

Statistical Learning from heterogenous, high-dimensional and distributed data

Faïcel Chamroukhi

Seminar, 04 april 2023, Versailles

IRT SystemX

Real-world data are complex

- Heterogenous, Multimodal, High-Dimensional, Unlabeled, Possibly Massive ...
- Need for adapted analysis tools

Acoustics : scene listening (marine, terrestrial)

Health & Well Being : Activity recog.

Predictive Maintenance

Health : Medical images

Dual-energy computed tomography

Climate/Environment : meteorological data

Visualization of the station

Faïcel Chamroukhi

Scientific Challenges

- System×
- Establish well-principled (with statistical guarantees) predictions in heterogeneous, high-dimensional and decentralized situations,
- Construct efficient algorithms that operate in unsupervised way, provide interpretable solutions and enjoy computational guarantees.
- Deal with heterogeneous and potentially unlabeled data in different applications (e.g., time series, images,) → Need for models that explicitly accommodate heterogeneity and unsupervised analysis
- 2 Deal with high-dimensional data in complex (heterogeneous) situations, user-friendly → Need for models that encourage sparse solutions, while being interpretable
- 3 Learning form distributed (decentralized) data → Federating learning, with statistical and computational guarantees
- 4 Measure the precision quality in estimation & prediction → How far we are from optimal solutions, eg. Oracle inequalities

Outline

Cadre scientifique général

 \hookrightarrow Modèles à variables latente : $f(x|\theta) = \int_{\mathcal{Z}} f(x, z|\theta) dz$

 \hookrightarrow Inférence, Sélection et représentation non supervisées et à l'échelle

- **1** Scientific Challenges
- 2 Latent Variable Models
 - Mixture models
 - Mixtures of Experts Models
- **3** High-Dimensional Learning
 - Learning with high-dimensional predictors
 - Learning with functional predictors
- 4 Federated Learning
 - Distributed mixture distributions

Approximation capabilities of finite mixture distributions

Density approximation in Unsupervised Learning

- **Data** : observations $\{ m{x}_i \}$ d'une v.a $m{X} \in \mathbb{X} \subset \mathbb{R}^d$ à densité (multimodale) $f \in \mathcal{F}$
- **Objectif** : approcher la densité cible *f* (et représenter les données, e.g. *clustering*)
- Solution : Approcher f dans la classe H^φ = U_{K∈N^{*}} H^φ_K des mélanges finis h^φ_K (à K-composants) de translatées dilatées d'une densité φ (e.g., gaussienne), où

$$\mathcal{H}_{K}^{\varphi} = \left\{ h_{K}^{\varphi}\left(\boldsymbol{x}\right) := \sum_{k=1}^{K} \pi_{k} \frac{1}{\sigma_{k}^{d}} \varphi\left(\frac{\boldsymbol{x} - \boldsymbol{\mu}_{k}}{\sigma_{k}}\right), \boldsymbol{\mu}_{k} \in \mathbb{R}^{d}, \sigma_{k} \in \mathbb{R}_{+}, \pi_{k} > 0 \,\forall k \in [K], \sum_{k=1}^{K} \pi_{k} = 1 \right\}$$

Théorème : Universal approximation of finite mixtures models (FMM)

- (a) Pour toute f.d.p $f, \varphi \in \mathcal{C}$ et un ensemble compact $\mathbb{X} \subset \mathbb{R}^d$, il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}^{\varphi}$, telle que $\lim_{K \to \infty} \sup_{\boldsymbol{x} \in \mathcal{X}} |f(\boldsymbol{x}) h_K^{\varphi}(\boldsymbol{x})| = 0.$
- (b) Pour $p \in [1, \infty)$, si $f \in \mathcal{L}_p$ (f.d.p de Lebesgue) et $\varphi \in \mathcal{L}_\infty$ (f.d.p essentiellement bornée), il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}^{\varphi}$, telle que $\lim_{K \to \infty} \|f h_K^{\varphi}\|_{\mathcal{L}_p} = 0$.

[J. Communications in Statistics - Theory and Methods, 2022] [PhD, TT Nguyen 2021]

Gaussian mixture models (GMMs)

The finite Gaussian mixture density is defined as :

$$h_K^\mathcal{N}(oldsymbol{x}_i;oldsymbol{ heta}) = \sum_{k=1}^K \pi_k \mathcal{N}(oldsymbol{x}_i;oldsymbol{\mu}_k,oldsymbol{\Sigma}_k)$$

FIGURE – An example of a three-component Gaussian mixture density in \mathbb{R}^2 .

Learning Mixtures and the EM algorithm

Finite Mixture Models

$$h_K^{\varphi}(\boldsymbol{x}_i; \boldsymbol{\theta}) = \sum_{k=1}^K \pi_k \varphi(\boldsymbol{x}; \boldsymbol{\theta}_k)$$
 with $\pi_k > 0 \; \forall k \; \text{and} \; \sum_{k=1}^K \pi_k = 1$

Maximum-Likelihood Estimation

$$\widehat{\boldsymbol{\theta}} \in \arg \max_{\boldsymbol{\theta}} \ln L(\boldsymbol{\theta})$$
log-likelihood : $\ln L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ln \sum_{k=1}^{K} \pi_k \varphi(\boldsymbol{x}_i; \boldsymbol{\theta}_k).$

The EM algorithm [DLR]

$$\boldsymbol{\theta}^{new} \in rg\max_{\boldsymbol{\theta}\in\Omega} \mathbb{E}[\ln L_c(\boldsymbol{\theta}) | \mathcal{D}, \boldsymbol{\theta}^{old}]$$

complete log-likelihood : $\ln L_c(\boldsymbol{\theta}) = \sum_{i=1}^n \sum_{k=1}^K Z_{ik} \log [\pi_k \varphi(\boldsymbol{x}_i; \boldsymbol{\theta}_k)]$ where Z_{ik} is such that $Z_{ik} = 1$ if $Z_i = k$ and $Z_{ik} = 0$ otherwise.

Clustering

$$\widehat{z}_i = \arg \max_{1 \le k \le K} \mathbb{P}(Z_i = k | \boldsymbol{x}_i; \widehat{\boldsymbol{\theta}}), \quad (i = 1, \dots, n)$$

Learning/Optimisation

Max. de Vraisemblance : $\hat{\theta}_{MLE} \in \arg \max_{\theta} L(\theta; \mathbf{x})$ with $L(\theta; \mathbf{x}) = \sum_{i=1}^{n} \ln h_{K}^{\varphi}(\boldsymbol{x}_{i}; \theta)$

 $\hookrightarrow \text{ Algorithme.s EM } \{ [\mathsf{DLR}] \} : \boldsymbol{\theta}^{(\mathsf{new})} \in \arg \max_{\boldsymbol{\theta}} \mathbb{E} \left[L_{\boldsymbol{c}}(\boldsymbol{\theta}; \mathbf{x}, \mathbf{z}) | \mathbf{x}; \boldsymbol{\theta}^{(\mathsf{old})} \right]$

Régularisation en apprentissage non-supervisé

→ Inférence bayésienne de mélanges à effet mixtes

[J-13] Journal of Statistical Computation and Simulation, 2015.
 [J-14] arXiv :1508.00635, 2015. et ESANN 2016

Apprentissage bayésien non-paramétrique

- Classification de séquences bio-acoustiques
- Mélanges parcimonieux de Processus de Dirichlet
- \hookrightarrow Cadre non-paramétrique : inférence et sélection
 - [J-15] FC et al. Dirichlet Process Parsimonious Gaussian Mixture for clustering. arXiv :1501.03347v2, 2018

[Thèse] Marius BARTCUS, 2015, UTLN

Diabetes data set Clustering et choix de modèle

Automatic Scene Listening

Unsupervised decomposition of whale song signals

Biology/Bioacoustics/Environment - Unsupervised decomposition (whale/bird song signals)

Seminar @ The DAVID laboratory/UVSQ-UPS

Heterogeneous regression-type data

Heterogeneous regression data : Pair of a response Y given covariarte.s X

Apprentissage par Modèles de Mélanges d'Experts (ME)

- **Contexte** : *n* observations $\{x_i, y_i\}$ d'un couple $(X, Y) \in \mathbb{X} \times \mathbb{Y}$ lié via une f.d.p conditionnelle inconnue $f \in \mathcal{F} = \{f : \mathbb{X} \times \mathbb{Y} \to \mathbb{R}_+ | \int_{\mathbb{Y}} f(y|x) d\lambda(y) = 1, \forall x \in \mathbb{X}\}$
- Scénario de grande dimension : $\mathbb{X} \subseteq \mathbb{R}^d$, $\mathbb{Y} \subseteq \mathbb{R}^q$, avec $d, q \gg n$ et hétérogène.
- Objectifs : Regression ; Clustering ; Sélection de modèle
- Solution : Approcher f dans la classe des mélanges d'experts :

Soit une f.d.p φ (et un support compact $\mathbb{Y} \subseteq \mathbb{R}^q$), on déifinit les classes suivantes :

- $\bullet \quad \text{Transaltées-dilatées} : \mathcal{E}_{\varphi} = \Big\{ \phi_q(\boldsymbol{y}; \boldsymbol{\mu}, \sigma) := \frac{1}{\sigma^q} \varphi\left(\frac{\boldsymbol{y} \boldsymbol{\mu}}{\sigma}\right); \boldsymbol{\mu} \in \mathbb{Y}, \sigma \in \mathbb{R}_+ \Big\}.$
- Mélanges d'experts transaltées-dilatés à réseau d'activation softmax : SGaME :

$$\mathcal{H}_{S}^{\varphi} = \left\{ h_{K}^{\varphi}(\boldsymbol{y}|\boldsymbol{x}) := \sum_{k=1}^{K} g_{k}\left(\boldsymbol{x};\boldsymbol{\gamma}\right) \phi_{q}\left(\boldsymbol{y};\boldsymbol{\mu}_{k},\sigma_{k}\right) \right\}, \quad \phi_{q} \in \mathcal{E}_{\varphi} \cap \mathcal{L}_{\infty}, g_{k}\left(\cdot;\boldsymbol{\gamma}\right) \in \left\{ \mathsf{softmax} \right\} \right\}$$

Theorem : Approximation capabilities of isotropic mixtures-of-experts SGaME

- (a) Pour $p \in [1, \infty)$, $f \in \mathcal{F}_p \cap \mathcal{C}$, $\varphi \in \mathcal{F} \cap \mathcal{C}$, $\mathbb{X} = [0, 1]^d$, il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}_S^{\varphi}$ telle que $\lim_{K \to \infty} \|f h_K^{\varphi}\|_{\mathcal{L}_p} = 0$.
- (b) Pour toute $f \in \mathcal{F} \cap \mathcal{C}$, si $\varphi \in \mathcal{F} \cap \mathcal{C}$, d = 1, il existe une suite $(h_K^{\varphi}) \subset \mathcal{H}_S^{\varphi}$ telle que $\lim_{K \to \infty} h_K^{\varphi} = f$ presque uniformément.

[PhD TT. Nguyen, 2021] [Journal of Statistical Distributions and Applications, 2021] [Neurocomputing, 2019]

Time Series Modeling and Segmentation

Temporal data with unknown abrupt and/or smooth regime changes

Hidden Process Regression Models

$$y_i = \boldsymbol{\beta}_{z_i}^T \boldsymbol{x}_i + \sigma_{z_i} \epsilon_i \quad ; \epsilon_i \underset{\text{id}}{\sim} \mathcal{N}(0, 1), \quad \mathbf{z} = (z_1, \dots, z_n) : \text{a hidden process}$$
$$h_K^{\mathcal{N}}(y_i | \boldsymbol{x}_i; \boldsymbol{\theta}) = \sum_{k=1}^K g_k(\boldsymbol{x}_i; \mathbf{w}) \mathcal{N}(y_i; \boldsymbol{\beta}_k^T \boldsymbol{x}_i, \sigma_k^2); \quad g_k(\boldsymbol{x}_i; \mathbf{w}) = \mathbb{P}(Z_i = k | \boldsymbol{x}_i; \mathbf{w})$$

Optimization for Learning : $\widehat{\theta}_{MLE} \in \arg \max_{\theta} \sum_{i=1}^{n} \log m(y_i | x_i; \theta)$

• MLE via the EM algorithm : $\boldsymbol{\theta}^{(q+1)} \in \arg \max_{\boldsymbol{\theta}} \mathbb{E} \left[L_c(\boldsymbol{\theta}; \mathbf{x}, \mathbf{y}, \mathbf{z}) | \mathbf{x}, \mathbf{y}; \boldsymbol{\theta}^{(q)} \right]$

[J-] WIRES DMKD 2018 — [J-] Neurocomputing 2010 & 2013 — [J-] ADAC 2011, [J-] IEEE TASE 2013, [J-] Sensors 2015

Time-Series Analysis Applications

Transport : Railway switch operating state prediction {Collab. avec la SNCF; Projet Switch-Rdf

Energy : Fuel cell lifetime prediction {Collab. with Femto-ST, Phd of R. Onanena, 2012}

Health & well being : Human activity recognition {Collab. with Paris 12-LiSSi}

[PhD, D. Trabelsi, 2013][Sensors 2015, 748 citations]

Sustem

Open-Source Toolkits

SaMUraiS : open source software for statistical time-series analysis

+13K téléchargements (à partir du canal R uniquement) depuis juillet 2019

SaMUraiS : StAtistical Models for the UnsupeRvised segmentAtIon of time-Series

Available algorithms and Packages

RHLP : Regression with Hidden Logistic Process

HMMR : Hidden Markov Model Regression

PWR : Piece-Wise Regression

- MRHLP : Multivariate RHLP
- MHMMR : Multivariate HMMR
- MPWR : Multivariate PWR

Include estimation, segmentation, approximation, model selection, and sampling

Principled robustness in learning with MoE

System×

Principled robustness in regression and clustering

kth e

- Questionings : Prediction (non-linear regr., classification) & clustering in presence of Outliers, with potentially skewed, heavy-tailed distributions
- Answering : Robust MoE that accommodate asymmetry, heavy tails, and outliers

$$m(y|\mathbf{r}, \mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{K} \underbrace{g_k(\mathbf{r}; \boldsymbol{\alpha})}_{\text{Softmax Gating Network}} \underbrace{ST(y; \mu(\mathbf{x}; \boldsymbol{\beta}_k), \sigma_k, \lambda_k, \nu_k)}_{\text{Skew-t Expert Network}}$$

$$xpert : \text{ has a skew } t \text{ distribution [Azzalini and Capitanio 2003]}$$

$$\underbrace{f_{\text{Homomorphic}}^{\text{Homomorphic}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}}} \int_{q_{\text{Homomorphic}}^{q_{\text{Homomorphic}}}} \int_{q_{\text{Hom$$

 $\pi_k = [0.4, 0.6], \, \mu_k = [-1, 2] \, ; \, \sigma_k = [1, 1] \, ; \, {\color{black} \nu_k = [3, 7]} \, ; \, \lambda_k = [14, -12] \, ; \,$

Flexible and robust generalization of the standard MoE models

For $\{\nu_k\} \to \infty$, STMoE reduces to SNMoE; For $\{\lambda_k\} \to 0$, STMoE reduces to TMoE. For $\{\nu_k\} \to \infty$ and $\{\lambda_k\} \to 0$, StMoE approaches the NMoE.

[Neurocomputing, 2017]	[Neural Networks, 2016c]	[IJCNN 2016]	[HDR 2015]
Faïcel Chamroukhi	Seminar @ The DAVID laborator	Seminar @ The DAVID laboratory/UVSQ-UPS	

Robust learning with mixtures-of-experts models

Principled robustness in regression and clustering

Tone data with 10 outliers (0, 4) : Normal fit

Tone data with 10 outliers (0, 4) : Robust fit

n = 500 observations with 5% of outliers (x; y = -2) : Robust fit

[Neurocomputing, 2017]

[Neural Networks, 2016c]

[IJCNN 2016]

[HDR 2015]

Faïcel Chamroukhi

Seminar @ The DAVID laboratory/UVSQ-UP:

Robustness in regression and clustering

n=500 observations with 5% of outliers (x;y=-2) : Normal fit

Tone data with 10 outliers (0, 4) : Normal fit

n = 500 observations with 5% of outliers (x; y = -2) : Robust fit

Tone data with 10 outliers (0, 4) : Robust fit

Open-Source Toolkits

MEteorits : open-source soft. Robust learning with mixtures-of-experts models +14K téléchargements (depuis janvier 2020) canal R uniquement

MEteorits : Mixtures-of-ExperTs modEling for cOmplex and non-noRmal dIsTributionS

Available algorithms and Packages

 $\label{eq:NMoE:Normal Mixture-of-Experts} $$ NMoE : Skew-Normal Mixture-of-Experts $$ tMoE : Robust MoE using the t-distribution $$ StMoE : Skew-t Mixture-of-Experts $$ $$ the total structure of the total structure structure of the total structure of the total structure structure$

- Meteorits include sampling, fitting, prediction, clustering with each MoE model
- Non-normal mixtures (and MoE) is a very recent topic in the field

Application of ML in precision medicine (Radiology)

Expert Annotation

Automatic Annotation

Spatial mixture of functional regressions {Diagnostics, 2022}

Spatial mixture of functional regressions for dual-energy CT images $m(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{v}; \boldsymbol{\theta}) = \sum_{k=1}^{K} \alpha_k(\boldsymbol{v}; \boldsymbol{\alpha}) f_k(\boldsymbol{y}|\boldsymbol{x}; \boldsymbol{\theta}_k)$ où $\alpha_k(\boldsymbol{v}; \boldsymbol{\alpha}) = \frac{w_k \phi_3(\boldsymbol{v}; \boldsymbol{\mu}_k, \mathbf{R}_k)}{\sum_{k=1}^{K} (w_k, w_k, \mathbf{R}_k)}$

2D slices of VMIs at 40,65,140keV with tumor contour in red.

Examples of decay curves for different body locations.

Original slice SgMFR Clustering. Dice score=0.84 Clustering with SgMFR. Note the robustness of the result in the presence of a metallic artifact in the RHS of the anatomical image.

[J] DECT-CLUST : Dual-Energy CT Image Clustering and Application to Head and Neck Squamous Cell Carcinoma Segmentation. Chamroukhi, Brivet, Savadjiev, Coates, Forghani. Diagnostics, 2022

- [C] CMStatistics. 2021

► [S] Source codes are publicly available on Github : https://github.com/fchamroukhi/DECT-CLUST

AICEL CHAMROUKHI

Seminar @ The DAVID laboratory/UVSQ-UPS

DECT image Clustering (Healthcare)

- Learning from Multimodal information in precision medicine
- HNSCC Cancer detection in Radiology : DECT clustering

{Collab, with McGill & Florida, College of Medicine} [Diagnostics (AI in medicine), 2022]

Emerging medical imaging system : need for models to analyse these data :

(a) Original slice

(b) Dice=0.84, DB=1.64/6.92

DECT multimodal Data : 3D voxels & energy levels Expert Annotation Automatic Annotation

Apprentissage génératif non supervisé en grande dimension

[A.] Inférence en grande dimension

Questioning : Prediction (non-linear regr., classification) & clustering in presence of

- [1.] High-dimensional predictors : $X_i \in \mathbb{R}^p$ with $p \gg n$
- [2.] Functional predictors : $X_i(t)$, $t \in T \subseteq \mathbb{R}$ {eg. continuous recorded variables}
- ↔ Méthodes d'Inférence et Sélection parcimonieuses, Soucis d'interprétabilité

[1.] HDME : High-Dimensional Mixtures-of-Experts

• Learning : PMLE $\widehat{\theta}_n \in rg \max_{\theta} \sum_{i=1}^n \log h_K^{\varphi}(y_i | x_i; \theta) - pen(\theta)$

•
$$\hookrightarrow$$
 LASSO penalty : $\operatorname{Pen}_{\lambda}(\boldsymbol{\theta}) = \sum_{\substack{k=1 \\ \text{Experts Net.}}}^{K} \lambda_{k} \|\boldsymbol{\beta}_{k}\|_{1} + \sum_{\substack{k=1 \\ \text{Gating Net.}}}^{K-1} \gamma_{k} \|\boldsymbol{w}_{k}\|_{1}$

- \hookrightarrow encourages sparse solutions & performs estimation and feature selection
- \hookrightarrow computationally attractive (Avoid matrix inversion; univariate CF updates)
 - High-Dimensional Clustering and Regression (with Gaussian and Poisson outputs)
 - High-Dimensional Classification (Categorical outputs)
 - EM-Lasso algorithms with proximal Newton and Coordinate Ascent for optimization
 Software Toolbox HDME on Github (GaussRMoE, LogisticRMoE, PoissonRMoE)

Model selection

(a) Raw Ethanol data set

Collection of MoE models with linear mean functions characterized by 2-5 clusters

(b) Our best data-driven MoE model

Measuring uncertainty in high-dimensional learning

Questioning : Prediction (non-linear regr., classification) & clustering in presence of High-dimensional predictors : Data $\mathcal{D}_n = (\mathbf{X}_i, Y_i)_{i=1}^n$ where $\mathbf{X}_i \in \mathbb{R}^p$ with $p \gg n$ HDME : High-Dimensional MoE : PMLE $\hat{\theta}_n \in \arg \max_{k} \sum_{i=1}^n \log h_K^{\varphi}(\mathbf{y}_i | \mathbf{x}_i; \theta) - \operatorname{pen}(\theta)$

Theorem : Non-asymptotic oracle inequality for collection of MoE models

Résultat : \exists des constantes C et $\kappa(\rho, C_1) > 0$ ($C_1 > 1$) t.q chaque fois que pour $\mathbf{m} \in \mathcal{M}$, pen(\mathbf{m}) $\geq \kappa(\rho, C_1)$ [($C + \ln n$) dim ($\mathcal{H}_{\mathbf{m}}$) + $z_{\mathbf{m}}$], l'estimateur PMLE $\hat{h}_{\widehat{\mathbf{m}}}$ satisfait

$$\mathbb{E}\left[\mathrm{JKL}_{\rho}^{\otimes \mathrm{n}}\left(f,\widehat{h}_{\widehat{\mathbf{m}}}\right)\right] \leq C_{1} \inf_{\mathbf{m}\in\mathcal{M}} \left(\inf_{h_{\mathbf{m}}\in\mathcal{H}_{\mathbf{m}}} \mathrm{KL}^{\otimes \mathrm{n}}\left(f,h_{\mathbf{m}}\right) + \frac{\mathsf{pen}(\mathbf{m})}{n}\right) + \frac{\kappa\left(\rho,C_{1}\right)C_{1}\xi}{n} + \frac{\eta + \eta'}{n}$$

■ Résultat non-asymptotique. Si pen(m) est bien choisie, alors notre PMLE se comporte de manière comparable au meilleur modèle (oracle) h_{m*} de la collection, minimisant le risque : inf_{m∈M} (inf_{hm∈Hm} KL^{⊗n} (f, h_m) + pen(m)/n) (f est inconnue).

[Thèse, Trung-Tin Nguyen, 2021.] [Electronic Journal of Statistics, 2022] [In revision, JMVA. arXiv :2104.08959. 2021b]

Functional Data Analysis (Open-Source Toolkits)

FLaMingoS : open source software for learning from functions +15K téléchargements R depuis août 2019

FLaMingoS : Functional Latent datA Models for clusterING heterogeneOus time-Series

Available algorithms and Packages

mixRHLP : Mixture of Regressions with HLPs
mixHMM : Mixture of Hidden Markov Models (HMMs)
mixHMMR : Mixture of HMM Regressions
PWRM : Piece-Wise Regression Mixture
uReMix : Unsupervised Regression Mixtures

- \hookrightarrow A flexible full generative modeling for FDA
- \hookrightarrow Could be extended to the multivariate case without a major effort

System×

[2.] Learning with functional predictors

FIGURE – n = 35 daily mean temperature measurement curves (X_i) in different stations (Left) and the log of precipitation values (Y_i) visualized with the climate regions (Z_i) (Right).

- Relate functional predictors $\{X(t) \in \mathbb{R}; t \in \mathcal{T} \subset \mathbb{R}\}$ to a scalar response $Y \in \mathcal{Y} \subset \mathbb{R}$
- Regression and classification of heterogeneous responses given functional predictors
 - (1) generative functional modeling, sparsity and feature selection (high-dimension)
 - (2) User guideline : keep an interpretable fit

[2.] Functional Mixtures-of-Experts (and Different Learning strategies, in particular)

$$I Y_i = \beta_{\boldsymbol{z}_i,0} + \int_{\mathcal{T}} X_i(t) \beta_{\boldsymbol{z}_i}(t) dt + \varepsilon_i \text{ avec } h_{\boldsymbol{z}}(X_i(.)) = \alpha_{\boldsymbol{z}_i,0} + \int_{\mathcal{T}} X_i(t) \alpha_{\boldsymbol{z}_i}(t) dt$$

Lasso-type Regularized MLE w.r.t the <u>derivatives</u> of the $\alpha(\cdot)$ and $\beta(\cdot)$ functions

[Conf] Chamroukhi, Pham, Hoang, McLachlan. Mixtures-of-experts with functional predictors. CMStatistics 2021 [Preprint] —. Functional Mixtures-of-Experts. arXiv :2202.02249, Feb, 2022 (Under Review, Statistics and Computing)

Interpretable learning with time-series inputs

Interpretable learning with time-series inputs

Interpretable learning with time-series inputs

produces a meaningful sparse estimates for $\beta_{z_i}(t)$ curves : $\beta_{z_i}^{(0)}(t) = 0$ implies that X(t) has no effect on Y at t $\beta_{z_i}^{(1)}(t) = 0$ means that $\beta_{z_i}(t)$ is constant at t, $\beta_{z_i}^{(0)}(t) = 1$ shows that $\beta_{z_i}(t)$ is a linear function of t, etc. [PhD TN. Pham, 2022] [arXiv:2202.13934]

OUR regularization

n Feb Mar Apr May Jun Jul Aug Sep Oct Nov

[Contract. ANR SMILES]

[Submitted, 2023]

Interpretable learning with functional inputs

FIGURE – Clustering des températures (g.) et (log)-précipitations prédites (d.) (Atlantique, Pacifique, Continentale et Arctique), et fonctions paramètres (bg - bd.)

[Contract, ANR SMILES]

Latent Variable Models (LVM) for Large-Scale Unsupervised Learning

[B.] Données de gros volume : Clustering for an informative summary of the data

- la distribution des calculs est une façon naturelle de s'y prendre
- Stratégie : inférence (et échantillonnage) pour l'agrégation de modèles DLVM

 \hookrightarrow New statistical issues in <u>estimation</u> and <u>model selection</u> and computational issues Statistical guidelines

- collaborative mixtures for large-scale model-based clustering
- aggregate local estimators to provide an overall proven aggregated estimator
- $\,\hookrightarrow\,\, \hookrightarrow\,\, e.g$ minimize the KL divergence between mixtures

Computational guidelines

- Distributed and Parallel processing is a natural way to proceed
- \blacksquare \hookrightarrow key question : how to distribute data while controlling the quality of estimators
- \hookrightarrow ensemble methods (BLB effective in scaled supervised learning ^a

a. Kleiner et al. "A scalable bootstrap for massive data." JRSS B(2014) 76 :795-816

[Rep.] Chamroukhi & Pham to be submitted 2023, Distributed Learning of Mixtures-of-Experts [Thèse] Pham. Modeling and Learning with Mixtures of Experts for Functional Data and Distributed Data. Thèse de Normandie Université, Nov. -2022. [Contrat] ANR SMILES

Federated Learning

- [A.] Données de gros volume : Aggregating distributed mixtures-of-experts models
 - **Clustering** for an informative summary of the data and **MoE** for better prediction
 - collaborative mixtures-of-experts for large-scale data

- Local estimators : $\hat{f}_m = f(\cdot | \mathbf{x}, \widehat{\boldsymbol{\theta}}_m) = \sum_{k=1}^{K} g_k(\mathbf{x}, \widehat{\boldsymbol{\alpha}}^{(m)}) \phi(\cdot; \mathbf{x}^{\top} \widehat{\boldsymbol{\beta}}_k^{(m)}, \widehat{\sigma}_k^{2(m)}),$
- weighted average : $\bar{f} = f(y|\mathbf{x}; \bar{\theta}) = \sum_{m=1}^{M} \lambda_m \hat{f}_m$ where $\lambda_m = \frac{N_m}{N}$ the sample proportion. \bar{f} is good but relates MK components so not our direct target.
- $\hookrightarrow \text{ Reduced estimator }: \bar{f}^R = \underset{h_K \in \mathcal{M}_K}{\operatorname{arg inf}} \rho\left(h_K, \sum_{m=1}^M \lambda_m \hat{f}_m\right) : \text{ we seek for a}$

K-component ME h that is closest to the MK-component ME $\bar{f} = \sum_{m=1}^{M} \lambda_m \hat{f}_m$ w.r.t a transportation divergence $\rho(\cdot, \cdot)$, e.g. KL.

{PhD, Pham. Mixtures of Experts for Distributed Data, 2022} [to be submitted 2023] [Contrat, ANR SMILES]

Federated Learning

Numerical results in Distributed clustering and Prediction

FIGURE – Performance of the Global ME (G), Reduction (R), Middle (M) and Weighted average (W) estimator for sample size $N = 10^6$ and M machines.

{PhD, Pham. Mixtures of Experts for Distributed Data, 2022} [to be submitted 2023] [Contrat, ANR SMILES]

Seminar @ The DAVID laboratory/UVSQ-UPS

Cadre scientifique général

- $\, \hookrightarrow \, \, {\rm Modèles} \, {\rm à} \, {\rm variables} \, {\rm latente} : \, f(x|{\pmb \theta}) = \int_{{\mathcal Z}} f(x,z|{\pmb \theta}) {\rm d} z$
- $\,\hookrightarrow\,$ Inférence, Sélection et représentation non supervisées et à l'échelle

Modélisation non supervisée à l'échelle par des MVL

- Apprentissage génératif de modèles à variables latentes ((non)-supervisé)
- Excellentes capacités de représentation
- ✔ Représenter explicitement la structure latente des données brutes et la révéler
- ✓ Cadre de choix en apprentissage non-supervisé (Clustering, Représentation)
 - $\hookrightarrow \exists \text{ fondement théorique solide}$
 - $\hookrightarrow \mathsf{Outils} \text{ afférents d'inférence et de choix de modèle}$
- Défis pour des traitements et analyses en grande dimension et en masse

Thank you for your attention !