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Real-world data are complex

Heterogenous, Multimodal, High-Dimensional, Unlabeled, Possibly Massive ...

Need for adapted analysis tools

Transport : Railway switch curves diagnostic Predictive Maintenance Health : Medical images
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Acoustics : scene listening (marine, terrestrial) Dual-energy computed tomography
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Health & Well Being : Activity recog. Climate/Environment : meteorological data
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Climate/Envrimnement : meteorological data
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Scientific Challenges

Establish well-principled (with statistical guarantees) predictions in
heterogeneous and high-dimensional situations,

Construct e�cient algorithms that operate in unsupervised way and provide
interpretable solutions with computational guarantees.

Modeling framework

,! Latent variable models : f(x|✓) =
R
Z f(x, z|✓)dz

,! Learning, representation and model selection in high-dimension

1 Scientific Challenges
2 Latent Variable Models

Mixture models
Mixtures of Experts Models

3 High-Dimensional Learning
Learning with high-dimensional predictors
Learning with functional predictors
Distributed mixture distributions
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Heterogeneous regression-type data

Mixtures-of-Experts as good candidates to model a response Y given predictor.s X

governed by a hidden structure accounting for heterogeneity
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Fäıcel Chamroukhi Koç University, KUIS AI Center - Istanbul, May 09, 2024 4/47



Model estimation and selection

(a) Raw Ethanol data set Collection of MoE models with linear mean functions characterized by 2-5 clusters

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

1

2

3

4

0.7 0.9 1.1
Equivalence Ratio

N
O

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●●
●

●
●

●

0

1

2

3

4

0.7 0.9 1.1
Equivalence Ratio

 N
O

●

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

1

2

3

4

0.7 0.9 1.1
Equivalence Ratio

 N
O

(b) Our best data-driven MoE model
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Approximation capabilities of finite mixture distributions

Density approximation in Unsupervised Learning

Data : observations {xi} from X 2 X ⇢ Rd of density (multimodal) f 2 F

Objective : approximate the density f (and represent the data, e.g. clustering)

Solution : Approximate f within the class H' =
S

K2N? H
'
K of finite

location-scale mixture h'
K (of K-components) of density ' (e.g., Gaussian), where

H
'
K =

(
h'
K (x) :=

KX

k=1

⇡k
1

�d
k

'

✓
x� µk

�k

◆
,µk 2 Rd,�k 2 R+,⇡k > 0 8k 2 [K] ,

KX

k=1

⇡k = 1

)

Theorem : Universal approximation of finite location-scale mixtures

(a) Given any p.d.f f,' 2 C and a compact set X ⇢ Rd, there exists a sequence

(h'
K) ⇢ H

', such that limK!1 supx2X
|f(x)� h'

K(x)| = 0.

(b) For p 2 [1,1), if f 2 Lp (Lebesgue p.d.f) and ' 2 L1 (essentially bounded

p.d.f), there exists a sequence (h'
K) ⇢ H

', such that limK!1 kf � h'
Kk

Lp
= 0.

[J. Communications in Statistics - Theory and Methods, 2022] [PhD, TT Nguyen 2021]
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Learning with mixtures-of-experts (ME)

Context : n observations {xi,yi} from a pair (X,Y ) 2 X⇥ Y with unknown conditional

p.d.f f 2 F =
�
f : X⇥Y ! R+|

R
Y f (y|x) d� (y) = 1, 8x 2 X

 

High-dimensional setting : X ✓ Rd
, Y ✓ Rq

, with d, q � n and heterogeneous.

Objectives : Regression ; Clustering ; Model selection

Solution : Approximate f within the class of mixtures-of-experts :

Let ' be a p.d.f (compactly supported on Y ✓ Rq
), we define the functional classes :

Location-scale family : E' =
n
�q(y;µ,�) := 1

�q '
⇣

y�µ
�

⌘
;µ 2 Y,� 2 R+

o
.

Mixture of location-scale experts with softmax activation network : SGaME :

H
'
S =

n
h'
K(y|x) :=

KX

k=1

gk (x;�)�q (y;µk,�k) ; �q 2 E' \ L1, gk (·;�) 2 {softmax}

o

Theorem : Approximation capabilities of isotropic mixtures-of-experts SGaME

(a) For p 2 [1,1), f 2 Fp \ C, ' 2 F \ C, X = [0, 1]d, there exists a sequence
�
h'
K

�
⇢ H

'
S

such that limK!1

��f � h'
K

��
Lp

= 0.

(b) For f 2 F \ C, if ' 2 F \ C, d = 1, there exists a sequence
�
h'
K

�
⇢ H

'
S such that

limK!1 h'
K = f almost uniformly.

[PhD TT. Nguyen, 2021] [Journal of Stat. Distributions and Applicat., 2021] [Neurocomputing, 2019] [WIREs DMKD 2018]
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Principled robustness in learning with MoE

Principled robustness in regression and clustering
Questionings : Prediction (non-linear regr., classification) & clustering in presence

of Outliers, with potentially skewed, heavy-tailed distributions

Answering : Robust MoE that accommodate asymmetry, heavy tails, and outliers

m(y|r,x;✓) =
KX

k=1

gk(r;↵)| {z }
Softmax Gating Network

ST (y;µ(x;�k),�k,�k, ⌫k)| {z }
Skew-t Expert Network

kth expert : has a skew t distribution [Azzalini and Capitanio 2003]
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data
Skew t mixture density

⇡k = [0.4, 0.6], µk = [�1, 2] ; �k = [1, 1] ; ⌫k = [3, 7] ; �k = [14,�12] ;

Flexible and robust generalization of the standard MoE models

For {⌫k} ! 1, STMoE reduces to SNMoE ; For {�k} ! 0, STMoE reduces to TMoE.

For {⌫k} ! 1 and {�k} ! 0, StMoE approaches the NMoE.
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Robust learning with mixtures-of-experts models
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n = 500 observations with 5% of outliers (x; y = �2) : Normal fit Tone data with 10 outliers (0, 4) : Normal fit
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n = 500 observations with 5% of outliers (x; y = �2) : Robust fit Tone data with 10 outliers (0, 4) : Robust fit
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Open-Source Toolkit

Learning via the EM algorithm

SaMUraiS : open source software for statistical time-series analysis

SaMUraiS : StAtistical Models for the UnsupeRvised segmentAtIon of time-Series
Github CRAN Matlab software

Available algorithms and Packages

RHLP : Regression with Hidden Logistic Process R software Matlab software

HMMR : Hidden Markov Model Regression R software Matlab software

PWR : Piece-Wise Regression R software Matlab software

MRHLP : Multivariate RHLP R software Matlab software

MHMMR : Multivariate HMMR R software Matlab software

MPWR : Multivariate PWR R software Matlab software

Include estimation, segmentation, approximation, model selection, and sampling
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Open-Source Toolkit

MEteorits : open-source soft. Robust learning with mixtures-of-experts models

MEteorits : Mixtures-of-ExperTs modEling for cOmplex and non-noRmal dIsTributionS
Github CRAN Matlab software

Available algorithms and Packages

NMoE : Normal Mixture-of-Experts R software Matlab software

SNMoE : Skew-Normal Mixture-of-Experts R software Matlab software

tMoE : Robust MoE using the t-distribution R software Matlab software

StMoE : Skew-t Mixture-of-Experts R software Matlab software

- Meteorits include sampling, fitting, prediction, clustering with each MoE model

- Non-normal mixtures (and MoE) is a very recent topic in the field
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Dual-energy computed tomography (DECT) image Clustering

Learning from Multimodal information in Healthcare/Radiology
Cancer detection in Radiology : DECT clustering [Diagnostics (AI in medicine), 2022]

Spatial mixture of functional regressions for dual-energy CT images
m(y|x,v;✓) =

PK
k=1 ↵k(v;↵)fk(y|x;✓k) where ↵k(v;↵) =

wk�3(v;µk,Rk)
PK

`=1
w`�3(v;µ`,R`)
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Codes available on Github
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Learning with high-dimensional predictors

Questioning : Prediction (non-linear regr., classification) & clustering in presence of

[1.] High-dimensional predictors : Xi 2 Rp
with p � n

[2.] Functional predictors : Xi(t), t 2 T ✓ R {eg. continuously recorded variables}

,! Look for parsimonious and interpretable methods

[1.] HDME : High-Dimensional Mixtures-of-Experts

Learning : PMLE b✓n 2 argmax✓
Pn

i=1 log h
'
K(yi|xi;✓)� pen(✓)

,! LASSO penalty : Pen�(✓) =
KX

k=1

�kk�kk1

| {z }
Experts Net.

+
K�1X

k=1

�kkwkk1

| {z }
Gating Net.

,! encourages sparse solutions & performs estimation and feature selection

,! computationally attractive (Avoid matrix inversion ; univariate updates)
Software Toolbox HDME on Github (GaussRMoE, LogisticRMoE, PoissonRMoE)

[PhD] Bao Tuyen Huynh. Estimation and Feature Selection in High-Dimensional Mixtures-of-Experts Modesls . PhD Thesis,

Normandie Université, 2019.

[J] Chamroukhi &Huynh. Regularized Maximum Likelihood Estimation and Feature Selection in Mixtures-of-Experts Models.

Journal de la Société Francaise de Statistique, Vol. 160(1), pp :57–85, 2019

[J] Huynh & C. Estimation and Feature Selection in Mixtures of Generalized Linear Experts Models. arXiv :1810.12161, 2019
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Measuring uncertainty in high-dimensional learning

Questioning : Prediction (non-linear regr., classification) & clustering in presence of

High-dimensional predictors : Data Dn = (Xi, Yi)ni=1 where Xi 2 Rp
with p � n

HDME : High-Dimensional MoE : PMLE b✓n 2 argmax✓
Pn

i=1 log h'
K(yi|xi; ✓) � pen(✓)

Theorem : Non-asymptotic oracle inequality for collection of MoE models

Result : 9 constants C et  (⇢, C1) > 0 (C1 > 1) s.that whenever for m 2 M,

pen(m) �  (⇢, C1) [(C + lnn) dim (Hm) + zm] , the estimator PMLE bhcm satisfies

E
h
JKL⌦n

⇢

⇣
f,bhcm

⌘i
 C1 inf

m2M

✓
inf

hm2Hm
KL⌦n (f, hm) +

pen(m)

n

◆
+

 (⇢, C1)C1⇠

n
+

⌘ + ⌘0

n
.

A non-asymptotic result. If pen(m) is well chosen, then our PMLE behaves in a

comparable manner compared to the best (oracle) model Hm? in the collection,

minimizing the risk : infm2M

⇣
infhm2Hm KL⌦n (f, hm) + pen(m)

n

⌘
(f is unknown).
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[PhD, Trung-Tin Nguyen, 2021.] [EJS, 2022] [Australasian Joint Conference on Artificial Intelligence 2024.]
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Functional Data Analysis (Open-Source Toolkit)

FLaMingoS : open source software for learning from functions

FLaMingoS : Functional Latent datA Models for clusterING heterogeneOus time-Series
Github CRAN Matlab software

Available algorithms and Packages

mixRHLP : Mixture of Regressions with HLPs R Matlab

mixHMM : Mixture of Hidden Markov Models (HMMs) R Matlab

mixHMMR : Mixture of HMM Regressions R Matlab

PWRM : Piece-Wise Regression Mixture R Matlab

uReMix : Unsupervised Regression Mixtures R Matlab

,! A flexible full generative modeling for FDA

,! Could be extended to the multivariate case without a major e↵ort

Fäıcel Chamroukhi Koç University, KUIS AI Center - Istanbul, May 09, 2024 15/47

https://github.com/fchamroukhi/FLaMingoS
https://cran.rstudio.com/web/packages/flamingos/index.html
https://github.com/fchamroukhi?&tab=repositories&q=mix&type=public&language=matlab
https://github.com/fchamroukhi/mixRHLP
https://github.com/fchamroukhi/mixRHLP_m
https://github.com/fchamroukhi/mixHMM
https://github.com/fchamroukhi/mixHMM_m
https://github.com/fchamroukhi/mixHMMR
https://github.com/fchamroukhi/mixHMMR_m
https://github.com/fchamroukhi/PWRM
https://github.com/fchamroukhi/PWRM_m
https://github.com/fchamroukhi/uReMix_R
https://github.com/fchamroukhi/uReMix_m


[2.] Learning with functional predictors
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Figure – n = 35 daily mean temperature measurement curves (Xi’s) in di↵erent stations (Left)

and the log of precipitation values (Yi’s) visualized with the climate regions (Zi’s) (Right).

Relate functional predictors {X(t) 2 R; t 2 T ⇢ R} to a scalar response Y 2 Y ⇢ R

Regression and classification of heterogeneous responses given functional predictors

(1) generative functional modeling, sparsity and feature selection (high-dimension)

(2) User guideline : keep an interpretable fit

[2.] Functional Mixtures-of-Experts (and Di↵erent Learning strategies, in particular)

Yi = �zi,0 +
R
T
Xi(t)�zi (t)dt+ "i avec hz(Xi(.)) = ↵zi,0 +

R
T
Xi(t)↵zi (t)dt

Lasso-type Regularized MLE w.r.t the derivatives of the ↵(·) and �(·) functions

Chamroukhi, Pham, Hoang, McLachlan. Functional Mixtures-of-Experts. Statistics and Computing Springer., Vol. 34 (98), 2024
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https://link.springer.com/article/10.1007/s11222-023-10379-0


Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...

Yi = �zi,0
+
R
TXi(t)�zi (t)dt + "i with hz(Xi) = ↵zi,0

+
R
T Xi(t)↵zi (t)dt

l1-Regularized MLE w.r.t the derivatives of the ↵(·) and �(·) functions

,! produces a meaningful sparse estimates for �zi (t) curves :

�
(0)
zi

(t) = 0 implies that X(t) has no e↵ect on Y at t

�
(1)
zi

(t) = 0 means that �zi (t) is constant at t,

�
(0)
zi

(t) = 1 shows that �zi (t) is a linear function of t, etc.

Interpretable fits
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...

No regularization
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LASSO regularization
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...

produces a meaningful sparse estimates for �zi (t) curves :

�
(0)
zi

(t) = 0 implies that X(t) has no e↵ect on Y at t

�
(1)
zi

(t) = 0 means that �zi (t) is constant at t,

�
(0)
zi

(t) = 1 shows that �zi (t) is a linear function of t,
etc.

OUR regularization
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Federated Learning

Aggregating distributed mixtures-of-experts models (MoE)

collaborative MoE for distributed (eg. large-scale data) or federated learning

Local estimators : f̂m = f(·|x, b✓m) =
PK

k=1 gk(x, b↵
(m))�(·;x> b�(m)

k , b�2
k
(m)

),

weighted average : f̄ = f(y|x; ✓̄) =
PM

m=1 �mf̂m where �m = Nm
N the sample

proportion. f̄ is good but relates MK components so not our direct target.

,! Reduced estimator : f̄R = arg inf
hK2MK

⇢
⇣
hK ,

PM
m=1 �mf̂m

⌘
: we seek for a

K-component ME h that is closest to the MK-component ME f̄ =
PM

m=1 �mf̂m
w.r.t a transportation divergence ⇢(·, ·), e.g. KL.

{PhD, Pham. 2022} [Distributed Learning of Mixtures of Experts. arxiv 2312.09877, 2024]

Source codes publicly available on Github.
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https://arxiv.org/abs/2312.09877
https://github.com/nhat-thien/Distributed-Mixture-Of-Experts


Federated Learning

Numerical results in Distributed clustering and Prediction
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Figure – Performance of the Global ME (G), Reduction (R), Middle (M) and Weighted average

(W) estimator for sample size N = 106 and M machines.

{PhD, Pham. 2022} [Distributed Learning of Mixtures of Experts. arxiv 2312.09877, 2024] [Under revision at IEEE TNNLS]

Source codes publicly available on Github.
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Challenges and industrial applica1ons in 

• Hybrid AI

• Trustworthy AI

4

Outline
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Hybrid modeling: combining Machine Learning and Physics

Hybrid modeling: combining ML and Physics

è Enables prior scien6fic knowledge based on physics to be taken into account in data-driven machine 
learning methods: e.g approcahes include PINNs - Physics-Informed Neural Nets (Raissi’s paper in 2019)

è Has been successfully and increasingly applied to solve a wide variety of linear and nonlinear problems 
in physics, covering various fields like mechanics, fluid dynamics, thermodynamics, electromagne6sm …

In engineering, it allows 

è the integra6on of analy6cal knowledge from physical laws governing the studied engineering systems
 

• to augment th sta6s6cal knowledge learned from observed/measured data (eg. Informa6on extracted 
by deep learning from data)

• for reducing the high cost of physical simula6on, in par6cular in the industrial sector

Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics. 378. Online

Cuomo, S., et al., (2022). Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing, 92(3), 88. Read Online

https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
https://link.springer.com/article/10.1007/s10915-022-01939-z


Merino-Martínez et al. CEAS Aeronautical Journal (2019).

Electricity (power grids) pneuma6csAerodynamics

• Related to the desing and supervision of complex (physical) systems
• Covering various fields in physics (mechanics, fluid dynamics, aerodynamics, electromagne6sm …)
• In a wide variety of Applica6ons in industry, in par6cular in numerical simula'on

Fluid Flows/DynamicsSolid Mechanics

from Emmanuel Menier (PhD, LSIN/SystemX, 2024)

Domain Challenges : Physical systems that are
- Complex to model/solve analytically
- Compuationally expensive to solve numerically

eg. , Computa;onal Fluid Dynamics – CFD, Turbulance, Flows

From the internet

Scientific Challenges
• Problems highly-nonlinear, high-dimensional, with complex structures 

(eg. organized in graphs…)
• Need for adapted NN architectures: Graph NNets, Deep AE ..

6

Picture from Marot, A., et al. (2018). Guided machine learning for 
power grid segmentation. In 2018 IEEE PES Innovative Smart 
Grid Technologies Conference Europe (ISGT-Europe) (pp. 1-6).

Some physical problems in Industry



A neural framework for solving PDEs, where 

• the AI solver is a PINN trained to estimate target function f. 

• The derivative of x is calculated by automatically differentiating the NN’s outputs.

• When the differential equation D(f;η) is unknown, it can be estimated by solving a loss that 
optimizes both the functional form of the equation and its fit to observations y. 

Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online

- Challenge: High-Dimensional 
non-linear Physical Equa;ons

- Navier-Stokes Equa;ons: 
fundamental par;al differen;als 
equa;ons (PDE) that describe the 
flow of incompressible fluids. 
C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de 
l’Acad. d. Sci.,6, 398 (1822) 
C.G. Stokes, On the Theories of the Internal FricJon of Fluids in MoJon, Trans. 
Cambridge Phys. Soc., 8, (1845)

- Eg. Learning Computational Fluid 
Dynamics

Simula(on from Emmanuel Menier
7

Hybrid ML modeling for solving Par?al Differen?al Equa?ons

https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf
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Z: Variables latentes 
de dimension réduite

X: Observa(ons 
de grande dimension

Latent Variable Models: A family of probabilis6c models capable of inferring 
the intrinsic latent structure (of reduced dimension) to the data

• Variational Auto-encoders - VAE (Kingma & Welling 2014) improve the 
representational capabilities of AEs by regularizing the latent space with a 
Gaussian priori, coupled with a variational learning 

• => can learn complex distributions.

• Auto-Encoders - AE (LeCun 1987): The encoder projects the input X 
(of high-dimension dimension) in a compressed latent representa6on 
Z (the code) to reconstruct it using the decoder with outpu X#

• è Learning by minimizing the reconstruc6on error between X# and X. 
The smaller the error, the be`er the compressed representa6on Z. X                                       Z                                      X$

• Deep NNets are excellent candidates

Deep NNets for Unsupervised representation Learning



POD: proper orthogonal decomposition
PCA: principal component analysis 

Shallow / Linear Deep / Non-Linear

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. Read Online

Auto-Encoding Deep Nets
9

• Nnets with a hidden layer are universal approximators

• Nnets are capable to recover highly non-linear rela6onships in the data

• Adapted architectures that work in a low-dimensional (latent) space

Deep NNets for Unsupervised representation Learning

https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010719-060214


How to imporve agility and fidelity of simulation in complex 
systems design?

AFS: Agility and fidelity of simula5ons
02

03

04

05

06

S2I: Industrial infrastructure supervision

How can multi-agent models benefit from real data and bring
out atypical situations?

SAA: Augmented mul5-agent simula5on

How to link heterogeneous data with established prac<cal
knowledge?

SMD: Business Semantics for Multi-source Data Mining

How to develop a virtual assistant that learns from expert and
learns the expert

CAB: Cockpit and Bidirec5onal Assistant

How industrial solvers and learned models can enrich each other ?
HSA: Simulation/machine learning hybrid modeling

01
(S.H. Rudy et al. 2019)
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• a program with 6
R&D collabora-ve 
projects based 
on concrete industrial
use cases

• Area: Hybrid AI

How to improve decision-making on distubuted industrial
systems via machine learning techniques ? ©ict professional

Ar7ficial Intelligence
an Augmented Engineering

Diagram/pictures credit to Mouadh Yagoubi & IA2 Program 10

The Research Program IA2: AI and Augmented Engineering

https://www.irt-systemx.fr/programmes-de-recherche/ia2


Deep Graph Neural Networks for Numerical Simulation of PDEs. PhD of W. Liu. 2023 (LISN, Inria/SystemX). Read Online

Reduced models and deep learning for PDEs
PhD Thesis of E. Menier, 2024 (LISN, Inria/SystemX)

h"ps://www.irt-systemx.fr/projets/HSA/

High-Dimensional non-linear Physical Equations

E. Menier et al., 2023. CD-ROM: Complementary Deep-Reduced Order 
Model. Computer Methods in Applied Mechanics and Engineering 410. Read Online

11

HSA Project : Simula?on/machine learning hybrid modeling

Challenges and possible solutions (studied as part of the HSA project):
§ Augmenting physical solvers with data-driven models that integrate physics constraints
§ Building model architecture adapted to the complex physical structures/systems
§ Reducing the simulation cost

è Hybrid Machine Learninrg as surrogate models for physical simulation, aiming to 

Replace physical solvers with

è Deep learning intergrating physical constraints (eg. Deep Graph Nets for PDEs)

è Deal with high-dimensional, non-linear, and complex structurs (e.g reduced modeling, ..)

HSA

https://theses.hal.science/tel-04156859/
https://arxiv.org/pdf/2202.10746.pdf


Predic6on of the airflow profile around 
an aircrab wing (Air Foil)

Physics: Navier-Stokes equa6ons

12

Project HSA : simulation and deep learning of graphs

Graph Neural Nets for 3D meshes

More suitable, as they operate by construc6on on graphs
• Generic nature of the learned models

• Transfer learning for improved results

• Predic6on can be improved via transfer learning: 

from low fidelity (coarse mesh) to high fidelity (finer 
mesh) models

Wheel contact profile 

Physics: contact 
equa6ons

PhD theis of W. Liu, 2023 (LISN, Inria/SystemX)



Menier, E., et al. (2023). Interpretable learning of effective dynamics for multiscale systems. arXiv preprint arXiv:2309.05812. Read Online
PhD Thesis of E. Menier, 2024 (LISN, Inria/SystemX), 2024

Interpretable learning of e!ective dynamics (ILED) architecture:

The high-dimensional system

The decoder D reconstructs 
the high-dimensional systems. 

The lower-dimensional representa6on (z) is 
propagated in 6me using a linear and a non-
linear part based on the Mori-Zwanzig formalism

13

High-Dimensional non-linear Dymical 
Systems:

Goals:
Recover the dynamics, non-linearity in a 
high-dimensitonal segng

Dynamics: Hybrid ML for HD dynamical physical systems

https://arxiv.org/abs/2309.05812
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• LIPS :  Learning Industrial Physical Simula6on 
benchmark suite (Result of the project HSA-IA2)

• Evalua6on of physical simulator augmented by 
machine learning

• Open-source Framework  h`ps://github.com/IRT-SystemX/LIPS
Published at NeurIPS2022

• 1st framework for evalua6ng augmented physical simulators
• 7 use cases integrated 

LIPS: Platform of validation of hybrid AI models

https://github.com/IRT-SystemX/LIPS
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h`ps://www.codabench.org/compe66ons/1534/ (Closed) h`ps://www.codabench.org/compe66ons/2378/ Running!

Competitions on Codabench/codalab

LIPS hosts the two following competitions:

https://www.codabench.org/competitions/1534/
https://www.codabench.org/competitions/2378/
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Approach

§ Informa6on extrac6on from heterogeneous structured 
and semi-structured text corpora...: 

§ NLP approach; Seman6c annota6on

§ Taking into account domain rules/constraints in the 
numerical-AI based decision

Framework: 
Building ML-based on knowledge graphs 
from expert/business language data

Neuro-symbolic pipeline

h"ps://www.irt-systemx.fr/projets/SMD/

Project SMD : Integra?ng Expert/Business seman+cs in ML

SMD Project
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=> InserLon of logical rules at the inference step :
• Recalculer P(y|X, a) in lieu of the learnt P(y|X)
• a is a rule encoding the validity of the predicLon ŷ

Ontologies and (machine/transfer) learning for multimedia document analysis. PhD thesis of A. Ledaguenel (in progress, MICS/SystemX)

Project SMD : Integra?ng Expert/Business seman?cs in ML
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Objec-ves and challenges

§ Design and implement a Bidirec7onal Assistant to support operators in network supervision and 
aircraA pilo7ng ac7vi7es

§ Bidirec7onal assistant: The assistant can learn from and to (inform) the operator
§ Pla=orm: hIps://github.com/IRT-SystemX/InteracOveAI

Project CAB
Project IA² CAB

CAB pla-orm

f

Recommanda6on service – AI agent

Ac8on

Context data 
preprocessing

RL/DL/ML 
model

Optim/Rule 
based

Decision module

Ac8on (+ 
interac8on) CAB Assistant

Human – AI Interac.on: CAB Project (Bi-direc?onal assistant)

https://github.com/IRT-SystemX/InteractiveAI
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Industry driven – Mul0 domain – Mul0 technology

Industrial Domains
Aeronautics

Automotive Defense

Energy

Manufacturing

Others

Health 
Railway…

AI Engineering 

Data Eng.

Knowledge  Eng.
Algorithm Eng.

System Eng. Safety/Security Eng.

Human Factors

Data driven AI
Knowledge 

based AI

Hybrid AI

Distributed  &
Embedded AI

AI Scope

Multi-technology, multi-domain, multi-engineering

Challenges and industrial applica?ons in Trustworthy AI: 
Confiance.AI programme

A French unique community to design and industrialise trustworthy AI-based cri'cal systems

https://www.confiance.ai/wp-content/uploads/2022/10/LivreBlanc-Confiance.ai-Octobre2022.pdf
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Key figures

94 4 7

+300 2 1245

Duration Large industrial
groups

Research centers Thematic projects

Associate partners
(laboratories, SMIs, startups)

BudgetSites: Paris-Saclay
and Toulouse

FTP involved
over 4 years

YEARS

M€
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Scientific challenges of confiance.ai

• confiance.ai: methods and tools for trusted AI. 
• High expecta8ons for industry
• In parallel of development of tool chain, many scien8fic challenges remain:
• 3 groups of scien'fic challenges to cover all aspects of trust 

1) Trust and learning data
2)  Trust and human interac'on
3)  Trust and AI-based system engineering

• Organiza8on in 7 projects:
Ø EC1: Integra8on & use cases
Ø EC2: Process, methodology and guidelines
Ø EC3: Characteriza8on & qualifica'on of trustworthy AI
Ø EC4: Design for Trustworthy AI
Ø EC5: Data, informa8on and knowledge engineering for trusted AI
Ø EC6: IVV&Q strategy toward homologa8on / cer'fica'on
Ø EC7: Target Embedded AI
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PhD theses within confiance.ai

Ongoing PhD theses within confiance.ai about:

• PhD Theis of Adrien Le Coz: Data coverage and operational domain design ODD (Computer Vision)

• PhD Thesis of Paul La Barbarie: Robustness to ‘patch’ adversarial attacks (Computer Vision)

• PhD Thesis of Lucas Schott: Reinforcement learning and human in the loop

• PhD Thesis of Gayane Taturyan: Statistical control of Fairness/Bias in Machine Learning (Stat)

• PhD Theis of Houssem Ouertatani : Optimized hardware deployment (Neural Architecture Search)

• PhD Thesis of Abdelmouaiz Tebjou: Conformal prediction (deployed) AI algorithms monitoring



Other topics

§ Genera&ve AI (Evalua&on, Benchmarking, Mul&modali&es..)

§ Hybrid AI (GenAI, Augmenta&on, Trust, UQ,..)

§ Trustworthy AI (Hybrid AI, Implementa&on of the AI act, LLMs …)

§ Federa&ng Learning …

23



Some Perspectives

“HORIZON-CL4-2024-HUMAN-03-01: Advancing Large AI Models: Integra7on of New Data Modali7es and 
Expansion of Capabili7es (AI, Data and Robo7cs Partnership) (RIA)
Expected Outcome: Projects are expected to contribute to one or more of the following outcomes:

• Enhanced applicability of large AI systems to new domains through the integra7on of innova7ve data
modali7es, such as sensor measurements (e.g. in robo7cs, IoT) or remote sensing (e.g. earth
observa7on), as input.

• Improvement of current mul7modal large AI systems capabili7es and expansion of the number of data
modali7es jointly handed by one AI system, leading to broader applica7on poten7al and improved AI
performance.

Scope: Large ar7ficial intelligence (AI) models refer to a new genera7on of general-purpose AI models (i.e.,
genera7ve AI) capable of adap7ng to diverse domains and tasks without significant modifica7on. Notable
examples, such as OpenAI's GPT-4V and META’s Llama 2 or DinoV2, have demonstrated a wide and growing

variety of capabili7es.” 24



Some Perspec+ves

“HORIZON-CL4-2024-HUMAN-03-02: Explainable and Robust AI (AI Data and Robotics Partnership) (RIA)

Expected Outcome: Projects are expected to contribute to one of the following outcomes:

• Enhanced robustness, performance and reliability of AI systems, including generative AI models, with
awareness of the limits of operational robustness of the system.

• Improved explainability and accountability, transparency and autonomy of AI systems, including
generative AI models, along with an awareness of the working conditions of the system.

Scope: Trustworthy AI solutions, need to be robust, safe and reliable when operating in real-world
conditions, and need to be able to provide adequate, meaningful and complete explanations when
relevant, or insights into causality, account for concerns about fairness, be robust when dealing with such
issues in real world conditions, while aligned with rights and obligations around the use of AI systems in
Europe. Advances across these areas can help create human-centric AI, which reflects the needs and

values of European citizens and contribute to an effective governance of AI technologies .”
25
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