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Scientific Challenges

Motivation : Modern ML/AI must handle heterogeneous, often unlabeled,

high-dimensional, and distributed data.

Challenges :

I Sparsity and interpretability, scalability

I Privacy, uncertainty quantification, distributed computations

I Exploiting prior knowledge (eg. structures, physics)

Scientific framework

,! Latent variable models : f(x|✓) =
R
Z
f(x, z|✓)dz

,! Learning, unsupervised representation and Selection in high-dimension

,! A Numerical/statistical learning approch : learning perspective focused on

the design of latent variable models

with learning and selection guarantees and approximation capabilities

upon regularization enabling hybridization and training fostering trust.
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Outline

1 Mixtures-of-Experts framework

2 Learning with high-dimensional predictors

3 Learning with functional predictors

4 Model and variable selection

5 Federated Learning

Guidelines

Design models that allow well-principled (with statistical guarantees)

predictions in heterogeneous, high-dimensional and distributed situations,

Construct e�cient algorithms that operate in unsupervised way and provide

interpretable solutions with computational guarantees.
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Learning with high-dimensional predictors
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Questioning : Prediction (non-linear regr., classification) & clustering in presence of

[1.] High-dimensional predictors : Xi 2 Rp with p � n, in a heterogeneous population and
complex distributions

[2.] Functional predictors : Xi(t), t 2 T ✓ R (eg. continuously recorded variables)

,! Look for parsimonious and interpretable models

e.g : Relate functional predictors {X(t) 2 R; t 2 T ⇢ R} to a scalar response Y 2 Y ⇢ R

Functional regression (e.g. Roche’23 EJS, Ramsay an Silverman’05 (FDA) ) doesn’t work
Yi = �0 +

R
T
Xi(t)�(t)dt+ "i
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Mixtures-of-Experts to model heterogeneous data

Mixtures-of-Experts as good candidates to model a response Y given predictor.s X

governed by a hidden structure accounting for heterogeneity
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Schematic diagram of the neural network architecture of a -component MoE model.

– first studied as neural networks (NNs) by Jacobs, Jordan, Nowlan, and Hinton (1991)
– Nguyen and Chamroukhi. Practical and theoretical aspects of mixture-of-experts modeling : An overview. WIRES : Data
Mining and Knowledge Discovery Wiley Periodicals, Inc. 2018
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Principled robustness in learning with MoE

Questionings : Prediction (non-linear regr., classification) & clustering in presence

of Outliers, with potentially skewed, heavy-tailed distributions

Answering : Robust MoE that accommodate asymmetry, heavy tails, and outliers

m(y|r,x;✓) =
KX

k=1

gk(r;↵)| {z }
Softmax Gating Network

ST (y;µ(x;�k),�k,�k, ⌫k)| {z }
Skew-t Expert Network

kth expert : has a skew t distribution [Azzalini and Capitanio 2003]
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⇡k = [0.4, 0.6], µk = [�1, 2] ; �k = [1, 1] ; ⌫k = [3, 7] ; �k = [14,�12] ;

Flexible and robust generalization of the standard MoE models

For {⌫k} ! 1, STMoE reduces to SNMoE ; For {�k} ! 0, STMoE reduces to TMoE.

For {⌫k} ! 1 and {�k} ! 0, StMoE approaches the NMoE.

Chamroukhi. Skew t mixture of experts. Neurocomputing, 266 :390–408, 2017.

Chamroukhi. Robust mixture of experts modeling using the t-distribution. Neural Networks, 79 :20–36, 2016.

Chamroukhi. Skew-normal mixture of experts. IJCNN 2016.

Fäıcel Chamroukhi Seminar @ LaMSN, 30-04-2025 7/42



Robust learning with mixtures-of-experts models
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n = 500 observations with 5% of outliers (x; y = �2) : Robust fit Tone data with 10 outliers (0, 4) : Robust fit
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Robust learning with mixtures-of-experts models

Training framework using the EM algorithm

✓new 2 argmax
✓2⌦

E[lnLc(✓)|D,✓old]

complete log-likelihood : logLc(✓) =
Pn

i=1

PK
k=1 I{Zi=k} log [GkEk]

MEteorits : open-source soft. Robust learning with mixtures-of-experts models

MEteorits : Mixtures-of-ExperTs modEling for cOmplex and non-noRmal dIsTributionS
Github CRAN Matlab software

Available algorithms and Packages

NMoE : Normal Mixture-of-Experts R software Matlab software

SNMoE : Skew-Normal Mixture-of-Experts R software Matlab software

tMoE : Robust MoE using the t-distribution R software Matlab software

StMoE : Skew-t Mixture-of-Experts R software Matlab software

- Meteorits include sampling, fitting, prediction, clustering with each MoE model
- Non-normal mixtures (and MoE) is a very recent topic in the field
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Approximation capabilities
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Approximation capabilities of finite mixture distributions

Density approximation in Unsupervised Learning

Data : observations {xi} from X 2 X ⇢ Rd of density (multimodal) f 2 F

Objective : approximate the density f (and represent the data, e.g. clustering)

Solution : Approximate f within the class H' =
S

K2N? H
'
K of finite

location-scale mixture h'
K (of K-components) of density ' (e.g., Gaussian), where

H
'
K =

(
h'
K (x) :=

KX

k=1

⇡k
1

�d
k

'

✓
x� µk

�k

◆
,µk 2 Rd,�k 2 R+,⇡k > 0 8k 2 [K] ,

KX

k=1

⇡k = 1

)

Theorem : Universal approximation of finite location-scale mixtures

(a) Given any p.d.f f,' 2 C and a compact set X ⇢ Rd, there exists a sequence

(h'
K) ⇢ H

', such that limK!1 supx2X
|f(x)� h'

K(x)| = 0.

(b) For p 2 [1,1), if f 2 Lp (Lebesgue p.d.f) and ' 2 L1 (essentially bounded

p.d.f), there exists a sequence (h'
K) ⇢ H

', such that limK!1 kf � h'
Kk

Lp
= 0.

– Nguyen, Chamroukhi, Nguyen, & McLachlan (2023). Approximation of probability density functions via location-scale finite

mixtures in Lebesgue spaces. Communications in Statistics - Theory and Methods, 52(14), 5048–5059.
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Modeling with mixtures-of-experts (ME)

Context : n observations {xi,yi} from a pair (X,Y ) 2 X⇥ Y with unknown conditional
p.d.f f 2 F =

�
f : X⇥Y ! R+|

R
Y f (y|x) d� (y) = 1, 8x 2 X

 

High-dimensional : X ✓ Rd, Y ✓ Rq , with d, q � n and heterogeneous setting.

Objectives : Regression ; Clustering ; Model selection

Solution : Approximate f within the class of mixtures-of-experts :

Let ' be a p.d.f (compactly supported on Y ✓ Rq), we define the functional classes :

Location-scale family : E' =
n
'q(y;µ,�) := 1

�q '
⇣

y�µ
�

⌘
;µ 2 Y,� 2 R+

o
.

Mixture of location-scale experts with softmax activation network : SGaME :

H
'
S =

n
h'
K(y|x) :=

KX

k=1

gk (x;�)'q (y;µk,�k) ; 'q 2 E' \ L1, gk (·;�) 2 {softmax}
o

Theorem : Approximation capabilities of isotropic mixtures-of-experts SGaME

(a) For p 2 [1,1), f 2 Fp \ C, ' 2 F \ C, X = [0, 1]d, there exists a sequence
�
h'
K

�
⇢ H

'
S

such that limK!1

��f � h'
K

��
Lp

= 0.

(b) For f 2 F \ C, if ' 2 F \ C, d = 1, there exists a sequence
�
h'
K

�
⇢ H

'
S such that

limK!1 h'
K = f almost uniformly.

– Nguyen, Nguyen, Chamroukhi, McLachlan (2021). Approximations of conditional probability density functions in Lebesgue

spaces via mixture of experts models. Journal of Statistical Distributions and Applications. 8, 13 (2021).
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Learning with mixtures-of-experts models

Learning via the EM algorithm : ✓new 2 argmax✓2⌦ E[lnLc(✓)|D,✓old]

SaMUraiS : open source software for statistical time-series analysis

SaMUraiS : StAtistical Models for the UnsupeRvised segmentAtIon of time-Series
Github CRAN Matlab software

Available algorithms and Packages

RHLP : Regression with Hidden Logistic Process R software Matlab software

HMMR : Hidden Markov Model Regression R software Matlab software

PWR : Piece-Wise Regression R software Matlab software

MRHLP : Multivariate RHLP R software Matlab software

MHMMR : Multivariate HMMR R software Matlab software

MPWR : Multivariate PWR R software Matlab software

Include estimation, segmentation, approximation, model selection, and sampling
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Some real-world data applications

Heterogenous, Multimodal, High-Dimensional, Unlabeled, Possibly Massive ...

Need for adapted analysis tools

Transport : Railway switch curves diagnostic Predictive Maintenance Health : Medical images
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Health & Well Being : Activity recog. Climate/Environment : meteorological data
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Dual-energy computed tomography (DECT) image Clustering

Learning from Multimodal information in Healthcare/Radiology

Cancer detection in Radiology : DECT clustering [Diagnostics (AI in medicine), 2022]

Spatial mixture of functional regressions for dual-energy CT images

m(y|x,v;✓) =
PK

k=1 ↵k(v;w)fk(y|x;✓k) with ↵k(v;w) =
wk�3(v;µk,Rk)

PK
`=1

w`�3(v;µ`,R`)
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Chamroukhi, Brivet, Savadjiev, Coates and Forghani (2022). DECT-CLUST. Dual-Energy CT Image Clustering and Application
to Head and Neck Squamous Cell Carcinoma Segmentation. Diagnostics, Vol. 12(12)

Codes available on Github
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Application of ML in precision medicine (Radiology)
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Model training and (variable/model) selection in MoE
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Model training and selection in MoE

(a) Raw Ethanol data set Collection of MoE models with linear mean functions characterized by 2-5 clusters
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Learning with high-dimensional predictors

Questioning : Prediction (non-linear regr., classification) & clustering in presence of

[1.] High-dimensional predictors : Xi 2 Rp with p � n, in a heterogenous population

,! Look for parsimonious models

[1.] HDME : High-Dimensional Mixtures-of-Experts

Learning : PMLE b✓n 2 argmax✓
Pn

i=1 log h
'
K(yi|xi;✓)� `1(✓)

,! Lasso penalty : Pen�(✓) =
KX

k=1

�kk�kk1

| {z }
Experts Net.

+
K�1X

k=1

�kkwkk1

| {z }
Gating Net.

,! encourages sparse solutions & performs estimation and feature selection

,! computationally attractive (Avoid matrix inversion ; univariate updates)
Software Toolbox HDME on Github (GaussRMoE, LogisticRMoE, PoissonRMoE)

Gaussian experts Nq
�
y;�k,d⌥ (x),⌃k (Bk)

�
with B = (Bk)k2[K] : block-diagonal

structures for covariance matrices

,! A non-asymptotic result. If pen(m) is well chosen, then our PMLE behaves in a
comparable manner compared to the best (oracle) model Hm? in the collection

– Chamroukhi & Huynh. Regularized Maximum Likelihood Estimation and Feature Selection in Mixtures-of-Experts Models.
Journal de la Société Francaise de Statistique, Vol. 160(1), pp :57–85, 2019
– Nguyen, Nguyen, Chamroukhi, Mchlachlan : Australian Joint Conference on Artificial Intelligence 2024.
– Nguyen, Chamroukhi, Nguyen, Forbes. Non-asymptotic model selection in block-diagonal mixture of polynomial experts
models. arXiv :2104.08959. 2021
– Huynh & Chamroukhi. Estimation and Feature Selection in Mixtures of Generalized Linear Experts Models. arXiv :1810.12161
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Measuring uncertainty in high-dimensional learning

Questioning : Prediction (non-linear regr., classification) & clustering in presence of
High-dimensional predictors : Data Dn = (Xi, Yi)ni=1 where Xi 2 Rp with p � n
HDME : High-Dimensional MoE : PMLE b✓n 2 argmax✓

Pn
i=1 log h'

K(yi|xi; ✓) � pen(✓)

Theorem : Non-asymptotic oracle inequality for collection of MoE models

Result : 9 constants C et  (⇢, C1) > 0 (C1 > 1) s.that whenever for m 2 M,
pen(m) �  (⇢, C1) [(C + lnn) dim (Hm) + zm] , the estimator PMLE bhcm satisfies

E
h
JKL⌦n

⇢

⇣
f,bhcm

⌘i
 C1 inf

m2M

✓
inf

hm2Hm
KL⌦n (f, hm) +

pen(m)

n

◆
+

 (⇢, C1)C1⇠

n
+

⌘ + ⌘0

n
.

A non-asymptotic result. If pen(m) is well chosen, then our PMLE behaves in a
comparable manner compared to the best (oracle) model Hm? in the collection,

minimizing the risk : infm2M

⇣
infhm2Hm KL⌦n (f, hm) + pen(m)

n

⌘
(f is unknown).

WellSpecified with n = 2000 MissSpecified with n = 2000

– Nguyen, Nguyen, Chamroukhi and Forbes. A non-asymptotic approach for model selection via penalization in high-dimensional
mixture of experts models. Electronic Journal of Statistics. 2022
[PhD, Trung-Tin Nguyen, 2021.] [EJS, 2022] [Australasian Joint Conference on Artificial Intelligence 2024.]
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2. Functional predictors
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[2.] Learning with functional predictors
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Figure – n = 35 daily mean temperature measurement curves (Xi’s) in di↵erent stations (Left)
and the log of precipitation values (Yi’s) visualized with the climate regions (Zi’s) (Right).

Relate functional predictors {X(t) 2 R; t 2 T ⇢ R} to a scalar response Y 2 Y ⇢ R

Regression and classification of heterogeneous responses given functional predictors

(1) generative functional modeling, sparsity and feature selection (high-dimension)

(2) User guideline : keep an interpretable fit

[2.] Functional Mixtures-of-Experts (and Di↵erent Learning strategies, in particular)

Yi = �zi,0 +
R
T
Xi(t)�zi (t)dt+ "i avec hz(Xi(.)) = ↵zi,0 +

R
T
Xi(t)↵zi (t)dt

Lasso-type Regularized MLE w.r.t the derivatives of the ↵(·) and �(·) functions

Chamroukhi, Pham, Hoang, McLachlan. Functional Mixtures-of-Experts. Statistics and Computing ., Vol. 34 (98), 2024
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...

Yi = �zi,0
+
R
TXi(t)�zi (t)dt + "i with hz(Xi) = ↵zi,0

+
R
T Xi(t)↵zi (t)dt

l1-Regularized MLE w.r.t the derivatives of the ↵(·) and �(·) functions

,! produces a meaningful sparse estimates for �zi (t) curves :

�
(0)
zi

(t) = 0 implies that X(t) has no e↵ect on Y at t

�
(1)
zi

(t) = 0 means that �zi (t) is constant at t,

�
(0)
zi

(t) = 1 shows that �zi (t) is a linear function of t, etc.

Interpretable fits
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Interpretable learning with time-series inputs

Mixture-of-Experts Architecture

Expert 1 Expert k Expert K

functional input

categorical output, G=3

Gate KGate kGate 1

. . .

...
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Regularization to accommodate physical priors
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Physics-Informed Machine Learning : combining ML and Physics
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Motivation : Some physical problems in Industry
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Hybrid ML modeling for solving Partial Di↵erential Equations
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Regularization and Physics-Informed Neural Networks (PINNs)

Regularization view for MoE

Add a penalty term to the loss : L(✓) = Ldata(✓)| {z }
fit to data

+� Pen(✓)| {z }
regularization term

Pen(✓) encodes sparsity, smoothness

Physics-Informed ML as Regularization

Integrate known physics (e.g., PDEs) into the loss :

L(✓) = Ldata(✓)| {z }
data fit

+� Lphysics(✓)| {z }
physics-based residuals

Lphysics(✓) penalizes violations of physical laws, e.g., kNRANS(u, p)k
2, where NRANS

denotes the residual of the Reynolds-Averaged Navier-Stokes equations.

Possible +�LBC Boundary conditions loss

Equivalent to imposing a constraint from domain knowledge

PINNs can be interpreted as a regularized learning framework with physics as a prior.
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Federated Learning
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Federated Learning

Real-world data problems may either i) arise massively or are ii) by nature

distributed (available on local sites) [and my involve specific domain constraints]

Challenges : optimizing data use and transfer to reduce the need to collect, store,

process and transfer large amounts of data and/or large AI models, while

preserving privacy and reducing energy consumption :

[A. ] Distributed Learning from massive data [New issues in learning and aggregation]

[for optimized learning processes] that require less input (data e�cient AI) without

degrading the estimation/prediction ,! How to distribute/aggregate data/models

[B. ] Federated Learning from data distributed by nature

,! How to accommodate local constraints (eg. privacy, energy, etc)
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Federated Learning

Aggregating distributed mixtures-of-experts models (MoE)

collaborative MoE for distributed (eg. large-scale data) or federated learning

Local estimators : f̂m = f(·|x, b✓m) =
PK

k=1 gk(x, b↵
(m))�(·;x> b�(m)

k , b�2
k
(m)

),

weighted average : f̄ = f(y|x; ✓̄) =
PM

m=1 �mf̂m where �m = Nm
N the sample

proportion. f̄ is good but relates MK components so not our direct target.

,! Reduced estimator : f̄R = arg inf
hK2MK

⇢
⇣
hK ,

PM
m=1 �mf̂m

⌘
: we seek for a

K-component ME h that is closest to the MK-component ME f̄ =
PM

m=1 �mf̂m
w.r.t a transportation divergence ⇢(·, ·), e.g. KL.

Chamroukhi and Pham. Distributed Learning of Mixtures of Experts. arxiv 2312.09877, 2024
{PhD, Pham. 2022}
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Federated Learning

Aggregating distributed mixtures-of-experts models (MoE)

collaborative MoE for distributed (eg. large-scale data) or federated learning

Local estimators : f̂m = f(·|x, b✓m) =
PK

k=1 gk(x, b↵
(m))�(·;x> b�(m)

k , b�2
k
(m)

),

weighted average : f̄ = f(y|x; ✓̄) =
PM

m=1 �mf̂m where �m = Nm
N the sample

proportion. f̄ is good but relates MK components so not our direct target.

,! Reduced estimator : f̄R = arg inf
hK2MK

⇢
⇣
hK ,

PM
m=1 �mf̂m

⌘
: we seek for a

K-component ME h that is closest to the MK-component ME f̄ =
PM

m=1 �mf̂m
w.r.t a transportation divergence ⇢(·, ·), e.g. KL.
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⌅ Consistency : The reduction estimator ✓̄R has a desired property that it is a

consistent estimator of the true parameter ✓⇤ as soon as the local estimators are

consistent estimators of ✓⇤. We have the following proposition.

Proposition (Chamroukhi and Pham 2023, ArXiv)

A1 The dataset D = {(xi, yi)}
N
i=1 is an i.i.d. sample from the K-component MoE

model f(y|x,✓⇤), in which the parameters are ordered and initialized.

A2 The cost function c(·, ·) is continuous in both arguments, and c('1,'2) ! 0 if and

only if '1 ! '2 in distribution.

Let ✓̄R be the parameter of the reduction density f̄R defined in

f̄R = arg inf
hK2MK

⇢

 
hK ,

MX

m=1

�mf̂m

!

with ⇢ being the expected transportation divergence between two mixtures h and g.

Suppose assumptions A1-A2 are satisfied. Then ✓̄R is a consistent estimator of ✓⇤.
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Federated Learning

Numerical results in Distributed clustering and Prediction
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Figure – Performance of the Global ME (G), Reduction (R), Middle (M) and Weighted average
(W) estimator for sample size N = 106 and M machines.

- Chamroukhi and Pham T. Distributed Learning of Mixtures of Experts. arxiv 2312.09877, 2023
{- PhD, Pham. 2022}

Source codes publicly available on Github.
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FL for spatio-temporal data forecasting in mobility

Attention mechanism : our model operates an Atten-
tion mechanism on the output of the LSTM module,
i.e., the sequence X

00
t Qk = X

00
t WQ

k , Kk =

X
00
t WK

k , Vk = X
00
t WV

k

Att.(Qk, Kk, Vk) = softmax

 
QkK>

kp
dh

!
Vk

Outputs from all G heads are concatenated and li-
nearly projected to form a rich temporal embedding
that captures complex, heterogeneous interactions

DIAGRAM OF THE WORKFLOW

The weight after
local training
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Temporally replace layers/modules 𝑠 of 
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(𝑟) as the initial 
weight

Figure – Client-Side Validation mechanism.

1 Local training

2 Parameter sharing : Clients send their locally trained
model to the server.

3 Server-side aggregation : FedAveraging

4 Client-side validation : Each client performs for each

subset of the three modules of the LSTM-DSTGCRN :

1 Temporary update : Replace the local
parameters with the corresponding aggregated
parameters.

2 Validation : Compute the validation loss using
a local validation set.

3 Selective update : Retain aggregated
parameters if validation loss improves ;
otherwise, revert to local ones.

5 Global update : The validated and selectively updated
local models are used for the next round of local
training.

– Pham, Furno, Chamroukhi and Oukhellou. Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting.

ArXiv.2503.04528, 2025
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FL for Urbain Mobility

Multimodal transport demand forecasting : three real-world public datasets, which include bike
and taxi demand data from New York City (NYC) and Chicago (CHI) :
Prediction results :

Prediction results :
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Client-Side Validation :
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– Pham, Furno, Chamroukhi and Oukhellou. Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting.
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FL for Urbain Mobility : Origin-Destination matrix forecasting

(c) LyonPT and Orange Telecom OD forecasting results
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Figure – Forecasts given by LSTM-DSTGCRN + FedAvg with CSV at some random OD pairs.

– Pham, Furno, Chamroukhi and Oukhellou. Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting.

ArXiv.2503.04528, 2025
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Comparison of local models and FL approaches on OD matrix datasets

0 50 100 150 200 250 300

Epoch

0

0.05

0.1

0.15

0.2

0.25

Va
lid

at
io

n 
lo

ss

Locally
FedAvg
FedAvg + CSV

LyonPT

0 50 100 150 200 250 300

Epoch

0.05

0.1

0.15

0.2

0.25

Va
lid

at
io

n 
lo

ss

Locally
FedAvg
FedAvg + CSV

Orange

0 10 20 30 40 50

FL round

00.511.523

   
 L

ST
M

   
 M

ul
ti-

At
te

nt
io

n 
  A

G
C

RN
  

Module replacements of during FL rounds — LyonPT (2022)

0 10 20 30 40 50

FL round

00.511.523

   
 L

ST
M

   
 M

ul
ti-

At
te

nt
io

n 
  A

G
C

RN
  

Module replacements of during FL rounds — Orange (2022)

We can see that the LSTM module is updated more frequently than the other modules. This

suggests that the clients learned from each other’s temporal patterns, which are more relevant

to the overall model’s performance.
– Pham, Furno, Chamroukhi and Oukhellou. Federated Dynamic Modeling and Learning for Spatiotemporal Data Forecasting.
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Fäıcel Chamroukhi Seminar @ LaMSN, 30-04-2025 40/42



Final remarks

Latent variable models are flexible and can be e�ciently built upon

complex distributions

Available grounded framework tools of model training and selection

Penalization joins hybrid (Data-Physics) Machine Learning - eg. ML

to account for real-wold physical : ,! Applications in augmented

physical simulation, augmented medecine

ML models uncertainty can be casted as a feature of trustworthiness

(trust by design)

Federated learning fosters trustworthiness (privacy preserving) while

reducing the need to collect, store, process and transfer large amounts

of data/models
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Thank you for your attention !
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