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Challenges and industrial applications in

Å Hybrid AI: How to exploit industry knowledge of physical (scientific) and 
symbolic (semantic) nature in data-driven learning models.

Å Trustworthy AI: Towards integrating AI into critical system engineering

Å Generative AI for industry: How to evaluate and advance specialized 
generative AI models for industrial applications
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Picture form Merino-Martínez et al.CEAS Aeronautical Journal (2019).

Electricity (power grids) pneumaticsAerodynamics

Related to the design and supervision of complex (physical) systems

ÅCovering various fields in physics (mechanics, fluid dynamics, aerodynamics, electromagnetism Χύ

ÅIn a wide variety of Applications in industry, in particular in numerical simulation

Fluid Flows/DynamicsSolid Mechanics

from Emmanuel Menier (PhD, LSIN/SystemX, 2024)

Domain Challenges : Physical systems that are

  - Complex to model/solve analytically

  - Compuationally expensive to solve numerically

(eg. , in Computational Fluid Dynamics ς CFD, Turbulance, Flows)

From HSA ςSystemX
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Picture from Marot, A., et al. (2018).

Motivation: Some physical problems in Industry



ω Physics knowledge to guide learning

Integrating geometric priors in learned representations (Bronstein 2017)
Geometric deep learning, GNN and neural passing message (Arjona Martínez 2019)

ω Differential equations to improve deep learning

Neural differential equations, diffusion models, ...

ω 5ŜŜǇ learning to solve differential equations 

Hypersolvers, hybrid solvers, neural operators, 
PINNs - Physics-Informed NNetworks, ... (Raissi 2019)
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Physics and Machine Learning

Ý Promising for engineering, it allows :

Å the integration of analytic knowledge from physical laws governing the 
engineering systems, to augment statistical knowledge learned from data 
(eg. by deep learning)

Å reducing the high cost of physical simulation, in particular in industry

Power Grid (HSA Project)

Substations and lines

Scientific Challenges

Å Problems highly-nonlinear, high-dimensional, 
with complex structures (eg.ƻǊƎŀƴƛȊŜŘ ƛƴ ƎǊŀǇƘǎΧύ

Å Need for adapted NN architectures: GNNs, Deep AEs ..



Cuomo, S., et al., (2022). Scientific machine learning through physicsïinformed neural networks: Where we are and whatôs next. Journal of Scientific Computing, 92(3), 88. Read Online

Å Solving NavierςStokes equations coupled with the 
corresponding temperature equation for analyzing heat flow 
convection (NSE+HE). Cai et al, 2021

Å Solving incompressible NavierςStokes equations (NSE). Jin et 
al., 2020. 

Å Solving Euler equations (EE) that model high-speed 
aerodynamic flows. Mao et al, 2019

Å Solving the nonlinear Shrödinger Equation (SE). 

Č Enables prior scientific knowledge based on physics to be taken into account in data-driven machine learning methods
      e.g including PINNs - Physics-Informed Neural Nets (wŀƛǎǎƛΩǎ paper in 2019)

Č Has been successfully and increasingly applied to solve a wide variety of linear and nonlinear problems in physics, 
covering various fields like mechanics, fluid dynamics, thermodynamics, electromagnetism Χ including :

Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics. 378. Online
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Physics-Informed Machine Learning: combining ML and Physics

https://link.springer.com/article/10.1007/s10915-022-01939-z
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125


A neural framework for solving PDEs, where 

Å the AI solver is a PINN trained to estimate target function f. 

Å The derivative of x is calculated by automatically differentiating the bbΩǎ outputs.

Å When the differential equation parametrized by ( )́ is unknown, it can be estimated by 
solving a loss that optimizes both the functional form of the equation and its fit  to observ y. 

Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online

- Challenge: High-Dimensional 
non-linear Physical Equations

- Navier-Stokes Equations: 
fundamental partial differentials 
equations (PDE) that describe the 
flow of incompressible fluids. 
C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de 

ƭΩ!ŎŀŘΦ ŘΦ {ŎƛΦΣсΣ офу όмуннύ 
C.G. Stokes, On the Theories of the Internal Fr iction of Fluids in Motion, Trans. 
Cambridge Phys. Soc., 8, (1845)

- Eg.Learning Computational Fluid 
Dynamics

Credit: Emmanuel Menier, PhD LISN/SystemX
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Hybrid ML modeling for solving Partial Differential Equations

https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf
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Z: Latent variables 
of reduced dimension

X: Observations 
Of high-dimnsion

Latent Variable Models: A family of probabilistic models capable of inferring 

the intrinsic latent structure (of reduced dimension) of the data

Å Variational Auto-encoders - VAE (Kingma & Welling 2014) improve the 

representational capabilities of AEs by regularizing the latent space with 

a Gaussian prior, coupled with a variational learning 

Å => can learn complex distributions.

Å!ǳǘƻπ9ƴŎƻŘŜǊǎ π !9 ό[Ŝ/ǳƴ мфутύΥ ¢ƘŜ ŜƴŎƻŘŜǊ ǇǊƻƧŜŎǘǎ ǘƘŜ ƛƴǇǳǘ · 

όƻŦ ƘƛƎƘπŘƛƳŜƴǎƛƻƴ ŘƛƳŜƴǎƛƻƴύ ƛƴ ŀ ŎƻƳǇǊŜǎǎŜŘ ƭŀǘŜƴǘ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ 

½ όǘƘŜ ŎƻŘŜύ ǘƻ ǊŜŎƻƴǎǘǊǳŎǘ ƛǘ ǳǎƛƴƎ ǘƘŜ ŘŜŎƻŘŜǊ ǿƛǘƘ ƻǳǘǇǳ ·ȸ

ÅČ [ŜŀǊƴƛƴƎ ōȅ ƳƛƴƛƳƛȊƛƴƎ ǘƘŜ ǊŜŎƻƴǎǘǊǳŎǘƛƻƴ ŜǊǊƻǊ ōŜǘǿŜŜƴ ·ȸ ŀƴŘ ·Φ 

¢ƘŜ ǎƳŀƭƭŜǊ ǘƘŜ ŜǊǊƻǊΣ ǘƘŜ ōŜǘǘŜǊ ǘƘŜ ŎƻƳǇǊŜǎǎŜŘ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ½Φ ·                                       ½                                      ·ȸ

Å Deep NNets are excellent candidates

Deep NNets for unsupervised representation Learning



POD: proper orthogonal decomposition
PCA: principal component analysis

Shallow / Linear Deep / Non-Linear

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. Read Online

!ǳǘƻπ9ƴŎƻŘƛƴƎ 5ŜŜǇ bŜǘǎ

ф

Å Nnetsare capable to recover highly non-linear relationships in the data

Å Adapted architectures that work in a low-dimensional (latent) space

Deep NNets for unsupervised representation Learning


