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Challenges and industrial applications in

Hybrid Al: How to exploit industry knowledge of physical (scientific) and
symbolic (semantic) nature in data-driven learning models.

Trustworthy Al: Towards integrating Al into critical system engineering

Generative Al for industry: How to evaluate and advance specialized
generative Al models for industrial applications



Challenges and industrial applications in

Hybrid Al: How to exploit industry knowledge of physical (scientific) and
symbolic (semantic) nature in data-driven learning models.



Motivation: Some physical problems in Industry

Related to the design and supervision of complex (physical) systems
» Covering various fields in physics (mechanics, fluid dynamics, aerodynamics, electromagnetism ...)

* In a wide variety of Applications in industry, in particular in numerical simulation

Electricity (power grids) Aerodynamics Solid Mechanics pneumatics Fluid Flows/Dynamics

Picture from Marot, A., et al. (2018). Picture form Merino-Martinez et al. CEAS Aeronautical Journal (2019). From HSA — SystemX from Emmanuel Menier (PhD, LSIN/SystemX, 2024)

Domain Challenges : Physical systems that are (eg., in Computational Fluid Dynamics — CFD, Turbulance, Flows)

- Complex to model/solve analytically

- Compuationally expensive to solve numerically



Physics and Machine Learning

(Cor - Power Grid (HSA Project)
| .\I&/ZIJ iy’ e Substations and lines
e Physics knowledge to guide learning %&g; : 3

Integrating geometric priors in learned representations (Bronstein 2017)
Geometric deep learning, GNN and neural passing message (Arjona Martinez 2019)

e Differential equations to improve deep learning
Neural differential equations, diffusion models, ...

e Deep learning to solve differential equations
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Hypersolvers, hybrid solvers, neural operators, 0,
PINNSs - Physics-Informed NNetworks, ... (Raissi 2019) ™
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= Promising for engineering, it allows : . g
& & 8 Scientific Challenges

* the integration of analytic knowledge from physical laws governing the : : : : :
,' g' ! v wieds e phys! Ws governing * Problems highly-nonlinear, high-dimensional,
engineering systems, to augment statistical knowledge learned from data

(eg. by deep learning)
* reducing the high cost of physical simulation, in particular in industry S e o7 adksied) N s aies: GRS, Bage MRS »

with complex structures (eg. organized in graphs...)
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SHETET“ Physics-Informed Machine Learning: combining ML and Physics

e

=» Enables prior scientific knowledge based on physics to be taken into account in data-driven machine learning methods
e.g including PINNs - Physics-Informed Neural Nets (Raissi’s paper in 2019)

=>» Has been successfully and increasingly applied to solve a wide variety of linear and nonlinear problems in physics,
covering various fields like mechanics, fluid dynamics, thermodynamics, electromagnetism ... including :

NSE+HE
Veu =0
O + (ueV)u = -Vp + (Re)1V2u + (Ri)9
0,9 + (u*V)9 = (Pe)1V?9

* Solving Navier—Stokes equations coupled with the
corresponding temperature equation for analyzing heat flow
convection (NSE+HE). Cai et al, 2021

~1300 papers

., NSE
GEJ Veu =0
D U+ (V= -Tp + (Re)'T P * Solving incompressible Navier—Stokes equations (NSE). Jin et
a al., 2020.
©
9
=3 =0
{n% SOl =  Solving Euler equations (EE) that model high-speed
" aerodynamic flows. Mao et al, 2019

; 2h = . . e g .
90640, Bt [ =10 * Solving the nonlinear Shrodinger Equation (SE).

~30 papers
Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics. 378. Online

Cuomo, S., et al., (2022). Scientific machine learning through physics—informed neural networks: Where we are and what’s next. Journal of Scientific Computing, 92(3), 88. Read Online 6


https://link.springer.com/article/10.1007/s10915-022-01939-z
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125

Hybrid ML modeling for solving Partial Differential Equations

- Eg. Learning Computational Fluid
| | Dynamics
@ Observations @ Parameters

i l - Navier-Stokes Equations:

fundamental partial differentials
equations (PDE) that describe the

——>(f)——— {+DIfn=0
Varlables / C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de

flow of incompressible fluids.
I’Acad. d. Sci.,6,398 (1822)

C.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, Trans.

Minimization (f(x) - y)? + (f + D [f; 5])? Combridge Phys. Soc, 8, (1545)
l |

Al solver Differential equation

- Challenge: High-Dimensional
non-linear Physical Equations
A neural framework for solving PDEs, where
* the Al solveris a PINN trained to estimate target function f.

* The derivative of x is calculated by automatically differentiating the NN’s outputs.

*  When the differential equation parametrized by (n) is unknown, it can be estimated by
solving a loss that optimizes both the functional form of the equation and its fit to observ y.

Credit: Emmanuel Menier, PhD LISN/SystemX
Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online 7


https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf

Deep NNets for unsupervised representation Learning

Latent Variable Models: A family of probabilistic models capable of inferring
the intrinsic latent structure (of reduced dimension) of the data

e Auto-Encoders - AE (LeCun 1987): The encoder projects the input X
(of high-dimension dimension) in a compressed latent representation
Z (the code) to reconstruct it using the decoder with outpu X

X: Observations
Of high-dimnsion

Z: Latent variables
of reduced dimension

* =» Learning by minimizing the reconstruction error between X and X.
The smaller the error, the better the compressed representation Z. X z X

e Variational Auto-encoders - VAE (Kingma & Welling 2014) improve the
representational capabilities of AEs by regularizing the latent space with

-

Original
input

Encoder

LN

Decoder

-2

Reconstructed

Compressed

representation

input

a Gaussian prior, coupled with a variational learning mput space " tent space
. . . 6\55@/__“‘\ .
* =>can learn complex distributions. & .
3/\\x p ,.
4 .
* Deep NNets are excellent candidates L1 p




Deep NNets for unsupervised representation Learning

* Nnets are capable to recover highly non-linear relationships in the data
* Adapted architectures that work in a low-dimensional (latent) space

Shallow / Linear Deep / Non-Linear

Deep encoder Deep decoder
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POD: proper orthogonal decomposition
PCA: principal component analysis

Auto-Encoding Deep Nets

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. Read Online 9



https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010719-060214

Systemx The Research Program IA2: Al and Augmented Engineering
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Intelligence HSA: Simulation/machine learning hybrid modeling
artificielle
et ingénierie
augmentée

How industrial solvers and learning models can enrich each other ?

AFS: Agility and fidelity of simulations

How to imporve agility and fidelity of simulation in complex
systems design?

Artificial Intelligence
and Augmented Engineering

S2I: Industrial infrastructure supervision

How to improve decision-making on distubuted industrial
systems via machine learning techniques ?

a program with 6
R&D collaborative
projects on concrete
industrial use cases

SAA: Augmented multi-agent simulation

How can multi-agent models benefit from real data and bring
out atypical situations?

Area: Hybrid Al

SMD: Business Semantics for Multi-source Data Mining

How to link heterogeneous data with established practical
knowledge?

Advance project
Thesis / Postdocs / Shared work

20+ industrial and
academic partners

CAB: Cockpit and Bidirectional Assistant
How to develop a virtual assistant that learns from expert and
~12M£€ learns to the expert

Diagram/pictures credit to IA2 Program


https://www.irt-systemx.fr/programmes-de-recherche/ia2

HAS Project: Industrial use cases




HSA Project : Simulation/machine learning hybrid modeling

Challenges and possible solutions (studied as part of the HSA project):
=  Augmenting physical solvers with data-driven models that integrate physics constraints

=  Building model architecture adapted to the complex physical structures/systems S| @ POD
. . . ¢ AAAAAANANANY | (i8] = (BONE) S
= Reducing the simulation cost PR, e
L * :_//< ___\ =_ I\*Elscmory
=» Surrogate models for physical simulation, aiming to Replace physical solvers with :t'-.._.;i..},;’: e
Tll[lb Convolution
=» Deep learning intergrating physical constraints (eg. Deep Graph Nets for PDEs)
=» Deal with high-dimensional, non-linear, and complex structurs (e.g reduced modeling, ..) High-Dimensional non-linear Physical Equations
@ — Different FEM _ Ground Truth
_E Physical Parameters PDEs Mesh Data
DATA GENERATION
MICHELIN Errors
0 DL Model —— " Predictions
Airliquide AIRBUS
Optimizing Reduced models and deep learning for PDEs
PhD Thesis of E. Menier, 2024 (LISN, Inria/SystemX)

Deep Graph Neural Networks for Numerical Simulation of PDEs. PhD of W. Liu. 2023 (LISN, Inria/SystemX). Read Online

https://www.irt-systemx.fr/projets/HSA/

E. Menier et al., 2023. CD-ROM: Complementary Deep-Reduced Order
Model. Computer Methods in Applied Mechanics and Engineering 410. Read Online

12


https://theses.hal.science/tel-04156859/
https://arxiv.org/pdf/2202.10746.pdf

Project HSA : simulation and deep learning of graphs

Target Mesh Output
Graph Neural Nets for 3D meshes _E - _HH- - _HR-. ¢ e B - el
) ‘ O] 5 Ol s i G % ‘
More suitable, as they operate by construction on graphs I if / / -
: . o i -
Generic nature of the learned models .
| el = Sy~ P ~
* Transfer learning for improved results J ] ‘ ;5 ‘ }j ‘
* Prediction can be improved via transfer learning: - .
from low fidelity (coarse mesh) to high fidelity (finer
mesh) models : . :
) Wheel contact profile Modeling of the airflow profile around
an aircraft wing (Air Foil)
| Toner, Physics: contact
- ‘+ equations Physics: Navier-Stokes equations
qutvnstl::tlas = - Ground Truth Graph U-Net Absolute Error

uuuuu

Pre-trained
Model f,

PhD theis of W. Liu, 2023 (LISN, Inria/SystemX) Fleure 0:3¢ A example ofwhel contact predieion 13
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SHSTE"”‘ Dynamics: Hybrid ML for HD dynamical physical systems

Interpretable learning of effective dynamics (ILED) architecture:

3 E EmgD

The high-dimensional system

High-Dimensional non-linear Dymical
Systems: zi D Q
. @
Goals: %z =|Ag z+|¥y lz, J e~ W, ,(2) ds] ©
Recover the dynamics, non-linearity in a = ®
high-dimensitonal setting —— S ¢
zn D G
An Auto-Endore based architecture
The lower-dimensional representation (z) is The decoder D reconstructs
propagated in time using a linear and a non- the high-dimensional systems.

linear part based on the Mori-Zwanzig formalism

Menier, E., et al. (2023). Interpretable learning of effective dynamics for multiscale systems. arXiv preprint arXiv:2309.05812. Read Online 14
PhD Thesis of E. Menier, 2024 (LISN, Inria/SystemX), 2024


https://arxiv.org/abs/2309.05812

Validation of hybrid physical-ML systems: LIPS Platform

=  How to validate hybrid (with physics) ML approaches ?

Several evaluation criteria are required (statistical performance, physical compliance, generalization, etc)

Comparison of # ML methods on several specific physical problems => need for a common evaluation framework

Proposed solution for industry : LIPS “Learning Industrial Physical Simulation” benchmark suite (Result of the project HSA-1A2)
- 1st framework for the evaluation of physical simulators augmented by machine learning
- 7 use cases integrated

- Open-source Framework https://github.com/IRT-SystemX/LIPS Published at NeurlPS2022

Data §E

~=p Generate/Collect dataset

Benchmark & Evaluation Iid

~=) Compute evaluation criteria

~=Pp Select scenario and dataset ~=p Select models
-

*
v Real-world data = — D m
v Si?:u;::;d daata g m? Fully A

- CNN ML-related ML d
_ . -
— connected Q + MAPE9O, MAE « MAE, MSE
B i ok ’ »
Action Search || Rolling Cycle | a| @l‘l‘%o . 00D Generalization |- 00D Generalization
» [IEEE14 (Train,Test) || Rolling dataset | " J -Pzﬂpgse,mmf. .P:AE,' MSE
. al al . YSI1CS !H;r'lsi
m * Conservation laws * Max Von-mises stress
« Joule law + Contact pressure
# Select evaluation criteria * Power loss verif. + Maximal deflection
K R . LeapNet | GNN . + Ind. readiness
ML-related Physics + Inference time + Inference time
Power G”d Pneumatlc Pel'formaﬂce Col’ﬂphance lfﬁjﬁ * Scalability
use case use case |\, & m % ~= Synthetic visualization
- A ¥ _ Numer1 r:al tables
Prec:snon Convergence_, Constraints  Laws S ST st M o
~= Define scenarios fund
Industrial = 00D RNN o E=ES =
r - y ] . % P 0, -
. (\I[::ZI::H _— :::mhlsu-pmdiu Accuracy & PL compliance Readiness .Generallzatlon R ')C, % o s,.: ‘ T'E"" ey
E ()ActionSearch ol g1y - i i > 8 I gy mmmnBAER
|2 SRR 1 X e =23 % e
; 8 g:::m;‘:;ﬂ?"'s :::,\, o Cost Scalability T ‘B Lt 80810 n see  oosocece
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https://github.com/IRT-SystemX/LIPS%20Published%20at%20NeurIPS2022
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LIPS hosts/ed the three following competitions:

https://www.codabench.org/competitions/1534/

MPHVSIH =

Get Started

About

Get Started

Dataset

SDK & GPU ressources
Evaluation

Prizes

Organizers

Terms

Files

MACHINE LEARNING FOR
PHYSICAL SIMULATION
CHALLENGE

000 to be shared by the 5 winners (see prizes page)

ORGANIZED BY: Systemx
CURRENT PHASE ENDS: Never -
CURRENT SERVER TIME:8 Mai 2024 A 08:00 UTC+2

Jocker image: lipsbenchmark/midphysim:1.4
Dec 2023 Jan 2024 Feb 2024 Mar 2024
Phases My Submissions Results Forum ?

New ML4PhySim challenge : The powergrid usecase

Competition Overview

This competition aims at promoting the use of ML based surrogate models to solve physical problems, through a task
addressing a recently published dataset called AirfRANS related to airfoil design (CFD simulation).

The competition will address the challenge of improving baseline solutions of the Airfoils design use case by building ML-

based surrogate models. The overall aim is to improve the tradeoff between the precision of obtained solutions and the
related computational cost.

_ MLorclated 0%) _ Physies (%) Score (100%)
Baseline Accuracy __ Speedup i faws
= | GraphSAGE 100 587
£l ke 1300 4457
Z | OpenFOAM 1 825

https://www.codabench.org/competitions/2378/

Competitions on Codabench/codalab, NeurlPS’24

https://www.codabench.org/competitions/3282/

Get Started

About

Startingkit

Evaluation

Prizes

SDK & GPU ressources

Organizers

Terms

Files

MACHINE LEARNING FOR
PHYSICAL SIMULATION
CHALLENGE - POWERGRID
USE CASE

SUBMISSIONS

ORGANIZED BY: Systemx .

CURRENT PHASE ENDS:14 Mai 2024 A 02:00 UTC+2
CURRENT SERVER TIME: 8 Mai 2024 A 08:04 UTC+2
Docker image: codalab/codalat-legacy;pya7 Il

May 2024 Jun 2024 Jul 2024
Phases My Submissions Results Forum ?
Prizes

General prizes:

« T 1st Prize:3000 €
* © 2nd Prize:2000 €
« @ 3rd Prize 1000 €

Special prizes:

« Most accurate ML model (without speedup consideration) : 1000 €
» Best student selution : 1000 €

The general and special prizes are not cumulative. Winning one of the general prizes hinder the access to special prizes.

Running !

Get Started

about
Dataset
evaluation
Prizes
Qrganizers

Terms

NEURIPS 2024 - ML4CFD
COMPETITION -

ORGANIZED BY; Systemx .

CURRENT PHASE ENDS: 26 Octobre 2024 A 02:00 UTC+2
CURRENT SERVER TIME:15 Octobre 2024 A 11:59 UTC+2
Docker image: lipsbenchmark/midphysim:1.9 I

Aug 2024 Sep 2024 Qct 2024

Phases My Submissions Results Forum

The starting Kit is know available at : https://github.com/IRT-SystemX/NeurlPS2024-ML4CFD-competition-
Starting-Kit

Competition Overview

The integration of maching learning (ML) techniques for addressing intricate physics problems is increasingly recognized as
a promising avenue for expediting simulations. However, assessing ML-derived physical models poses a significant
challenge for their adoption within industrial contexts, This competition is designed to promote the development of
innovative ML approaches for tackling physical challenges, | our recently introduced unified evaluation f }
known as Learing Industrial Physical Simulations (LIPS). Building upon the preliminary edition held from November 2023 to
March 2024, this iteration centers on a task fund; 110 a well physical application: airfoil design simulation,
utilizing our proposed AirfRANS dataset.

brichod



https://www.codabench.org/competitions/1534/
https://www.codabench.org/competitions/2378/
https://www.codabench.org/competitions/3282/

Challenges and industrial applications in

Hybrid Al: How to exploit industry knowledge of physical (scientific)
and symbolic (semantic) nature in data-driven learning models.

17



Symbolic approaches and Machine Learning (ML and Semantics)

(SR ]
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=» The challenge: Producing explanations

There are several ways of producing explanations:
1. training the NNet to produce arguments at the same time as prediction
2. =>or using a hybrid approach combining symbolic and neural methods

* Combining learning and knowledge graphs enables business expertise to
be integrated and results to be explained.

=» Neuro-symbolic methods aim at bridging techniques from symbolic Al
and deep learning:

* integrating a symbolic paradigm into a neural network
* E.g The ML model uses explicit symbolic knowledge, in the form of
logic rules/ontologies, to specify desired properties for the NNet.

e Formal rules for explainability (Audemard, 2023)
e Improving Neural-Based Classification with Logical Background Knowledge
(Ott 2023) (Battagla 2018)

Today ’ Task
X « Why did you do that?

Machi Decision or * Why not something else?
Training L L ac !ne R Learned Recommendation * Whendo you succeed?
| o .
Data earning Function When do you fail?

Process * Whencan | trust you?
* How do | correct an error?
User
XAl [ T
= + | understand why
New « 1 understand why not
Training || Machine | | Explainable | Explanation « | know when you succeed
Data Learning Model Interface * | know when you fail
Process + | know when to trust you
* | know why you erred
User

Source: DARPA.mil

Hypothesize Generate data Train supervised model Find pattems via attribution
3 X)) = Yiz) X@), Y, 5, fixiz) = viz) Interrogate 7
A LY
| 5
1 \
‘\ ‘\
\\

.
\\ Alter sampling 2 ,'{ Conjecture candidate J
~ istributi g

[ Mathematician steps s

\
\
‘\
o
e
< .
& e o7 i
S Reformulate hypothesis -~
------------- Prove theorem
B Computational steps

Probl Data ML Pipeline Solution
fiX oY (@1,m) pIepIOc. y.[ flx)
(za.un) define | " -
:
: Lot
L 4 Prior | DR L
Knowledge ___ Data-Driven Learning

(Convent. Machine Leamning)

gl.‘.
@ o .
6 T

= = Prior-Knowledge Integration
(Informed M.‘wE‘i:ne Learning)




qutem“ Integrating Expert/Business semantics in ML (Project SMD)

The Neuro-symbolic engineering pipeline: https://www.irt-systemx.fr/projets/SMD/
Framework:
Building ML-based on knowledge graphs
from expert/business language data

Entity —
Relation
Extraction

Parsing
(chunk)

Graph Data Database
generation modeling requests Gra ph

Formating

Approach (The Neuro-symbolic engineering pipeline) Ontology

= |nformation extraction from heterogeneous structured
and semi-structured text corpora...:

Graph

Traini .
raining Exploration

= NLP approach; Semantic annotation

Neuro-symbolic pipeline /_\
. . . . . Constrains
= Taking into account domain rules/constraints in the
numerical-Al based decision A oo
L
Inputs s ol Populates
Intelligence
rtificiell Ontolo
O Corps d
augmentée

SMD Project qutemx @ AIRBUS ECOSYS Group . 9

DEFENCE & SPACE CentraleSupélec
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Ontology-based explanations :

Extraction

=S

:

Linking

i

Konwldge
Construction

—

construction

Ontology

Construction

o
enrichment

)

Data augmentation

j
==

Data Annotation

MODEL

Quality evaluation
Extraction
evaluation

evaluation

evaluation

»

=> Insertion of logical rules at the inference step :
* Recalculate P(y|X, a) in lieu of the learnt P(y|X) N
* o isarule encoding the validity of the prediction'y

Ontologies and (machine/transfer) learning for multimedia document analysis. PhD thesis of A. Ledaguenel (in progress, MICS/SystemX)



Some use cases

*these shown examples are obtained on Public (not industrial) data

Use case : Detection and characterization of atypical T et | o : A Object
scenes in surveillance videos for crisis management 23 >

@ AIRBUS

DEFENCE & SPACE

Person Run Motorcycle Ride

ShanghaiTech data (437 videos on 13 different locations, containing 130 abnormal events)

* identifying anomalies in video streams .
Frame No: = 740 o

™
A

* scene analysis and construction of
contextualized graphs

Fighting Explosion Road accident

UCF-crime data (128 hours videos contain realistic anomalies including Abuse, Arrest, Arson, Assault, etc.)

Credit: SystemX’s SMD Project 21



Challenges and industrial applications in

Trustworthy Al: Towards integrating Al into critical system engineering

22



Systemx

Confiance.Al programme: A French unique community to

design and industrialise trustworthy Al-based critical systems

AIRBUS
@airLiquide
AtoS

NAVAL

GROUP

«# RENAULT

S SAFRAN

sopra S steria

THALES

Building a future we can all trust

Valeo

Data driven Al Hybrid Al

Knowledge
based Al Distributed &
Embedded Al

Al Scope

4
¢

Data Eng. Human Factors

Algorithm Eng.
Knowledge Eng. System Eng. Safety/Security Eng.

ineering

Others

Automotive Defense Manufacturing

Health

Aeronautics Railway...

Industrial Domains
Credit : Confiance.ai

23
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qut'éﬁ-'-x Some Use Cases
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vt e W EET In distribution  Out distribution

THALES «» RENAULT B T
ullding afuture we can all rust - %‘ES:.
[ g 00D data OOD data
2D Vision Scene understanding (Valeo) Aerial pictures : U
In autonomous drivin Thales LAS P
- ( ) S SAFRAN
Visual inspection Welding inspection (Renault) Industrial control
(Safran)
Time series prediction Demand forecasting (Air Liquide)
I y 7 PRODUCTS i c"; - Eg- Oxygen .r’\”fﬂ collision avoidance ‘_HH‘“\‘
ool Time series anomaly Plant efficiency monitoring Virtual sensor | i
sy detection (Air Liquide) (Airbus Helicopter) | |
Tabular data ACAS XU (Airbus) ) ’
NLP Opinion mining (Renault) AIRBUS
Hybrid ML Symbolic Time dependent planning (Safran)
Visual similarity Re-identification (ATOS)

Credit : Confiance.ai



confiance.ai: methods and tools for trusted Al.

High expectations for industry

3 groups of scientific challenges to cover all aspects of trust

1) Trust and learning data

2) Trust and human interaction

3) Trust and Al-based system engineering

Organization in 7 projects:

>

>

>

EC1
EC2
EC3
EC4
EC5
EC6
EC7

: Integration & use cases

: Process, methodology and guidelines

: Characterization & qualification of trustworthy Al

: Design for Trustworthy Al

: Data, information and knowledge engineering for trusted Al
: IVV&Q strategy toward homologation / certification

: Target Embedded Al

25



Scientific challenges as part of the ongoing PhD theses within

confiance.ai

= confiance.ai: methods and tools for trusted Al =» High expectations for industry
= many scientific challenges (as part of the confiance.ai doctoral programme)
- Data coverage and operational domain design ODD in Computer Vision (PhD Theis of Adrien Le Coz)
Robustness to ‘patch’ adversarial attacks in Computer Vision (PhD Thesis of Paul La Barbarie)
Robust Reinforcement learning (PhD Thesis of Lucas Schott)
Statistical control of Fairness/Bias in Machine Learning (Stat) (PhD Thesis of Gayane Taturyan)

Towards hardware deployment using BO & Neural Architecture Search) (PhD Theis of H Ouertatani)

- Monitoring of (deployed) Al algorithms using conformal prediction (PhD Thesis of Abdelmouaiz Tebjou)

26



: Key figures

Duration Large industrial Research centers
groups

FTP involved Sites: Paris-Saclay
over 4 years and Toulouse

Associate partners
(laboratories, SMls, startups)

33



Challenges and industrial applications in

e  Generative Al for industry: How to evaluate and advance specialized
generative Al models for industrial applications

34
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Systemx GenAl : AE, GANSs, Diffusion Models, Transformers

TECHHOLOGIQUE

*GANs (Goodfellow 2014): A generator G and a discriminator D subjected *Transformers (Vaswani 2017): have revolutionized
to two contradictory training (ie. adversarial aspect ) generative Al, particularly in NLP.
| . = a5 =>» highly parallelizable (unlike sequential architectures
Eas s ' like RNNSs)

=>» impressive results in images, ...
=» Use an AE and relies on an attention

mechanism to integrate global I/O and context
dependencies into a variable-length sequence.

=>» IRT work advancing the state of the art
on the subject: in particular, work on
EPI, RTI Confiance.Al/EC3,4,5 projects.

Output

- S I SEEmS 3 High NLP capabilities [ rensiome —
e ] _ _ C pen e ]
Diffusion models (Ho 2020; Yang 2023; Rombach 2022): an unintuitive {eg. ChatGPT-3.5:
principle at the basis : progressively destructure the input responses of up to ~ E"cfder De
until it is completely degraded, | 3000 words}.

then reconstruct it by reversing the process. - > NLP models and
—' transformers are studied
-_ Reverse stochastic proceSSIr in R&D at IRT

. . .@. ) . ! )
(eg. Confiance.Al, SMD) = AT .J
|

— Input Target

Yang Song Blog

=>» Excellent performance in image synthesis,
despite costly training

=» Research work atIRT (Confiance.Al,
EC4/Explo; e.g. NeurlPS'23)




Generative Al for Industry : Main challenges

* Main scientific challenge in GenAl in industry (Hybridization, Frugality, Multimodalities,
Evaluation/Benchmarking, ..)

* the frugality of foundation models (related to data, model, and learning),

* operating on different multi-modalities (beyond text : time-series, diagrams, images..),
* their hybridization to integrate knowledge (expert and or scientific knowledge),

* their specialization (eg. fine-tuning, RAG) to different use cases,

* and their evaluation to guarantee industrial use,

* Preparation to the implementation of the Al act

* Hybrid Al (GenAl, Physics-Simulation, Data augmentation, Uncertainty Quantification, ..)



Discussion

= Hybrid Al, with its inclusive approach to human knowledge, overcomes the limitations of “classic” Al
(based exclusively on data) : The

e accuracy of physical simulations can be improved by hybrid modeling that takes advantage of data.
e joint use of data and scientific laws reduces the complexity and cost of physical simulations.

e joint use of data & knowledge graphs enables business expertise to be integrated and results to
be explained.

= Approaches that hybridize data and knowledge models (physical/semantic) have emerged fairly recently,

and have not yet reached maturity ==> R&D efforts are needed to bring the subject to maturity in
engineering/industry.

= Anavenue in Al to the preparation of the implementation of the Al act for the entreprise, is Trusted Al.
Need for the Human in the loop

= Generative Al is beginning to make slight progress in industry... 38
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