{x};\boldsymbol{\Psi}_k)$$

- $f_k(y|x)$ are tailored to functional data: can be polynomial (B-)spline regression, regression using wavelet bases etc, or Gaussian process regression, functional PCA
 - \hookrightarrow more tailored to approximate smooth functions
 - \hookrightarrow do not account for segmentation

Here $f_k(y|x)$ itself exhibits a clustering property via hidden variables (regimes):

- 1 Riecewise regression model (PWR)
- 2 Regression model with a hidden process (RHLP)

Piecewise regression mixture model (PWRM) [9]

■ A probabilistic version of the K-means-like approach of (Hébrail et al., 2010)

$$f(\boldsymbol{y}_i|\boldsymbol{x}_i;\boldsymbol{\Psi}) = \sum_{k=1}^K \alpha_k \prod_{r=1}^{R_k} \prod_{j \in I_{kr}} \mathcal{N}(y_{ij};\boldsymbol{\beta}_{kr}^T \boldsymbol{x}_{ij}, \sigma_{kr}^2)$$
PWR

 $I_{kr} = (\xi_{kr}, \xi_{k,r+1}]$ are the element indexes of segment r for component k

- ullet \hookrightarrow Simultaneously accounts for curve clustering and segmentation
- $\begin{array}{l} \bullet \quad \text{Parameter vector } \boldsymbol{\varPsi} = (\alpha_1, \dots, \alpha_{K-1}, \boldsymbol{\theta}_1^T, \dots, \boldsymbol{\theta}_K^T, \boldsymbol{\xi}_1^T, \dots, \boldsymbol{\xi}_K^T)^T \text{ with } \\ \boldsymbol{\theta}_k = (\boldsymbol{\beta}_{k1}^T, \dots, \boldsymbol{\beta}_{kR_k}^T, \sigma_{k1}^2, \dots, \sigma_{kR_k}^2)^T \text{ and } \boldsymbol{\xi}_k = (\xi_{k1}, \dots, \xi_{k,R_k+1})^T \end{array}$

Parameter estimation

- 1 Maximum likelihood estimation: EM-PWRM
- 2 Maximum classification likelihood estimation: CEM-PWRM

Maximum likelihood estimation via EM: EM-PWRM

Maximize the observed-data log-likelihood:

$$\log L(\boldsymbol{\varPsi}) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \alpha_{k} \prod_{r=1}^{R_{k}} \prod_{j \in I_{kr}} \mathcal{N}\left(y_{ij}; \boldsymbol{\beta}_{kr}^{T} \boldsymbol{x}_{ij}, \sigma_{kr}^{2}\right)$$

■ The complete-data log-likelihood

$$\log L_c(\boldsymbol{\Psi}, \mathbf{z}) = \sum_{i=1}^n \sum_{k=1}^K \underline{Z_{ik}} \log \alpha_k + \sum_{i=1}^n \sum_{k=1}^K \sum_{r=1}^{R_k} \sum_{j \in I_{kr}} \underline{Z_{ik}} \log \mathcal{N}(y_{ij}; \boldsymbol{\beta}_{kr}^T \boldsymbol{x}_{ij}, \sigma_{kr}^2)$$

■ The conditional expected complete-data log-likelihood

$$Q(\boldsymbol{\varPsi}, \boldsymbol{\varPsi}^{(q)}) = \sum_{i=1}^{n} \sum_{k=1}^{K} \frac{\tau_{ik}^{(q)}}{ik} \log \alpha_k + \sum_{i=1}^{n} \sum_{k=1}^{K} \sum_{r=1}^{R_k} \sum_{j=1}^{T} \frac{\tau_{ik}^{(q)}}{ik} \log \mathcal{N}(y_{ij}; \boldsymbol{\beta}_{kr}^T \boldsymbol{x}_{ij}, \sigma_{kr}^2)$$

EM-PWRM algorithm

E-step: Compute the Q-function

 \hookrightarrow Compute the posterior probability that the *i*th curve belongs to component k:

$$\tau_{ik}^{(q)} = \mathbb{P}(Z_i = k | \boldsymbol{y}_i, \boldsymbol{x}_i; \boldsymbol{\varPsi}^{(q)}) = \frac{\alpha_k^{(q)} f_k \left(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\varPsi}_k^{(q)}\right)}{\sum_{k'=1}^K \alpha_k^{(q)} f_{k'} \left(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\varPsi}_{k'}^{(q)}\right)}$$

M-step: Compute the update $\Psi^{(q+1)} = \arg\max_{m{\Psi}} Q(m{\Psi}, m{\Psi}^{(q)})$

- $\alpha_k^{(q+1)} = \frac{\sum_{i=1}^n \tau_{ik}^{(q)}}{n}, \quad (k=1,\dots,K)$
- maximization w.r.t the piecewise regression parameters $\{\xi_{kr}, \beta_{kr}, \sigma_{kr}^2\} \hookrightarrow$ a weighted piecewise regression problem \hookrightarrow dynamic programming:

$$\beta_{kr}^{(q+1)} = \left[\sum_{i=1}^{n} \frac{\tau_{ik}^{(q)} \mathbf{X}_{ir}^{T} \mathbf{X}_{ir}}{\mathbf{X}_{ir}^{2(q+1)}} \right]^{-1} \sum_{i=1}^{n} \mathbf{X}_{ir} \mathbf{y}_{ir}
\sigma_{kr}^{2(q+1)} = \frac{1}{\sum_{i=1}^{n} \sum_{j \in I_{i}^{(q)}} \frac{\tau_{ik}^{(q)}}{\tau_{ik}^{2}}} \sum_{i=1}^{n} \frac{\tau_{ik}^{(q)} \|\mathbf{y}_{ir} - \mathbf{X}_{ir} \boldsymbol{\beta}_{kr}^{(q+1)}\|^{2}}{\|\mathbf{y}_{ir} - \mathbf{X}_{ir} \boldsymbol{\beta}_{kr}^{(q+1)}\|^{2}} \right]^{-1}$$

 $oldsymbol{y}_{ir}$ are the observations of segment r of the ith curve and $oldsymbol{\mathrm{X}}_{ir}$ its design matrix

Maximum classification likelihood estimation: CEM-PWRM

- lacksquare Maximize the complete-data log-likelihood w.r.t $(oldsymbol{\Psi},\mathbf{z})$ simultaneously
- C-step: Bayes' optimal allocation rule: $\hat{z}_i = \arg\max_{1 \leq k \leq K} \tau_{ik}(\hat{\boldsymbol{\Psi}})$

CEM-PWRM is equivalent to the K-means-like algorithm of Hébrail et al. (2010):

$$\log L_c(\mathbf{z}, \boldsymbol{\Psi}) \propto \mathcal{J}(\mathbf{z}, \{\mu_{kr}, I_{kr}\}) = \sum_{k=1}^K \sum_{r=1}^{R_k} \sum_{i \mid Z_i = k} \sum_{j \in I_{kr}} (y_{ij} - \mu_{kr})^2$$

if the following conditions hold:

- \bullet $\alpha_k = \frac{1}{K} \ \forall K \ (identical \ mixing \ proportions);$
- lacksquare $\sigma^2_{kr}=\sigma^2 \ \forall r$ and $\forall k$; (isotropic and homoskedastic model);
- \blacksquare μ_{kr} : piecewise *constant* regime approximation
- lacksquare Curve clustering: $\hat{z}_i = rg \max_k au_{ik}(\hat{m{arPsi}})$ with $au_{ik}(\hat{m{arPsi}}) = \mathbb{P}(Z_i|m{x}_i,m{y}_i;\hat{m{arPsi}})$
- Model selection: Application of BIC, ICL
- Complexity in $\mathcal{O}(I_{\mathsf{EM}}KRnm^2p^3)$: Significant computational load for large m

Simulation results

Figure: Misclassification error rate versus the noise level variation.

Application to switch operation curves

Data set: n=146 real curves of m=511 observations.

Each curve is composed of R=6 electromechanical phases (regimes)

Application to Tecator data

The Tecator data ${\rm set}^1$ contains n=240 spectra with m=100 observations for each spectrum

Data considered in the same setting as in Hébrail et al. (2010) (six clusters, each cluster is approximated by five linear segments (R=5,p=1))

¹Tecator data are available at http://lib.stat.cmu.edu/datasets/tecator.

Topex/Poseidon satellite data

The Topex/Poseidon radar satellite data 2 contains n=472 waveforms of the measured echoes, sampled at m=70 (number of echoes) We considered the same number of clusters (twenty) and a piecewise linear approximation of four segments per cluster as in Hébrail et al. (2010).

²Satellite data are available at

http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.

CEM-PWRM clustering

Summary

- Probabilistic approach to the simultaneous curve clustering and optimal segmentation
- Two algorithms: EM-PWRM and CEM-PWRM
- ullet CEM-PWRM is a probabilistic-based version of the K-means-like algorithm Hébrail et al. (2010)
- If the aim is density estimation, the EM version is suggested (CEM provides biased estimators but is well-tailored to the segmentation/clustering end)
- For continuous functions the PWRM in its current formulation, may lead to discontinuities between segments for the piecewise approximation.
- This may be avoided by posterior interpolation as in Hébrail et al. (2010).
- May lead to significant computational load especially for large time series.
 However, for quite reasonable dimensions, the algorithms remain usable

■ The mixture of regressions with hidden logistic processes (MixRHLP):

$$f(\boldsymbol{y}_i|\boldsymbol{x}_i;\boldsymbol{\varPsi}) = \sum_{k=1}^K \alpha_k \prod_{j=1}^{m_i} \sum_{r=1}^{R_k} \pi_{kr}(\boldsymbol{x}_j; \mathbf{w}_k) \mathcal{N}\big(y_{ij}; \boldsymbol{\beta}_{kr}^T \boldsymbol{x}_j, \sigma_{kr}^2\big)$$
RHLP

$$\pi_{kr}(x_j; \mathbf{w}_k) = \mathbb{P}(H_{ij} = r | Z_i = k, x_j; \mathbf{w}_k) = \frac{\exp(w_{kr0} + w_{kr1}x_j)}{\sum_{r'=1}^{R_k} \exp(w_{kr'0} + w_{kr'1}x_j)},$$

- Two types of component memberships:
 - \hookrightarrow cluster memberships (global) $Z_{ik} = 1$ iff $Z_i = k$
 - \hookrightarrow regime memberships for a given cluster (local): $H_{ijr}=1$ iff $H_{ij}=r$

MixRHLP deals better with the quality of regime changes

Parameter estimation via the EM algorithm: EM-MixRHLP

MLE estimation via the EM algorithm

■ The observed-data log-likelihood

$$\log L(\boldsymbol{\Psi}) = \sum_{i=1}^{n} \log \sum_{k=1}^{K} \alpha_k \prod_{j=1}^{m_i} \sum_{r=1}^{R_k} \pi_{kr}(x_j; \mathbf{w}_k) \mathcal{N}(y_{ij}; \boldsymbol{\beta}_{kr}^T \boldsymbol{x}_j, \sigma_{kr}^2)$$

■ The complete-data log-likelihood:

$$\log L_c(\boldsymbol{\Psi}) = \sum_{i=1}^n \sum_{k=1}^K \boldsymbol{Z_{ik}} \log \alpha_k + \sum_{i,j} \sum_{k=1}^K \sum_{r=1}^{K_k} \boldsymbol{Z_{ik}} \boldsymbol{H_{ijr}} \log \left[\pi_{kr}(\boldsymbol{x}_j; \mathbf{w}_k) \mathcal{N}\left(y_{ij}; \boldsymbol{\beta}_{kr}^T \boldsymbol{x}_j, \sigma_{kr}^2\right) \right]$$

The conditional expected complete-data log-likelihood

$$Q(\boldsymbol{\Psi}, \boldsymbol{\Psi}^{(q)}) = \mathbb{E}\left[\log L_c(\boldsymbol{\Psi}) \middle| \mathcal{D}; \boldsymbol{\Psi}^{(q)}\right]$$

$$= \sum_{i=1}^n \sum_{k=1}^K \tau_{ik}^{(q)} \log \alpha_k + \sum_{i,j} \sum_{k=1}^K \sum_{r=1}^{R_k} \tau_{ik}^{(q)} \gamma_{ijr}^{(q)} \log \left[\pi_{kr}(x_j; \mathbf{w}_k) \mathcal{N}\left(y_{ij}; \boldsymbol{\beta}_{kr}^T \boldsymbol{x}_j, \sigma_{kr}^2\right)\right]$$

EM-MixRHLP algorithm

E-step

■ The posterior cluster memberships:

$$\tau_{ik}^{(q)} = \mathbb{P}(Z_i = k | \boldsymbol{y}_i, \boldsymbol{x}_i; \boldsymbol{\Psi}_k^{(q)}) = \frac{\alpha_k^{(q)} f(\boldsymbol{y}_i | Z_i = k, \boldsymbol{x}_i; \boldsymbol{\Psi}_k^{(q)})}{\sum_{k=1}^{K} \alpha_{k'}^{(q)} f(\boldsymbol{y}_i | Z_i = k', \boldsymbol{x}_i; \boldsymbol{\Psi}_{k'}^{(q)})}$$

the posterior regime memberships:

$$\gamma_{ijr}^{(q)} = \mathbb{P}(H_{ij} = r | Z_i = k, y_{ij}, t_j; \boldsymbol{\varPsi}_k^{(q)}) = \frac{\pi_{kr}(x_j; \mathbf{w}_k^{(q)}) \mathcal{N}(y_{ij}; \boldsymbol{\beta}_{kr}^{T(q)} \boldsymbol{x}_j, \sigma_{kr}^{2(q)})}{\sum_{r'=1}^{R_k} \pi_{kr'}(x_j; \mathbf{w}_k^{(q)}) \mathcal{N}(y_{ij}; \boldsymbol{\beta}_{kr'}^{T(q)} \boldsymbol{x}_j, \sigma_{kr'}^{2(q)})}$$

Computed directly (i.e, without a forward-backward recursion as in the Markovian model).

M-step of the EM-MixRHLP

M-step: calculate the update $\Psi^{(q+1)} = \arg \max_{\Psi} Q(\Psi, \Psi^{(q)})$.

Mixing proportions update: standard

$$\alpha_k^{(q+1)} = \frac{1}{n} \sum_{i=1}^n \frac{\tau_{ik}^{(q)}}{n}, \quad (k = 1, \dots, K).$$

Regression parameters update: Analytic weighted least-squares problems

$$\begin{split} \boldsymbol{\beta}_{kr}^{(q+1)} & = & \left[\sum_{i=1}^{n} \boldsymbol{\tau}_{ik}^{(q)} \mathbf{X}_{i}^{T} \mathbf{W}_{ikr}^{(q)} \mathbf{X}_{i} \right]^{-1} \sum_{i=1}^{n} \boldsymbol{\tau}_{ik}^{(q)} \mathbf{X}_{i}^{T} \mathbf{W}_{ikr}^{(q)} \boldsymbol{y}_{i}, \\ \\ \boldsymbol{\sigma}_{kr}^{2} ^{(q+1)} & = & \frac{\sum_{i=1}^{n} \boldsymbol{\tau}_{ik}^{(q)} \| \sqrt{\mathbf{W}_{ikr}^{(q)}} (\boldsymbol{y}_{i} - \mathbf{X}_{i} \boldsymbol{\beta}_{kr}^{(q+1)}) \|^{2}}{\sum_{i=1}^{n} \boldsymbol{\tau}_{ik}^{(q)} \operatorname{trace}(\mathbf{W}_{ikr}^{(q)})}, \end{split}$$

where
$$\mathbf{W}_{ikr}^{(q)} = \mathsf{diag}(\gamma_{ijr}^{(q)}; j=1,\ldots,m_i).$$

- Maximization w.r.t the logistic processes' parameters $\{\mathbf{w}_k\}$: solving multinomial logistic regression problems \Rightarrow IRLS
- \hookrightarrow EM-MixRHLP has complexity in $\mathcal{O}(I_{\mathsf{EM}}I_{\mathsf{IRLS}}KR^3nmp^3)$ (K-means like algo. for PWR is in $\mathcal{O}(I_{\mathsf{KM}}KRnm^2p^3) \hookrightarrow$ computationally attractive for large m with moderate value of R.

EM-MixRHLP clustering of simulated data

Clustering switch operations

Clustering real curves of switch operations The data set contains 115 curves of R=6 operations electromechanical process K=2 clusters: operating state without/with possible defect

Clustering switch operations

Clustering real curves of switch operations The data set contains 115 curves of R=6 operations electromechanical process K=2 clusters: operating state without/with possible defect

Functional discriminant analysis

Supervised classification context

- Data: a training set of labeled functions $((\boldsymbol{x}_1, \boldsymbol{y}_1, c_1), \dots, (\boldsymbol{x}_n, \boldsymbol{y}_n, c_n))$ where $c_i \in \{1, \dots, G\}$ is the class label of the *i*th curve
- lacksquare Problem: predict the class label c_i for a new unlabeled function $(oldsymbol{x}_i, oldsymbol{y}_i)$

Tool: Discriminant analysis

Use the Bayes' allocation rule

$$\hat{c}_i = \arg \max_{1 \le g \le G} \frac{\mathbb{P}(C_i = g) f(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\varPsi}_g)}{\sum_{g'=1}^{G} \mathbb{P}(C_i = g') f(\boldsymbol{y}_i | \boldsymbol{x}_i; \boldsymbol{\varPsi}_{g'})},$$

based on a generative model $f(oldsymbol{y}_i|oldsymbol{x}_i;oldsymbol{\Psi}_g)$ for each group g

- Homogeneous classes: Functional Linear Discriminant Analysis [8]
- Dispersed classes: Functional Mixture Discriminant Analysis [5]

Applications to switch curves

Approach	Classification error rate (%)	Intra-class inertia
FLDA-PR	11.5	10.7350×10^9
FLDA-SR	9.53	9.4503×10^{9}
FLDA-RHLP	8.62	8.7633×10^{9}
FMDA-PRM	9.02	7.9450×10^9
FMDA-SRM	8.50	5.8312×10^{9}
FMDA-MixRHLP	6.25	$\boldsymbol{3.2012\times10^9}$

Summary

- A full generative model for curve clustering and segmentation
- The segmentation is smoothly controlled by logistic functions
- An alternative to the previously described mixture of piecewise regressions
- more advantageous compared to approaches involving dynamic programming namely when using piecewise regression especially for large samples.
- Could be extended to the multivariate case without a major effort

Some ongoing research and perspectives

■ Model-based co-clustering for high-dimensional functional data

Functional latent block model (FLBM) available soon on arXiv

Data: $Y = (y_{ij})$: n individuals defined on a set \mathcal{I} with d continuous functional variables defined on a set \mathcal{J} where $y_{ij}(t) = \mu(x_{ij}(t); \boldsymbol{\beta}) + \epsilon(t)$, t defined on \mathcal{T} .

■ FLBM model:

$$\begin{split} f(\boldsymbol{Y}|\boldsymbol{X}; \boldsymbol{\varPsi}) &= \sum_{(z,w) \in \mathcal{Z} \times \mathcal{W}} \mathbb{P}(\boldsymbol{\mathbf{Z}}, \boldsymbol{\mathbf{W}}) f(\boldsymbol{Y}|\boldsymbol{X}, \boldsymbol{\mathbf{Z}}, \boldsymbol{\mathbf{W}}; \boldsymbol{\theta}) \\ &= \sum_{(z,w) \in \mathcal{Z} \times \mathcal{W}} \prod_{i,k} \pi_k^{z_{ik}} \prod_{j,\ell} \rho_\ell^{w_{j\ell}} \prod_{i,j,k,\ell} f(\boldsymbol{y}_{ij}|\boldsymbol{x}_{ij}; \boldsymbol{\theta}_{k\ell})^{z_{ik}w_{j\ell}}. \end{split}$$

- lacksquare An RHLP is used as a conditional block distribution $f(m{y}_{ij}|m{x}_{ij};m{ heta}_{k\ell})$
- Model inference using Stochastic EM

Some ongoing research and perspectives

MASSIC platform - MixtComp Software

Mixtures for massive data

- Mixture density estimation for massive data clustering
- Use ensemble methods to distribute the data
 - → Bag of Little Boostraps (BLB) (Kleiner et al., 2014)
 - \hookrightarrow Aggregate local estimators from BLB sub-samples: Hierarchical (mixture) of experts aggregation

References

- F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. Time series modeling by a regression approach based on a latent process. Neural Networks, 22(5-6):593–602, 2009
- [2] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. A hidden process regression model for functional data description. application to curve discrimination. *Neurocomputing*, 73(7-9):1210–1221, 2010
- [3] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. Modèle à processus latent et algorithme EM pour la régression non linéaire. Revue des Nouvelles Technologies de l'Information (RNTI), 51:15–32, Jan 2011
- [4] A. Samé, F. Chamroukhi, Gérard Govaert, and P. Aknin. Model-based clustering and segmentation of time series with changes in regime. Advances in Data Analysis and Classification, 5:301–321, 2011
- [5] F. Chamroukhi, H. Glotin, and A. Samé. Model-based functional mixture discriminant analysis with hidden process regression for curve classification. *Neurocomputing*, 112:153–163, 2013a
- [6] F. Chamroukhi, D. Trabelsi, S. Mohammed, L. Oukhellou, and Y. Amirat. Joint segmentation of multivariate time series with hidden process regression for human activity recognition. *Neurocomputing*, 120:633–644, November 2013b
- [7] D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. An unsupervised approach for automatic activity recognition based on hidden markov model regression. *IEEE TASE*, 3(10):829–335, 2013
- F. Chamroukhi. Unsupervised learning of regression mixture models with unknown number of components. Journal of Statistical Computation and Simulation, 2015c. doi: 10.1080/00949655.2015.1109096. 05 Nov 2015
- [9] F. Attal, M. Dedabrishvili, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. Physical human activity recognition using wearable sensors. Sensors, 15(12):31314–31338, 2015
- [10] F. Chamroukhi. Piecewise regression mixture for simultaneous curve clustering and optimal segmentation. *Journal of Classification Springer*, 33, 2016a. doi: 10.1007/s00357-. In Press
- [11] F. Chamroukhi. Robust mixture of experts modeling using the t-distribution. Neural Networks Elsevier, 2016b. In press
- [12] F. Chamroukhi, M. Bartcus, and H. Glotin. Dirichlet process parsimonious gaussian mixture for clustering. arXiv:1501.03347, 2015. In revision
- [13] F. Chamroukhi. Bayesian mixtures of spatial spline regressions. arXiv:1508.00635, Aug 2015a. (v1) submitted
- [14] F. Chamroukhi. Non-normal mixtures of experts. arXiv:1506.06707, July 2015b. Report (61 pages)
- [15] F. Chamroukhi. Robust mixture of experts modeling using the skew-t distribution. 2015d. under review

References I

- F. Attal, M. Dedabrishvili, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. Physical human activity recognition using wearable sensors. Sensors, 15(12):31314–31338, 2015.
- F. Chamroukhi. Bayesian mixtures of spatial spline regressions. arXiv:1508.00635, Aug 2015a. (v1) submitted.
- F. Chamroukhi. Non-normal mixtures of experts. arXiv:1506.06707, July 2015b. Report (61 pages).
- F. Chamroukhi. Unsupervised learning of regression mixture models with unknown number of components. *Journal of Statistical Computation and Simulation*, 2015c. doi: 10.1080/00949655.2015.1109096. 05 Nov 2015.
- F. Chamroukhi, Robust mixture of experts modeling using the skew-t distribution, 2015d, under review.
- F. Chamroukhi. Piecewise regression mixture for simultaneous curve clustering and optimal segmentation. Journal of Classification - Springer, 33, 2016a. doi: 10.1007/s00357-. In Press.
- F. Chamroukhi, Robust mixture of experts modeling using the t-distribution, Neural Networks Elsevier, 2016b, In press.
- F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. Time series modeling by a regression approach based on a latent process. Neural Networks. 22(5-6):593–602. 2009.
- F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. A hidden process regression model for functional data description. application to curve discrimination. *Neurocomputing*, 73(7-9):1210–1221, 2010.
- F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. Modèle à processus latent et algorithme EM pour la régression non linéaire. Revue des Nouvelles Technologies de l'Information (RNTI), S1:15–32, Jan 2011.
- F. Chamroukhi, H. Glotin, and A. Samé. Model-based functional mixture discriminant analysis with hidden process regression for curve classification. *Neurocomputing*, 112:153–163, 2013a.
- F. Chamroukhi, D. Trabelsi, S. Mohammed, L. Oukhellou, and Y. Amirat. Joint segmentation of multivariate time series with hidden process regression for human activity recognition. *Neurocomputing*, 120:633–644, November 2013b.
- F. Chamroukhi, M. Bartcus, and H. Glotin. Dirichlet process parsimonious gaussian mixture for clustering. arXiv:1501.03347, 2015. In revision.

References II

- G. Hébrail, B. Hugueney, Y. Lechevallier, and F. Rossi. Exploratory analysis of functional data via clustering and optimal segmentation. *Neurocomputing*, 73(7-9):1125–1141, March 2010.
- Wenxin Jiang and Martin A. Tanner. On the identifiability of mixtures-of-experts. Neural Networks, 12:197-220, 1999.
- Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I. Jordan. A scalable bootstrap for massive data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76(4):795–816, September 2014.
- A. Samé, F. Chamroukhi, Gérard Govaert, and P. Aknin. Model-based clustering and segmentation of time series with changes in regime. Advances in Data Analysis and Classification, 5:301–321, 2011.
- D. Trabelsi, S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. An unsupervised approach for automatic activity recognition based on hidden markov model regression. *IEEE TASE*, 3(10):829–335, 2013.

Thank you for your attention!

Identifiability of the RHLP model

- $f(.; \Psi)$ is identifiable when $f(.; \Psi) = f(.; \Psi^*)$ if and only if $\Psi = \Psi^*$.
- via Lemma 2 of Jiang and Tanner (1999) for Mixture of Experts, we have any ordered and initialized irreducible RHLP is identifiable (up to a permutation).
- Ordered implies that there exist a certain ordering relationship such that $(\beta_1^T, \sigma_1^2)^T \prec \ldots \prec (\beta_K^T, \sigma_K^2)^T$;
- initialized implies that $(w_{K0}, w_{k1}) = (0, 0)$
- irreducible implies that if $k \neq k\prime$, then one of the following conditions holds: $\beta_k \neq \beta_{k\prime}$ or $\sigma_k \neq \sigma_{k\prime}$
- The set $\{\mathcal{N}(y; \mu(\boldsymbol{x}; \boldsymbol{\beta}_1), \sigma_1^2), \dots, \mathcal{N}(y; \mu(\boldsymbol{x}; \boldsymbol{\beta}_{2K}), \sigma_{2K}^2)\}$ contains 2K linearly independent functions of y, for any 2K distinct pair $(\boldsymbol{\beta}_k, \sigma_k^2)$ for $k = 1, \dots, 2K$.