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Real-world data are complex

Heterogenous, Multimodal, High-Dimensional, Unlabeled, Possibly Massive ...

Need for adapted analysis tools

Transport : Railway switch curves diagnostic Predictive Maintenance Health : Medical images
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Acoustics : scene listening (marine, terrestrial) Dual-energy computed tomography
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Health & Well Being : Activity recog. Climate/Environment : meteorological data
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Climate/Envrimnement : meteorological data
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Scientific Challenges

Establish well-principled (with statistical guarantees) predictions in

heterogeneous and high-dimensional situations,

Construct efficient algorithms that operate in unsupervised way and provide

interpretable solutions with computational guarantees.

Scientific framework

↪→ Latent variable models : f(x|θ) =
∫
Z f(x, z|θ)dz

↪→ Inference, unsupervised representation and Selection in high-dimension

1 Scientific Challenges

2 Latent Variable Models

Mixture models

Mixtures of Experts Models

3 High-Dimensional Learning

Learning with high-dimensional predictors

Learning with functional predictors
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Approximation capabilities of finite mixture distributions

Density approximation in Unsupervised Learning

Data : observations {xi} from X ∈ X ⊂ Rd of density (multimodal) f ∈ F
Objective : approximate the density f (and represent the data, e.g. clustering)

Solution : Approximate f within the class Hϕ =
⋃
K∈N? H

ϕ
K of finite

location-scale mixture hϕK (of K-components) of density ϕ (e.g., Gaussian), where

HϕK =

{
hϕK (x) :=

K∑
k=1

πk
1

σdk
ϕ

(
x− µk
σk

)
,µk ∈ Rd, σk ∈ R+, πk > 0 ∀k ∈ [K] ,

K∑
k=1

πk = 1

}

Theorem : Universal approximation of finite location-scale mixtures

(a) Given any p.d.f f, ϕ ∈ C and a compact set X ⊂ Rd, there exists a sequence

(hϕK) ⊂ Hϕ, such that limK→∞ supx∈X |f(x)− h
ϕ
K(x)| = 0.

(b) For p ∈ [1,∞), if f ∈ Lp (Lebesgue p.d.f) and ϕ ∈ L∞ (essentially bounded

p.d.f), there exists a sequence (hϕK) ⊂ Hϕ, such that limK→∞ ‖f − hϕK‖Lp = 0.

[J. Communications in Statistics - Theory and Methods, 2022] [PhD, TT Nguyen 2021]
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Heterogeneous regression-type data

Mixtures-of-Experts as good candidates to model a response Y given covariarte.s X

when governed by a hidden structure accounting for heterogeneity
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Schematic diagram of the neural network architecture of a -component MoE model.
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Apprentissage par Modèles de Mélanges d’Experts (ME)

Context : n observations {xi,yi} from a pair (X,Y ) ∈ X× Y with unknown conditional

p.d.f f ∈ F =
{
f : X×Y→ R+|

∫
Y f (y|x) dλ (y) = 1, ∀x ∈ X

}
High-dimensional setting : X ⊆ Rd, Y ⊆ Rq , with d, q � n and heterogeneous.

Objectifs : Regression ; Clustering ; Model selection

Solution : Approximate f within the class of mixtures-of-experts :

Let ϕ be a p.d.f (compactly supported on Y ⊆ Rq), we define the functional classes :

Location-scale family : Eϕ =
{
φq(y;µ, σ) :=

1
σq
ϕ
(
y−µ
σ

)
;µ ∈ Y, σ ∈ R+

}
.

Mixture of location-scale experts with softmax activation network : SGaME :

HϕS =
{
hϕK(y|x) :=

K∑
k=1

gk (x;γ)φq (y;µk, σk) ; φq ∈ Eϕ ∩ L∞, gk (·;γ) ∈ {softmax}
}

Theorem : Approximation capabilities of isotropic mixtures-of-experts SGaME

(a) For p ∈ [1,∞), f ∈ Fp ∩ C, ϕ ∈ F ∩ C, X = [0, 1]d, there exists a sequence
(
hϕK
)
⊂ HϕS

such that limK→∞
∥∥f − hϕK∥∥Lp = 0.

(b) For f ∈ F ∩ C, if ϕ ∈ F ∩ C, d = 1, there exists a sequence
(
hϕK
)
⊂ HϕS such that

limK→∞ hϕK = f almost uniformly.

[PhD TT. Nguyen, 2021] [Journal of Stat. Distributions and Applicat., 2021] [Neurocomputing, 2019] [WIREs DMKD 2018]
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Open-Source Toolkit

Learning via the EM algorithm

SaMUraiS : open source software for statistical time-series analysis

SaMUraiS : StAtistical Models for the UnsupeRvised segmentAtIon of time-Series
Github CRAN Matlab software

Available algorithms and Packages

RHLP : Regression with Hidden Logistic Process R software Matlab software

HMMR : Hidden Markov Model Regression R software Matlab software

PWR : Piece-Wise Regression R software Matlab software

MRHLP : Multivariate RHLP R software Matlab software

MHMMR : Multivariate HMMR R software Matlab software

MPWR : Multivariate PWR R software Matlab software

Include estimation, segmentation, approximation, model selection, and sampling
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Principled robustness in learning with MoE

Principled robustness in regression and clustering
Questionings : Prediction (non-linear regr., classification) & clustering in presence

of Outliers, with potentially skewed, heavy-tailed distributions

Answering : Robust MoE that accommodate asymmetry, heavy tails, and outliers

m(y|r,x;θ) =
K∑
k=1

gk(r;α)︸ ︷︷ ︸
Softmax Gating Network

ST (y;µ(x;βk), σk, λk, νk)︸ ︷︷ ︸
Skew-t Expert Network

kth expert : has a skew t distribution [Azzalini and Capitanio 2003]
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πk = [0.4, 0.6], µk = [−1, 2] ; σk = [1, 1] ; νk = [3, 7] ; λk = [14,−12] ;

Flexible and robust generalization of the standard MoE models

For {νk} → ∞, STMoE reduces to SNMoE ; For {λk} → 0, STMoE reduces to TMoE.

For {νk} → ∞ and {λk} → 0, StMoE approaches the NMoE.

[Neurocomputing, 2017] [Neural Networks, 2016c] [IJCNN 2016]
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Robust learning with mixtures-of-experts models
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[Neurocomputing, 2017] [Neural Networks, 2016c] [IJCNN 2016]
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Open-Source Toolkit

MEteorits : open-source soft. Robust learning with mixtures-of-experts models

MEteorits : Mixtures-of-ExperTs modEling for cOmplex and non-noRmal dIsTributionS
Github CRAN Matlab software

Available algorithms and Packages

NMoE : Normal Mixture-of-Experts R software Matlab software

SNMoE : Skew-Normal Mixture-of-Experts R software Matlab software

tMoE : Robust MoE using the t-distribution R software Matlab software

StMoE : Skew-t Mixture-of-Experts R software Matlab software

- Meteorits include sampling, fitting, prediction, clustering with each MoE model

- Non-normal mixtures (and MoE) is a very recent topic in the field
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Dual-energy computed tomography (DECT) image Clustering

Learning from Multimodal information in Healthcare/Radiology

Cancer detection in Radiology : DECT clustering [Diagnostics (AI in medicine), 2022]

Spatial mixture of functional regressions for dual-energy CT images

m(y|x,v;θ) =
∑K

k=1 αk(v;α)fk(y|x;θk) where αk(v;α) =
wkφ3(v;µk,Rk)∑K
`=1

w`φ3(v;µ`,R`)

40 50 60 70 80 90 100 110 120 130 140

keV

-500

0

500

1000

1500

2000

2500

3000

H
U

Energy decay curves

bone tumor tissue

DECT multimodal Data : 3D voxels & energy levels Expert Annotation Automatic Annotation

G
M

M

k-
m

ea
n

s

S
.S

ea
rc

h

S
g

M
F

R
-B

sp
l

S
g

M
F

R
-p

o
ly

S
g

M
V

F
R

-B
sp

l

S
sM

F
R

-B
sp

l

0

2

4

6

8

10

12

14

16

DB - Spatial index

G
M

M

k-
m

ea
n

s

S
.S

ea
rc

h

S
g

M
F

R
-B

sp
l

S
g

M
F

R
-p

o
ly

S
g

M
V

F
R

-B
sp

l

S
sM

F
R

-B
sp

l

0

5

10

15

20

25

DB - Spectral index

G
M

M

k-
m

ea
n

s

S
.S

ea
rc

h

S
g

M
F

R
-B

sp
l

S
g

M
F

R
-p

o
ly

S
g

M
V

F
R

-B
sp

l

S
sM

F
R

-B
sp

l

0

10

20

30

40

50

60

70

tumor DB - Spatial index

G
M

M

k-
m

ea
n

s

S
.S

ea
rc

h

S
g

M
F

R
-B

sp
l

S
g

M
F

R
-p

o
ly

S
g

M
V

F
R

-B
sp

l

S
sM

F
R

-B
sp

l

0

20

40

60

80

100

120

140

160

tumor DB - Spectral index

G
M

M

k-
m

ea
n

s

S
.S

ea
rc

h

S
g

M
F

R
-B

sp
l

S
g

M
F

R
-p

o
ly

S
g

M
V

F
R

-B
sp

l

S
sM

F
R

-B
sp

l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dice similarity score
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Learning with high-dimensional predictors

Questioning : Prediction (non-linear regr., classification) & clustering in presence of

[1.] High-dimensional predictors : Xi ∈ Rp with p� n

[2.] Functional predictors : Xi(t), t ∈ T ⊆ R {eg. continuously recorded variables}
↪→ Look for parsimonious and interpretable methods

[1.] HDME : High-Dimensional Mixtures-of-Experts

Learning : PMLE θ̂n ∈ argmaxθ
∑n
i=1 log h

ϕ
K(yi|xi;θ)− pen(θ)

↪→ LASSO penalty : Penλ(θ) =
K∑
k=1

λk‖βk‖1︸ ︷︷ ︸
Experts Net.

+

K−1∑
k=1

γk‖wk‖1︸ ︷︷ ︸
Gating Net.

↪→ encourages sparse solutions & performs estimation and feature selection

↪→ computationally attractive (Avoid matrix inversion ; univariate updates)
Software Toolbox HDME on Github (GaussRMoE, LogisticRMoE, PoissonRMoE)

[PhD] Bao Tuyen Huynh. Estimation and Feature Selection in High-Dimensional Mixtures-of-Experts Modesls . PhD Thesis,

Normandie Université, 2019.

[J] Chamroukhi &Huynh. Regularized Maximum Likelihood Estimation and Feature Selection in Mixtures-of-Experts Models.

Journal de la Société Francaise de Statistique, Vol. 160(1), pp :57–85, 2019

[J] Huynh & C. Estimation and Feature Selection in Mixtures of Generalized Linear Experts Models. arXiv :1810.12161, 2019
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Model selection

(a) Raw Ethanol data set Collection of MoE models with linear mean functions characterized by 2-5 clusters
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Measuring uncertainty in high-dimensional learning

Questioning : Prediction (non-linear regr., classification) & clustering in presence of

High-dimensional predictors : Data Dn = (Xi, Yi)
n
i=1 where Xi ∈ Rp with p� n

HDME : High-Dimensional MoE : PMLE θ̂n ∈ argmaxθ
∑n
i=1 log h

ϕ
K

(yi|xi; θ)− pen(θ)

Theorem : Non-asymptotic oracle inequality for collection of MoE models

Result : ∃ constants C et κ (ρ, C1) > 0 (C1 > 1) s.that whenever for m ∈M,

pen(m) ≥ κ (ρ, C1) [(C + lnn) dim (Hm) + zm] , the estimator PMLE ĥm̂ satisfies

E
[
JKL⊗n

ρ

(
f, ĥm̂

)]
≤ C1 inf

m∈M

(
inf

hm∈Hm

KL⊗n (f, hm) +
pen(m)

n

)
+
κ (ρ, C1)C1ξ

n
+
η + η′

n
.

A non-asymptotic result. If pen(m) is well chosen, then our PMLE behaves in a

comparable manner compared to the best (oracle) model Hm? in the collection,

minimizing the risk : infm∈M
(
infhm∈Hm KL⊗n (f, hm) +

pen(m)
n

)
(f is unknown).
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[PhD, Trung-Tin Nguyen, 2021.] [Electronic Journal of Statistics, 2022] [In revision, JMVA. arXiv :2104.08959. 2021b]
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Functional Data Analysis (Open-Source Toolkit)

FLaMingoS : open source software for learning from functions

FLaMingoS : Functional Latent datA Models for clusterING heterogeneOus time-Series
Github CRAN Matlab software

Available algorithms and Packages

mixRHLP : Mixture of Regressions with HLPs R Matlab

mixHMM : Mixture of Hidden Markov Models (HMMs) R Matlab

mixHMMR : Mixture of HMM Regressions R Matlab

PWRM : Piece-Wise Regression Mixture R Matlab

uReMix : Unsupervised Regression Mixtures R Matlab

↪→ A flexible full generative modeling for FDA

↪→ Could be extended to the multivariate case without a major effort
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https://github.com/fchamroukhi/FLaMingoS
https://cran.rstudio.com/web/packages/flamingos/index.html
https://github.com/fchamroukhi?&tab=repositories&q=mix&type=public&language=matlab
https://github.com/fchamroukhi/mixRHLP
https://github.com/fchamroukhi/mixRHLP_m
https://github.com/fchamroukhi/mixHMM
https://github.com/fchamroukhi/mixHMM_m
https://github.com/fchamroukhi/mixHMMR
https://github.com/fchamroukhi/mixHMMR_m
https://github.com/fchamroukhi/PWRM
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[2.] Learning with functional predictors
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Figure – n = 35 daily mean temperature measurement curves (Xi’s) in different stations (Left)
and the log of precipitation values (Yi’s) visualized with the climate regions (Zi’s) (Right).

Relate functional predictors {X(t) ∈ R; t ∈ T ⊂ R} to a scalar response Y ∈ Y ⊂ R

Regression and classification of heterogeneous responses given functional predictors

(1) generative functional modeling, sparsity and feature selection (high-dimension)

(2) User guideline : keep an interpretable fit

[2.] Functional Mixtures-of-Experts (and Different Learning strategies, in particular)

Yi = βzi,0 +
∫
TXi(t)βzi (t)dt+ εi avec hz(Xi(.)) = αzi,0 +

∫
T Xi(t)αzi (t)dt

Lasso-type Regularized MLE w.r.t the derivatives of the α(·) and β(·) functions

[Preprint] Chamroukhi, Pham, Hoang, McLachlan. Functional Mixtures-of-Experts. arXiv :2202.02249, Feb, 2022 ( Under

Review, Statistics and Computing)
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...

Yi = βzi,0 +
∫
TXi(t)βzi (t)dt+ εi with hz(Xi) = αzi,0 +

∫
T Xi(t)αzi (t)dt

l1-Regularized MLE w.r.t the derivatives of the α(·) and β(·) functions

↪→ produces a meaningful sparse estimates for βzi (t) curves :

β
(0)
zi

(t) = 0 implies that X(t) has no effect on Y at t

β
(1)
zi

(t) = 0 means that βzi (t) is constant at t,

β
(0)
zi

(t) = 1 shows that βzi (t) is a linear function of t, etc.

Interpretable fits
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[PhD TN. Pham, 2022] [arXiv :2202.13934] [Submitted, 2023]
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...

No regularization
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...

produces a meaningful sparse estimates for βzi (t) curves :

β
(0)
zi

(t) = 0 implies that X(t) has no effect on Y at t

β
(1)
zi

(t) = 0 means that βzi (t) is constant at t,

β
(0)
zi

(t) = 1 shows that βzi (t) is a linear function of t,

etc.

OUR regularization
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Interpretable learning with functional inputs
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Figure – Clustering of temperatures (g.) predicted (log)-precipitations (d.) (Atlantic,
Pacific, Continental and Arctic), and parameter functions (bg - bd.)
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Thank you for your attention !
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