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Challenges and industrial applications in

• Hybrid AI: How to exploit industry knowledge of physical (scientific) and 
symbolic (semantic) nature in data-driven learning models.

• Trustworthy AI: Towards integrating AI into critical system engineering

• Generative AI for industry: How to evaluate and advance specialized 
generative AI models for industrial applications
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Picture form Merino-Martínez et al. CEAS Aeronautical Journal (2019).

Electricity (power grids) pneumaticsAerodynamics

Related to the design and supervision of complex (physical) systems

• Covering various fields in physics (mechanics, fluid dynamics, aerodynamics, electromagnetism …)

• In a wide variety of Applications in industry, in particular in numerical simulation

Fluid Flows/DynamicsSolid Mechanics

from Emmanuel Menier (PhD, LSIN/SystemX, 2024)

Domain Challenges : Physical systems that are

  - Complex to model/solve analytically

  - Compuationally expensive to solve numerically

(eg. , in Computational Fluid Dynamics – CFD, Turbulance, Flows)

From HSA – SystemX
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Picture from Marot, A., et al. (2018).

Motivation: Some physical problems in Industry



• Physics knowledge to guide learning

Integrating geometric priors in learned representations (Bronstein 2017)
Geometric deep learning, GNN and neural passing message (Arjona Martínez 2019)

• Differential equations to improve deep learning

Neural differential equations, diffusion models, ...

• Deep learning to solve differential equations 

Hypersolvers, hybrid solvers, neural operators, 
PINNs - Physics-Informed NNetworks, ... (Raissi 2019)
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Physics and Machine Learning

 Promising for engineering, it allows :

• the integration of analytic knowledge from physical laws governing the 
engineering systems, to augment statistical knowledge learned from data 
(eg. by deep learning)

• reducing the high cost of physical simulation, in particular in industry

Power Grid (HSA Project)

Substations and lines

Scientific Challenges

• Problems highly-nonlinear, high-dimensional, 
with complex structures (eg. organized in graphs…)

• Need for adapted NN architectures: GNNs, Deep AEs ..



Cuomo, S., et al., (2022). Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing, 92(3), 88. Read Online

• Solving Navier–Stokes equations coupled with the 
corresponding temperature equation for analyzing heat flow 
convection (NSE+HE). Cai et al, 2021

• Solving incompressible Navier–Stokes equations (NSE). Jin et 
al., 2020. 

• Solving Euler equations (EE) that model high-speed 
aerodynamic flows. Mao et al, 2019

• Solving the nonlinear Shrödinger Equation (SE). 

➔ Enables prior scientific knowledge based on physics to be taken into account in data-driven machine learning methods
      e.g including PINNs - Physics-Informed Neural Nets (Raissi’s paper in 2019)

➔ Has been successfully and increasingly applied to solve a wide variety of linear and nonlinear problems in physics, 
covering various fields like mechanics, fluid dynamics, thermodynamics, electromagnetism … including :

Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics. 378. Online
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Physics-Informed Machine Learning: combining ML and Physics

https://link.springer.com/article/10.1007/s10915-022-01939-z
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125


A neural framework for solving PDEs, where 

• the AI solver is a PINN trained to estimate target function f. 

• The derivative of x is calculated by automatically differentiating the NN’s outputs.

• When the differential equation parametrized by (η) is unknown, it can be estimated by 
solving a loss that optimizes both the functional form of the equation and its fit to observ y. 

Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online

- Challenge: High-Dimensional 
non-linear Physical Equations

- Navier-Stokes Equations: 
fundamental partial differentials 
equations (PDE) that describe the 
flow of incompressible fluids. 
C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de 

l’Acad. d. Sci .,6, 398 (1822) 
C.G. Stokes, On the Theories of the Internal Fr iction of Fluids in Motion, Trans. 
Cambridge Phys. Soc., 8,  (1845)

- Eg. Learning Computational Fluid 
Dynamics

Credit: Emmanuel Menier, PhD LISN/SystemX
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Hybrid ML modeling for solving Partial Differential Equations

https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf
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Z: Latent variables 
of reduced dimension

X: Observations 
Of high-dimnsion

Latent Variable Models: A family of probabilistic models capable of inferring 

the intrinsic latent structure (of reduced dimension) of the data

• Variational Auto-encoders - VAE (Kingma & Welling 2014) improve the 

representational capabilities of AEs by regularizing the latent space with 

a Gaussian prior, coupled with a variational learning 

• => can learn complex distributions.

• Auto-Encoders - AE (LeCun 1987): The encoder projects the input X 

(of high-dimension dimension) in a compressed latent representation 

Z (the code) to reconstruct it using the decoder with outpu X̂

• ➔ Learning by minimizing the reconstruction error between X̂ and X. 

The smaller the error, the better the compressed representation Z. X                                       Z                                      X̂

• Deep NNets are excellent candidates

Deep NNets for unsupervised representation Learning



POD: proper orthogonal decomposition
PCA: principal component analysis

Shallow / Linear Deep / Non-Linear

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. Read Online

Auto-Encoding Deep Nets
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• Nnets are capable to recover highly non-linear relationships in the data

• Adapted architectures that work in a low-dimensional (latent) space

Deep NNets for unsupervised representation Learning

https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010719-060214


How to imporve agility and fidelity of simulation in complex 
systems design?

AFS: Agility and fidelity of simulations
02

03

04

05
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S2I: Industrial infrastructure supervision

How can multi-agent models benefit from real data and bring
out atypical situations?

SAA: Augmented multi-agent simulation

How to link heterogeneous data with established practical
knowledge?

SMD: Business Semantics for Multi-source Data Mining

How to develop a virtual assistant that learns from expert and
learns to the expert

CAB: Cockpit and Bidirectional Assistant

How industrial solvers and learning models can enrich each other ?

HSA: Simulation/machine learning hybrid modeling
01

(S.H. Rudy et al. 2019)
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• a program with 6
R&D collaborative 
projects on concrete 
industrial use cases

• Area: Hybrid AI

• 20+ industrial and 
academic partners

• ~12M€

How to improve decision-making on distubuted industrial
systems via machine learning techniques ? ©ict professional

Artificial Intelligence
and Augmented Engineering

Diagram/pictures credit to IA2 Program 10

The Research Program IA2: AI and Augmented Engineering

https://www.irt-systemx.fr/programmes-de-recherche/ia2


HAS Project: Industrial use cases

Air Liquide: Steam methane reforming

EDF: Energy modeling of buildings

Michelin: 3D rolling tire

SNCF: Forecasting crack propagation in rails

RTE : Augmented simulator for electrical grid management

AIRBUS: Aircraft aero-acoustic performance



Deep Graph Neural Networks for Numerical Simulation of PDEs. PhD of W. Liu. 2023 (LISN, Inria/SystemX). Read Online

Reduced models and deep learning for PDEs
PhD Thesis of E. Menier, 2024 (LISN, Inria/SystemX)

https://www.irt-systemx.fr/projets/HSA/

High-Dimensional non-linear Physical Equations

E. Menier et al., 2023. CD-ROM: Complementary Deep-Reduced Order 
Model. Computer Methods in Applied Mechanics and Engineering 410. Read Online
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HSA Project : Simulation/machine learning hybrid modeling

Challenges and possible solutions (studied as part of the HSA project):

▪ Augmenting physical solvers with data-driven models that integrate physics constraints

▪ Building model architecture adapted to the complex physical structures/systems

▪ Reducing the simulation cost

➔ Surrogate models for physical simulation, aiming to Replace physical solvers with

➔ Deep learning intergrating physical constraints (eg. Deep Graph Nets for PDEs)

➔ Deal with high-dimensional, non-linear, and complex structurs (e.g reduced modeling, ..)

HSA

https://theses.hal.science/tel-04156859/
https://arxiv.org/pdf/2202.10746.pdf


Modeling of the airflow profile around 
an aircraft wing (Air Foil)

Physics: Navier-Stokes equations
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Project HSA : simulation and deep learning of graphs

Graph Neural Nets for 3D meshes

More suitable, as they operate by construction on graphs
• Generic nature of the learned models

• Transfer learning for improved results

• Prediction can be improved via transfer learning: 

from low fidelity (coarse mesh) to high fidelity (finer 
mesh) models

Wheel contact profile 

Physics: contact 
equations

PhD theis of W. Liu, 2023 (LISN, Inria/SystemX)



Menier, E., et al. (2023). Interpretable learning of effective dynamics for multiscale systems. arXiv preprint arXiv:2309.05812. Read Online
PhD Thesis of E. Menier, 2024 (LISN, Inria/SystemX), 2024

Interpretable learning of effective dynamics (ILED) architecture:

The high-dimensional system

The decoder D reconstructs 
the high-dimensional systems. 

The lower-dimensional representation (z) is 
propagated in time using a linear and a non-
linear part based on the Mori-Zwanzig formalism
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High-Dimensional non-linear Dymical 
Systems:

Goals:
Recover the dynamics, non-linearity in a 
high-dimensitonal setting

An Auto-Endore based architecture

Dynamics: Hybrid ML for HD dynamical physical systems

https://arxiv.org/abs/2309.05812
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Validation of hybrid physical-ML systems: LIPS Platform

▪ How to validate hybrid (with physics) ML approaches ?

• Several evaluation criteria are required (statistical performance, physical compliance, generalization, etc)

• Comparison of # ML methods on several specific physical problems => need for a common evaluation framework

▪ Proposed solution for industry : LIPS “Learning Industrial Physical Simulation” benchmark suite (Result of the project HSA-IA2)

• 1st framework for the evaluation of physical simulators augmented by machine learning

• 7 use cases integrated

• Open-source Framework  https://github.com/IRT-SystemX/LIPS Published at NeurIPS2022

https://github.com/IRT-SystemX/LIPS%20Published%20at%20NeurIPS2022


Competitions on Codabench/codalab, NeurIPS’24
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https://www.codabench.org/competitions/1534/ https://www.codabench.org/competitions/2378/

LIPS hosts/ed the three following competitions:

https://www.codabench.org/competitions/3282/
Running !

https://www.codabench.org/competitions/1534/
https://www.codabench.org/competitions/2378/
https://www.codabench.org/competitions/3282/


Challenges and industrial applications in

• Hybrid AI: How to exploit industry knowledge of physical (scientific) 
and symbolic (semantic) nature in data-driven learning models.

• Trustworthy AI: Towards integrating AI into critical system engineering

• Generative AI for industry: How to evaluate and advance specialized 
generative AI models for industrial applications
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There are several ways of producing explanations:
1. training the NNet to produce arguments at the same time as prediction
2. => or using a hybrid approach combining symbolic and neural methods

• Combining learning and knowledge graphs enables business expertise to 
be integrated and results to be explained.

➔ Neuro-symbolic methods aim at bridging techniques from symbolic AI 
and deep learning:

• integrating a symbolic paradigm into a neural network
• E.g The ML model uses explicit symbolic knowledge, in the form of 

logic rules/ontologies, to specify desired properties for the NNet.

➔ The challenge: Producing explanations

Source: DARPA.mil

Symbolic approaches and Machine Learning (ML and Semantics)

• Formal rules for explainability (Audemard, 2023)
• Improving Neural-Based Classification with Logical Background Knowledge 
(Ott 2023) (Battagla 2018)
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Approach (The Neuro-symbolic engineering pipeline)

▪ Information extraction from heterogeneous structured 
and semi-structured text corpora...: 

▪ NLP approach; Semantic annotation

▪ Taking into account domain rules/constraints in the 
numerical-AI based decision

Framework: 
Building ML-based on knowledge graphs 
from expert/business language data

The Neuro-symbolic engineering pipeline: https://www.irt-systemx.fr/projets/SMD/

Integrating Expert/Business semantics in ML (Project SMD)

SMD Project

Neuro-symbolic pipeline
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=> Insertion of logical rules at the inference step :
• Recalculate P(y|X, a) in lieu of the learnt P(y|X)
• a is a rule encoding the validity of the prediction ŷ

Ontologies and (machine/transfer) learning for multimedia document analysis. PhD thesis of A. Ledaguenel (in progress, MICS/SystemX)

Integrating Expert/Business semantics in ML (Project SMD)

Logic rules, to specify desired properties for the Nnet:

Ontology-based explanations :



Some use cases
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Use case : Detection and characterization of atypical 
scenes in surveillance videos for crisis management

UCF-crime data (128 hours videos contain realistic anomalies including  Abuse, Arrest, Arson, Assault, etc.)

ShanghaiTech data (437 videos on 13 different locations, containing 130 abnormal events)

*these shown examples are obtained on Public (not industrial) data

• identifying anomalies in video streams

• scene analysis and construction of 
contextualized graphs 

Credit: SystemX’s SMD Project



Challenges and industrial applications in

• Hybrid AI: How to exploit industry knowledge of physical (scientific) and 
symbolic (semantic) nature in data-driven learning models.

• Trustworthy AI: Towards integrating AI into critical system engineering

• Generative AI for industry: How to evaluate and advance specialized 
generative AI models for industrial applications
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Industry driven – Multi domain – Multi technology

Industrial Domains

Aeronautics
Automotive Defense

Energy

Manufacturing

Others

Health 
Railway…

AI Engineering 

Data Eng.

Knowledge  Eng.
Algorithm Eng.

System Eng. Safety/Security Eng.

Human Factors

Data driven AI

Knowledge 
based AI

Hybrid AI

Distributed  &
Embedded AI

AI Scope

Confiance.AI programme: A French unique community to 
design and industrialise trustworthy AI-based critical systems

Credit : Confiance.ai



Some Use Cases

Theme Primary Secondary

2D Vision Scene understanding (Valeo)
In autonomous driving

Aerial pictures 
(Thales LAS)

Visual inspection Welding inspection (Renault) Industrial control 
(Safran)

Time series prediction Demand forecasting (Air Liquide)
Eg. oxygen

Time series anomaly 
detection

Plant efficiency monitoring 
(Air Liquide)

Virtual sensor 
(Airbus Helicopter)

Tabular data ACAS XU (Airbus)

NLP Opinion mining (Renault)

Hybrid ML Symbolic Time dependent planning (Safran)

Visual similarity Re-identification (ATOS)
Credit : Confiance.ai
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Scientific challenges of confiance.ai

• confiance.ai: methods and tools for trusted AI. 

• High expectations for industry

• 3 groups of scientific challenges to cover all aspects of trust 

1) Trust and learning data

2)  Trust and human interaction

3)  Trust and AI-based system engineering

• Organization in 7 projects:

➢ EC1: Integration & use cases

➢ EC2: Process, methodology and guidelines

➢ EC3: Characterization & qualification of trustworthy AI

➢ EC4: Design for Trustworthy AI

➢ EC5: Data, information and knowledge engineering for trusted AI

➢ EC6: IVV&Q strategy toward homologation / certification

➢ EC7: Target Embedded AI
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Scientific challenges as part of the ongoing PhD theses within 
confiance.ai

▪ confiance.ai: methods and tools for trusted AI ➔ High expectations for industry

▪ many scientific challenges (as part of the confiance.ai doctoral programme)

• Data coverage and operational domain design ODD in Computer Vision (PhD Theis of Adrien Le Coz)

• Robustness to ‘patch’ adversarial attacks in Computer Vision (PhD Thesis of Paul La Barbarie)

• Robust Reinforcement learning (PhD Thesis of Lucas Schott)

• Statistical control of Fairness/Bias in Machine Learning (Stat) (PhD Thesis of Gayane Taturyan)

• Towards hardware deployment using BO & Neural Architecture Search) (PhD Theis of H Ouertatani)

• Monitoring of (deployed) AI algorithms using conformal prediction (PhD Thesis of Abdelmouaiz Tebjou)
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Confiance.ai : Key figures

94 4 7

+300 2 1245

Duration Large industrial
groups

Research centers Thematic projects

Associate partners
(laboratories, SMIs, startups)

BudgetSites: Paris-Saclay
and Toulouse

FTP involved
over 4 years

YEARS

M€



Challenges and industrial applications in
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symbolic (semantic) nature in data-driven learning models.

• Trustworthy AI: Towards integrating AI into critical system engineering

• Generative AI for industry: How to evaluate and advance specialized 
generative AI models for industrial applications
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GenAI : AE, GANs, Diffusion Models, Transformers

36

➔ impressive results in images,...

➔ IRT work advancing the state of the art 

on the subject: in particular, work on 

EPI, RTI Confiance.AI/EC3,4,5 projects.

*GANs (Goodfellow 2014): A generator G and a discriminator D subjected 

to two contradictory training (ie. adversarial aspect )

OpenAI

➔ Excellent performance in image synthesis, 

despite costly training

➔ Research work atIRT (Confiance.AI, 
EC4/Explo; e.g. NeurIPS'23)

*Diffusion models (Ho 2020; Yang 2023; Rombach 2022): an unintuitive 
principle at the basis : progressively destructure the input

until it is completely degraded, 
then reconstruct it by reversing the process.

Yang Song Blog

➔ highly parallelizable (unlike sequential architectures 

like RNNs)

➔ Use an AE and relies on an attention 

mechanism to integrate global I/O and context 

dependencies into a variable-length sequence.

➔ High NLP capabilities 

{eg. ChatGPT-3.5: 

responses of up to ~ 

3000 words}.

➔ NLP models and 

transformers are studied 

in R&D at IRT

(eg. Confiance.AI, SMD)

*Transformers (Vaswani 2017): have revolutionized 
generative AI, particularly in NLP.



Generative AI for Industry : Main challenges
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• Main scientific challenge in GenAI in industry (Hybridization, Frugality, Multimodalities, 
Evaluation/Benchmarking, ..)

• the frugality of foundation models (related to data, model, and learning), 

• operating on different multi-modalities (beyond text : time-series, diagrams, images..), 

• their hybridization to integrate knowledge (expert and or scientific knowledge), 

• their specialization (eg. fine-tuning, RAG) to different use cases, 

• and their evaluation to guarantee industrial use,

• Preparation to the implementation of the AI act

• Hybrid AI (GenAI, Physics-Simulation, Data augmentation, Uncertainty Quantification, ..)
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▪ Hybrid AI, with its inclusive approach to human knowledge, overcomes the limitations of “classic” AI 
(based exclusively on data) : The

• accuracy of physical simulations can be improved by hybrid modeling that takes advantage of data.

• joint use of data and scientific laws reduces the complexity and cost of physical simulations.

• joint use of data & knowledge graphs enables business expertise to be integrated and results to 
be explained.

▪ Approaches that hybridize data and knowledge models (physical/semantic) have emerged fairly recently, 
and have not yet reached maturity ==> R&D efforts are needed to bring the subject to maturity in 
engineering/industry.

▪ An avenue in AI to the preparation of the implementation of the AI act for the entreprise, is Trusted AI. 
Need for the Human in the loop

▪ Generative AI is beginning to make slight progress in industry...

Discussion



Physics/Simulation and ML

• Bronstein, M. M. & al. (2017) Geometric deep learning: going beyond euclidean data. IEEE Signal Process Mag. 34
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