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Real-world data are complex Systemx

m Heterogenous, Multimodal, High-Dimensional, Unlabeled, Possibly Massive ...
m Need for adapted analysis tools

Transport : Railway switch curves diagnostic Predictive Maintenance Health : Medical images

“Time (Socond)

Acoustics : scene listening (marine, terrestrial)
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Scientific Challenges Systemx

m Establish well-principled (with statistical guarantees) predictions in
heterogeneous and high-dimensional situations,

m Construct efficient algorithms that operate in unsupervised way and provide
interpretable solutions with computational guarantees.

Scientific framework

< Latent variable models : f(z|0) = [. f(x,2]0)dz

— Inference, unsupervised representation and Selection in high-dimension

vy

Scientific Challenges
Latent Variable Models
m Mixture models
m Mixtures of Experts Models
High-Dimensional Learning
m Learning with high-dimensional predictors
m Learning with functional predictors
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Approximation capabilities of finite mixture distributions qutéfﬁ;‘”

Density approximation in Unsupervised Learning
m Data : observations {x;} from X € X C R? of density (multimodal) f € F
m Objective : approximate the density f (and represent the data, e.g. clustering)

m Solution : Approximate f within the class H? = | oy« Hi of finite
location-scale mixture h%. (of K-components) of density ¢ (e.g., Gaussian), where

K K
1 T — Ui
'H%:{ h}’}(:l?) = E kadlp(T:) , Lk GRd,O'k €R+,7Tk>0Vk€[K], E T =1
k=1 k k=1

Theorem : Universal approximation of finite location-scale mixtures
(a) Given any p.d.f f, € C and a compact set X C R?, there exists a sequence
(k%) C H?, such that img e SUp,cx | f() — hi (x)] = 0.
(b) For p € [1,00), if f € L, (Lebesgue p.d.f) and ¢ € L (essentially bounded
p.d.f), there exists a sequence (h¥,) C H?, such that limg o ||f — hf}”Lp =0.

[J. Communications in Statistics - Theory and Methods, 2022] [PhD, TT Nguyen 2021]
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Heterogeneous regression-type data System>

Mixtures-of-Experts as good candidates to model a response Y given covariarte.s X

when governed by a hidden structure accounting for heterogeneity
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Apprentissage par Modeles de Mélanges d’Experts (ME) Sl{Sféfﬁ‘*‘
m Context : n observations {x;,y;} from a pair (X,Y’) € X x Y with unknown conditional
pdffeF={f:XxY >Ryl [, f(ylz)dr(y) =1,Ve c X}
m High-dimensional setting : X C R?, Y C RY, with d, ¢ > n and heterogeneous.
m Objectifs : Regression; Clustering ; Model selection

m Solution : Approximate f within the class of mixtures-of-experts :

Let ¢ be a p.d.f (compactly supported on Y C R?), we define the functional classes :
m Location-scale family : £, = {qbq(y; p,0) = Jiqgo (%) sweY, o€ R+}.

m Mixture of location-scale experts with softmax activation network : SGaME :

HE ={ h% (ylz) : ng @) g (Ui ik, 0k) | Dg € Ep N Loos g (57) € {softmaX}}
k=1

Theorem : Approximation capabilities of isotropic mixtures-of-experts SGaME

(a) Forpe[l,00), f € FpNC, ¢ € FNC, X =[0,1]¢, there exists a sequence (h%,) C HE
such that limg o || f — hﬁ”t =0.

(b) For fe FNC, if o€ FNC, d=1, there exists a sequence (h%.) C HZ such that
limg 0o hK = f almost uniformly.

[PhD TT. Nguyen, 2021] [Journal of Stat. Distributions and Applicat., 2021] [Neurocomputing, 2019] [WIREs DMKD 2018]
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Open-Source Toolkit qute’r’ﬁ;?
Learning via the EM algorithm

SaMUraiS : open source software for statistical time-series analysis

SaMUraiS : StAtistical Models for the UnsupeRvised segmentAtlon of time-Series

Available algorithms and Packages

RHLP : Regression with Hidden Logistic Process
HMMR : Hidden Markov Model Regression

PWR : Piece-Wise Regression

MRHLP : Multivariate RHLP

MHMMR : Multivariate HMMR

MPWR : Multivariate PWR

Include estimation, segmentation, approximation, model selection, and sampling
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Principled robustness in learning with MoE Systemx

Principled robustness in regression and clustering
m Questionings : Prediction (non-linear regr., classification) & clustering in presence
of Qutliers, with potentially skewed, heavy-tailed distributions

m Answering : Robust MoE that accommodate asymmetry, heavy tails, and outliers

K
mylr,@;0) = Y gu(ria) STy p(@; Br), ok, A, 1)
k=1 v
Softmax Gating Network Skew-t Expert Network

kth expert : has a skew t distribution [Azzalini and Capitanio 2003]

= 1

o
| ol s deray] / | s consy il

T = [0.4,0.6), pup = [—1,2]; o = [1,1]; v, = [3,7]; A = [14, —12];
Flexible and robust generalization of the standard MoE models

For {vr} — 0o, STMoE reduces to SNMoE ; For {\r} — 0, STMoE reduces to TMoE.
For {vr} — oo and {Ax} — 0, StMoE approaches the NMoE.

[Neurocomputing, 2017] [Neural Networks, 2016c] [IJCNN 2016]
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Robust learning with mixtures-of-experts models

NMoE

© Cluster 1

o Cluster2
—— Expert mean 1
3.5 — Expert mean 2
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Tone data with 10 outliers (0, 4) : Normal fit

TMoE

© Cluster 1
© Cluster2

——Expert mean 1

3.5 —— Expert mean 2

data o daa
4.5 ——True mean (NMoE) 1.5 ——True mean (NMoE)
- - ~Trus Experts - - ~Trus con. regions
fimated mean (TMoE) Estimated mean (TMo)
imaed Experts - Estimated conl. regions.
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n = 500 observations with 5% of outliers (z; y = —2) : Robust fit

[Neurocomputing, 2017] [Neural Networks, 2016c]

Tone data with 10 outliers (0, 4) : Robust fit

[IJCNN 2016]
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Open-Source Toolkit

MEteorits : open-source soft. Robust learning with mixtures-of-experts models

MEteorits : Mixtures-of-ExperTs modEling for cOmplex and non-noRmal dIsTributionS

qute'r'ﬁ;?

Available algorithms and Packages

NMoE : Normal Mixture-of-Experts aEm
SNMoE : Skew-Normal Mixture-of-Experts aEm
tMoE : Robust MoE using the t-distribution (S
StMoE : Skew-t Mixture-of-Experts aEm

- Meteorits include sampling, fitting, prediction, clustering with each MoE model
- Non-normal mixtures (and MoE) is a very recent topic in the field
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Dual-energy computed tomography (DECT) image Clustering Systemx

m Learning from Multimodal information in Healthcare/Radiology
m Cancer detection in Rad|o|ogy : DECT ClUStering [Diagnostics (Al in medicine), 2022]
Spatial mixture of functional regressions for dual-energy CT images

K .
m(ylx,v;0) =Y, cn(via) fr(ylx; 0x) where oy (v;a) = %

1 &

(a) Original slice (b) Dice=0.84, DB=1.64/6.92

DECT multimodal Data : 3D voxels & energy levels Expert Annotation Automatic Annotation

08 - Spatial index D8 - Specral index tumor DB - Spatial index tumor D8 - Spectral index
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Learning with high-dimensional predictors System>

Questioning : Prediction (non-linear regr., classification) & clustering in presence of
[1.] High-dimensional predictors : X; € R with p > n
[2.] Functional predictors : X;(t), t € T C R {eg. continuously recorded variables}

— Look for parsimonious and interpretable methods

[1.] HDME : High-Dimensional Mixtures-of-Experts
= Learning : PMLE 8, € arg maxg > log h% (yi|x:; @) — pen(0)

K K-1
m < LASSO penalty : Peny(0) = Z e |18k |1 +Z Vi || wi |1
[E=il =
Experts Net. Gating Net.

<> encourages sparse solutions & performs estimation and feature selection

— computationally attractive iAvoid matrix inversion ; univariate updates)

[PhD] Bao Tuyen Huynh. Estimation and Feature Selection in High-Dimensional Mixtures-of-Experts Modesls . PhD Thesis,
Normandie Université, 2019

[J] Chamroukhi &Huynh. Regularized Maximum Likelihood Estimation and Feature Selection in Mixtures-of-Experts Models.
Journal de la Société Francaise de Statistique, Vol. 160(1), pp :57-85, 2019

[J] Huynh & C. Estimation and Feature Selection in Mixtures of Generalized Linear Experts Models. arXiv :1810.12161, 2019
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https://github.com/fchamroukhi/HDME

Model selection

(a) Raw Ethanol data

Systemx
set Collection of MoE models with linear mean functions characterized by 2-5 clusters
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(b) Our best data-driven MoE model
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Measuring uncertainty in high-dimensional learning quté‘rﬁ;

Questioning : Prediction (non-linear regr., classification) & clustering in presence of
High-dimensional predictors : Data Dy, = (X, Y;)?_; where X; € RP with p>>n
HDME : High-Dimensional MoE : PMLE 6, € arg maxg -7, log h% (y;|®:; 8) — pen()
Theorem : Non-asymptotic oracle inequality for collection of MoE models
Result : 3 constants C et k (p,C1) > 0 (C1 > 1) s.that whenever for m € M,
pen(m) > « (p,C1) [(C + Inn) dim (Hm ) + zm] , the estimator PMLE h satisfies

,C1) C 7
+f<(p 1) 1£+n+n
n n

®n T : . ®n pen(m)
E [JKLE™ (£,m)] < €1 _int (hmlél%m KLE™ (£, ) + 22

m A non-asymptotic result. If pen(m) is well chosen, then our PMLE behaves in a
comparable manner compared to the best (oracle) model #,+ in the collection,

minimizing the risk : infy,caq (infhmEHm KL®® (f, hm) + m) (f is unknown).

n

[PhD, Trung-Tin Nguyen, 2021.] ~ [Electronic Journal of Statistics,
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Functional Data Analysis (Open-Source Toolkit) Sl{Sféff;"‘”

FLaMingoS : open source software for learning from functions

FLaMingoS : Functional Latent datA Models for clusterING heterogeneOus time-Series

Available algorithms and Packages

mixRHLP : Mixture of Regressions with HLPs a
mixHMM : Mixture of Hidden Markov Models (HMMs) @I
mixHMMR : Mixture of HMM Regressions a
@
@

PWRM : Piece-Wise Regression Mixture

uReMix : Unsupervised Regression Mixtures

— A flexible full generative modeling for FDA
— Could be extended to the multivariate case without a major effort

FATCEL. CHAMROUKHI CMStatistics, December 17, 2023


https://github.com/fchamroukhi/FLaMingoS
https://cran.rstudio.com/web/packages/flamingos/index.html
https://github.com/fchamroukhi?&tab=repositories&q=mix&type=public&language=matlab
https://github.com/fchamroukhi/mixRHLP
https://github.com/fchamroukhi/mixRHLP_m
https://github.com/fchamroukhi/mixHMM
https://github.com/fchamroukhi/mixHMM_m
https://github.com/fchamroukhi/mixHMMR
https://github.com/fchamroukhi/mixHMMR_m
https://github.com/fchamroukhi/PWRM
https://github.com/fchamroukhi/PWRM_m
https://github.com/fchamroukhi/uReMix_R
https://github.com/fchamroukhi/uReMix_m

[2.] Learning with functional predictors Sl{Sfé‘fﬁ"‘”

Visualization of the stations

Daily mean TogPrecip

[uw

1509

Cluster

Temperature (°C)

-0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Longitude

FIGURE — n = 35 daily mean temperature measurement curves (X;'s) in different stations (Left)
and the log of precipitation values (Y;'s) visualized with the climate regions (Z;'s) (Right).

m Relate functional predictors {X (t) € R;¢t € T C R} to a scalar response Y € Y C R

m Regression and classification of heterogeneous responses given functional predictors

(1) generative functional modeling, sparsity and feature selection (high-dimension)

(2) User guideline : keep an interpretable fit

[2.] Functional Mixtures-of-Experts (and Different Learning strategies, in particular)

B Y; = 8.0 +[7Xi(t)B2,; (t)dt 4 €; avec hx(X;(.)) = @z, 0 + [ Xi(t)az, (t)dt
m Lasso-type Regularized MLE w.r.t the derivatives of the a(:) and 3(:) functions

[Preprint] Chamroukhi, Pham, Hoang, McLachlan. Functional Mixtures-of-Experts. arXiv :2202.02249, Feb, 2022 ( Under
Review, Statistics and Computing)
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Interpretable learning with time-series inputs System>

Mixture-of-Experts Architecture

functional input

Interpretable fits

——
explaso+ fatX@e}  |ay,

1+Z$°‘P{“k,n+f“r(t e LUING

ExpertK " Gating network

Expertk

Expert 1

epfBaa + [Balti(oe)

B e (o [ Xt

PR :
:

categorical output, G=3

Y; = Bz;,0 +/7Xi(8)B2,; (t)dt + &4 with b2 (X;) = az; 0 + [7 Xi(B)az, (B)dt | oo o me e
l1-Regularized MLE w.r.t the derivatives of the c(-) and 3(-) functions

< produces a meaningful sparse estimates for ,821. (t) curves : °

ng)(t) = 0 implies that X (¢) has no effect on Y at t

52) (t) = 0 means that 3, (t) is constant at ¢, e

,Bg?)(t) = 1 shows that 3, (¢) is a linear function of ¢, etc.
[PhD TN. Pham, 2022] [arXiv :2202.13934] [Submitted, 2023]
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

functional input
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LASSO regularization

‘Temperature curves clusters, FME-Lasso model, K=d.
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Station clusters, FME model with K=4.
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[PhD TN. Pham, 2022] [arXiv :2202.13934]
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Interpretable learning with time-series inputs
Mixture-of-Experts Architecture

functional input

gl 0]
14T el [

Egertk

gl 8]
3ot [N

categorical output, G=3

produces a meaningful sparse estimates for ﬁzi (t) curves :
g?)(t) = 0 implies that X (¢) has no effect on Y at t
Bgi)(t) = 0 means that B, (t) is constant at ¢,

Bg?) (t) = 1 shows that B, (t) is a linear function of ¢,
et

C.

[PhD TN. Pham, 2022] [arXiv :2202.13934]
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Temperature curves clusters, iFME model, K=4
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Estimated gating network, IFME model, K=4.
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Interpretable learning with functional inputs System>

Temperature curves clusters, iFME model, K=4

Station clusters, iFME model with K=4
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Ficure — Clustering of temperatures (g.) predicted (log)-precipitations (d.) (Atlantic,
Pacific, Continental and Arctic), and parameter functions (bg - bd.)

[PhD TN. Pham, 2022] [arXiv :2202.13934] [Submitted, 2023] [ Contract, ANR SMILES]
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quté'rii;...‘

Thank you for your attention !
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