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Scientific context

m The data are assumed to represent samples from random variables with
unknown probability distributions

m The area of statistical learning and analysis of complex data.

m Data : Complex data < heterogeneous, temporal/dynamical,
high-dimensional /functional, incomplete,...

m Objective : Transform the data into knowledge :
— Reconstruct hidden structure/information, groups/hierarchy of groups,
summarizing prototypes, underlying dynamical processes, etc

Modeling framework

m Latent variable models : f(z|0) = [ f(x,2|0)dz
Generative formulation : 2~ q(2|0)
x|z~ f(zlz,0)
— Mixture models : f(z|0) = Zszl P(z = k) f(z|z = k, Ox) and extensions
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Mixture models [McLachlan and Peel., 2000]

Mixture modeling framework

m Mixture density : f(x|0) = Zszl 7k 1 (2]|0k)

m Hig power for density approximation : [Nguyen et al., 2019]

m Generative model

z o~ M7, TK)
zlz ~ f(2l6.)

— learn @ from the data
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https://arxiv.org/pdf/1903.00147.pdf

Mixtures and the EM algorithm
Finite Mixture Models [McLachlan and Peel., 2000]
f(x;0) = 1w fi(x; 0x) with 7, > 0 Vk and Y p, m, = 1.

Maximum-Likelihood Estimation

6 € arg maxg log L(0)
log-likelihood : log L(8) = 3" log S3n | m f (a4; O).-

The EM algorithm [Dempster et al., 1977, McLachlan and Krishnan, 2008]
6" Ellog L.(6)|D, 8°'*
€ argmaxEflog L.(6)|D, 67

complete log-likelihood : log L.(6) = Y"1, Zszl Zi log [k fr. (245 01 )] where
Ziw =1(Z; = k)

Clustering

% = argmaxy<p<i P(Z; = k|zi;0), (i=1,...,n)
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Mixtures in a high-dimensional setting

m Parsimonious GMMs [Banfield and Raftery, 1993, Celeux and Govaert, 1995] :

» Eigenvalue decomposition of the covariance mat. ¥;, = /\kaAkD{

> )y the volume of the kth cluster (the amount of space of the cluster).

» Dy = (Vii,... Vip) orthogonal matrix of eigenvectors v of 3, :
determines the orientation of the cluster.

» Ay =diag( M1, - -, Aip)/|Zk|YP a normalized diagonal matrix (its
determinant is 1) of the eigenvalues of X arranged in a decreasing
order. This matrix is associated with the shape of the cluster.

ool (O9 |Z] () O]
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Mixtures in a high-dimensional setting

forp>mn:
m LASSO Regularization : [Pan and Shen, 2007] [Celeux et al., 2019]

m Mixtures of Factor Analyzers [McLachlan et al., 2003] (or MCFA extension)

3 =BiBF + Ay :
By is a p X ¢ (with ¢ < p) matrix and Ay is a diagonal matrix.

— (BxBi + Ak)_1 and |BxB{ + Ay| are calculated in a g-dimensional space!

— Here we consider the case where the data are entire functions : {X(t);t € T}
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Functional data are increasingly frequent

absrobance
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Statistical analysis of functional data

A broad literature :

[James and Hastie, 2001, James and Sugar, 2003]
[Ramsay and Silverman, 2005]

[Ferraty and Vieu, 2006]

[Ramsay et al., 2011]

[Bouveyron and Jacques, 2011]

[Samé et al., 2011]

[Delaigle et al., 2012]

[Jacques and Preda, 2014]

[Bouveyron et al., 2018]

[Qiao et al., 2018]

A review can be found in [Chamroukhi and Nguyen, 2018]

m Functional regression
m Functional classification
m Functional clustering, including model-based

m Functional graphical models
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https://chamroukhi.com/papers/MBCC-FDA.pdf

Classification of functional data

Phonemes data set! : n = 1000 log-periodograms for m = 150 frequencies

Original data Robust EM-MixReg clustering : teration 31; K = 5 Robust EM-MixReg clustering : eration 31; K = §



http://www.math.univ-toulouse.fr/staph/npfda/

Clustering of functional data

Clustering real curves of high-speed railway-switch operations
Data : n = 115 curves of m ~ 510 observations
K = 2 clusters : operating state without/with possible defect

Power (Watt)
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Clustering switch operations

Clustering real curves of high-speed railway-switch operations
Data : n = 115 curves of m ~ 510 observations
K = 2 clusters : operating state without/with possible defect

Power (Watt)
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Mixture-of-Experts modeling (for vectorial data)

m Data : an observed i.i.d sample of the pair (X,Y’) where the response Y € R for
the vector of predictors X € RP is governed by a hidden categorical variable Z

z; € [K] is the expert label for (X;,Y5)
m Mixture of experts (ME) [Jacobs et al., 1991, Jordan and Jacobs, 1994] :

K

flz;®) = > m(@w) fulyle;6r)
k=1 v M
Gating network Expert Network

exp (wk0+w£m)

m Gating network (e.g softmax) : mx(z; w) = TR oxp (wpt 7o)
=1 2

m Experts network (e.g Gaussian regressors) : fi(y|@; 61) = ¢(y; u(x; By,), ok) with
parametric (non-)linear regression functions p(x; 3;)

m parameter vector ¥ = (w?, @1, ... w7

< For a review, see Nguyen and Chamroukhi [2018]
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https://chamroukhi.com/papers/Nguyen-Chamroukhi-MoE-DMKD-2018.pdf

lllustration

NMoE. NMoE

© Cluster 1
o Cluster2
© Cluster 3
—— Expert mean 1
—— Expert mean 2
—— Expertmean 3
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Fitting the ME model

MaXimum lee|lh00d EStImatIOI‘l Via EM [Dempster et al., 1977, Jacobs et al., 1991]
m MLE : ¥ is commonly estimated by maximizing the observed-data log-likelihood :

U, € argmaxgeo L(¥) with L(P) = 7 log Sor | me(zs;w) f(y; |2 @)
— the EM algorithm
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Fitting the ME model

MaXimum lee|lh00d Est|mat|0n Via EM [Dempster et al., 1977, Jacobs et al., 1991]

m MLE : ¥ is commonly estimated by maximizing the observed-data log-likelihood :

~

U, € argmaxgeo L(¥) with L(P) = 7 log Sor | me(zs;w) f(y; |2 @)
— the EM algorithm

< Consider a high-dimensional setting
— Looking for sparse models
Regularized MLE of the ME [Khalili, 2010] [Chamroukhi and Huynh, 2019]

¥ is estimated by maximizing a penalized observed-data log-likelihood :

~

v, € arg max L(W¥) — Peny(¥)

m — Pen) (%) LASSO penalties for experts and the gating network
m encourages sparse solutions

m performs parameter estimation and feature selection

< Doesn’t apply (directly) to functional data (e.g functional predictors and/or
responses)
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Mixtures-of-Experts with functional predictors

m ME to relate functional predictors {X (¢) € R;t € T C R} to a scalar response
YeYCR

m The inputs X (-) are data continuously recorded from (multiple) subject’ sensors
for some time period

variable 1 variable 2

AN

variable 9

X400
X,q0
X“g(t)

X
Xaa)
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X504 ()
X502
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o]

W\

FIGURE — Functional predictors X;;(t) t € T,i=1,---,nand j=1,...,p.
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Mixtures-of-Experts with functional predictors

m ME to relate functional predictors {X (¢) € R;t € T C R} to a scalar response
YeYCR

m The inputs X (-) are data continuously recorded from (multiple) subject’ sensors
for some time period
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FIGURE — Functional predictors X;;(t) t € T,i=1,---,nand j=1,...,p.

< We first consider univariate functional predictors (p = 1)

m Let {X;(-),Yi}iu1, be a random i.i.d sample from the pair {X(-),Y)}
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ME for functional predictors and a scalar response

Questioning

Regression, Clustering and classification of observations with functional predictors with
three guidelines :

m (1) generative modeling : warranty for estimation and prediction
m (2) deal with high-dimensional setting (sparsity and feature selection)

m (3) User guideline : keep an interpretable fit

Proposed answering

(1) Mixture modeling (Mixture-of-Experts model) (2) regularization to encourage sparse
solutions (3) Functional regression, classification and clustering

Main modeling guidelines

m Functional generalized linear models [James, 2002, Miiller and Stadtmiiller, 2005]
(including FLR)

m Functional linear regression (FLR) (anf FGLM) that's interpretable FLIRTI [James
et al., 2009]
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Stochastic representation of the FunME model
Functional experts network

m The experts are formulated as functional regression models (see eg. James [2002])
Y=o+ [ Xi®Badt+e, i=1....m, )
T

z; € [K] is the unknown expert label for (X;(.),Ys)
B=;,0 € R is an unknown intercept coefficient of functional LR z;
{B:,(t) € R;t € T} is the unknown function of parameters of functional expert z;

£ (0,02,) with 02, € RT the variance of expert z;
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Stochastic representation of the FunME model
Functional experts network
m The experts are formulated as functional regression models (see eg. James [2002])

Yr’i :ﬁzi70+/ Xl(t)ﬂzz(t)dt+sl7 = 17"’7”) (1)
T

z; € [K] is the unknown expert label for (X;(.),Ys)
B=;,0 € R is an unknown intercept coefficient of functional LR z;

{B:,(t) € R;t € T} is the unknown function of parameters of functional expert z;

& N(0,02,) with 02, € RT the variance of expert z;

Functional gating network

m Multinomial logistic (softmax) functional gated network : For z =1,--- , K —1:
P(Z = 2| X(t),t€T) /
% X 5 = 1 = 0 X z
h(X(t),t€T) Og{]P(ZzKLX()tET =az0+ o
2 a(t)dt
P(Z = 2| X(t),teT) = P <a 0+ Jr X (o (t)d) ) (2)
1+ 3021 exp (asro + fT X(t)az (t)dt)

B a0 € Ris an unknown intercept parameter

m {a.(t) € R;t € T} is the unknown function of parameters of gating network z
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Representation of the functional predictors
i = Bzi,o-i-/Xi(t)Bzi(t)dt—l—é‘i, i=1,...,n,
T
ho(X(t),t€T) = aso+ / X () (t)dt.
T

m Estimating the coefficient functions «(.) and 5(.) is a high-dimensional problem
< needs approximation for dimensionality reduction

m Two main approaches : i) basis representation ii) functional PCA (FPCA) [Ramsay
and Silverman, 2005])
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Representation of the functional predictors

Y, — ﬁzi,o-l-/ X8, (O)dt + &1, i=1,...,m,
T
ha(X(t),teT) = az,o+/X(t)az(t)dt.
T

m Estimating the coefficient functions «(.) and 5(.) is a high-dimensional problem
< needs approximation for dimensionality reduction

m Two main approaches : i) basis representation ii) functional PCA (FPCA) [Ramsay
and Silverman, 2005])

< Here we represent the functional data by using a basis expansion :
r

Xi(t) = Z%ba‘(t) =z, b.(t), (3)

m b, (t) = (bi(t),ba(t),...,b-(t)) " is an r-dimensional basis ((B-)spline, Wavelet,..)

m x; = (Ti1,..., %) can be seen as the vector representation of X;(.)
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Representation of the functional predictors

Y, — ﬁzi,o-f—/ X8, (O)dt + &1, i=1,...,m,
T
ha(X(t),teT) = az,o+/X(t)az(t)dt.
T

m Estimating the coefficient functions «(.) and 5(.) is a high-dimensional problem
< needs approximation for dimensionality reduction

m Two main approaches : i) basis representation ii) functional PCA (FPCA) [Ramsay
and Silverman, 2005])

< Here we represent the functional data by using a basis expansion :
r

Xi(t) = Z%ba‘(t) =z, b.(t), (3)

m b, (t) = (bi(t),ba(t),...,b-(t)) " is an r-dimensional basis ((B-)spline, Wavelet,..)

m x; = (Ti1,..., %) can be seen as the vector representation of X;(.)

Here the X's are directly observed. We later consider the case when they are not.

< The ;55" can be computed explicitly by zi; = [~ X;(t)b;(t)dt for j = 1,...,7 and
_ T

T, = (acil, 000 ,:l?-;r) R
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Representation of the functional gating network

Functional linear predictor for the gating network defined as :

ha(X(£),t € T) = log { IE)((ZZ: ?f;(fg)’,tti?) } — a0t /T X (t)as (t)dt

< The function «,(¢) is represented similarly as for X function by

Z (2,50 2 by(t) (4)

where
B by(t) = (bi(t),...,be(t))" is a g-dimensional basis (of the same type as X).

B¢, = (£1,E2,.--,E,4) " is the vector of logistic regression coefficients
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Representation of the functional gating network

Then the functional linear predictor h.(X;) for ¢ = 1,...,n is represented as

ho(Xi(t),t € T;a) = a0 + / X (t)as, (t)dt = oy 0 + / x| b, (t)b, (t)C. dt
T T

—aotal ([ vowi0a)c,
T

-
= Oézi,o-FCziri,
where
| :I:'_(:Cil,.. .Tir)—r

= ([ br(t)by(t )T i
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Representation of the functional gating network

Then the functional linear predictor h.(X;) for ¢ = 1,...,n is represented as

ho(Xi(t),t € T;a) = a0 + / X (t)as, (t)dt = oy 0 + / x| b, (t)b, (t)C. dt
T T

—aotal ([ vowi0a)c,
T

-
= azi10+Cziri,
where
| a:-—(:c“,.. .Tir)—r

= ([ br(t)by(t )T i

The FunME gating network (2) is then now phrased as
hey(Xi3€) = oz 0+ (LT
exp {aro+Cirs
k(&) = { eri} o (5)
1+ Zk’ 1 €Xp {ak’,o ar Ck’ri}
where & = ((a1,0,¢7 ), -+, (@x—1,0,(j_q)) | € RETD>¥@HD s the unknown
parameter vector of the gating network, to be estimated.
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Representation of the functional experts

Yi:ﬁzi,()'i‘/ Xi(t)B:;(O)dt +¢e;,, i=1,...,n
T

The coeffecient function 3.(-) is represented by the following expansion :
- T
Ba(t) =D m=jbi(t) + e(t) = 0. by(t) + e(t) (6)
j=1

m b, (t) = (bi(t),ba(t),...,by(t))" is a p-dimensional basis ((B-)spline, Wavelet,..)
B 7, = (N:1,722,---,72p)  is the vector of regression coefficients

e(t) X N(0,02), e(-) L X;'s and represents the approximation error of 3.(t) by
linear projection by ()7, .
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Representation of the functional experts

The functional linear expert regressor z is then represented as :

Y = ﬁzlo+/X ﬁzl()dt+az—/3zlo+/m b, (t)( ()m., +ez(t))dt+sl

=Buo+x (/b )dt)nz /X(t e(t)dt + &

= Bz.0 + "']Zixi +ei+ / Xi(t)e(t)dt
T

where
[ wi:(:cil,.. :c“«)T
= (b))
mel=¢ —l—fT e(t)dt N(O ar.?).
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Representation of the functional experts

The functional linear expert regressor z is then represented as :

Yi=fBero+ / Xi()B., ()t + &1 = Boyo + / 2 b, (1) (b] (0., +ex(t) ) di + &,

=Buo+x (/b )dt>nz /X(t e(t)dt + &

= Bz.0 + 'f]ZiXi +ei+ / Xi(t)e(t)dt
T

where
u wi:(:cil,.. :c“«)T
= (b (t)by(t) T dt) " @
mel=¢ —l—fT e(t)dt N(O ar.?).

The FunME expert (1) can thus be expressed as

1/; = ﬂzi,0+n:@-xi+6:7 izly"')”’? (7)

and we have f(yi|zi(.), zi = k; 0x) = ¢(vi; Br.o + 1 Xi, 052) where
0, = (ﬁkyo,n;r, 022)—'— € RPT2 is the unknown parameter vector of expert density k
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FunME model

The Functional ME model
Combining (5) and (7), the resulting FunME distribution is defined by

yz|X1aW Zﬂ-k I'z, yz;ﬁk,o +7IkTXz'701:2) (8)

where 7y (r;; &) = exp {aw,0 + CkTri}/l + 3Kl exp {ag o + ¢Lri} and

= (&7,07,...,0%)T the unknown parameter vector of the model

Model fitting
Since it is a mixture-of-experts model, then ¥ can be estimated by :

m ML via the EM algorithm [Jacobs et al., 1991, Dempster et al., 1977, McLachlan
and Krishnan, 2008]

m Regularized ML to encourage sparsity (eg. lasso penalty [Tibshirani, 1996])

m Regularized ML (lasso-type regularization) on the derivatives of the «a(-) and 3(-)
function, by relying on the FLIRT| methodology [James et al., 2009]
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1) FunME and MLE via the EM algorithm

Maximum-Likelihood Estimation

¥ € arg maxy log L(¥)
log-likelihood : log L(¥) = -7 log S5 | m1(Xy; €)d(yi; Br,o + M. xi, 012
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1) FunME and MLE via the EM algorithm

Maximum-Likelihood Estimation

¥ € arg maxy log L(¥)
log-likelihood : log L(¥) = -7 log S5 | m1(Xy; €)d(yi; Br,o + M. xi, 012

The EM algorithm [Dempster et al., 1977]

&"" € argmaxEllog Le(¥)[{Xs, Yi}ioy, @]

complete log-likelihood :

log Le(W) =37, Zszl Zik, log [Wk(rﬂ &) (yi; Bro + 'rl;crxi,O'ZQ)] where
Zik =M=y, k=1,..., K
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1) FunME and MLE via the EM algorithm

Maximum-Likelihood Estimation

¥ € arg maxy log L(¥)
log-likelihood : log L(®) = -7, log S5 | m1(Xy; €)d(yi; Br,o + mf xi, 017)

The EM algorithm [Dempster et al., 1977]

&"" € argmaxEllog Le(¥)[{Xs, Yi}ioy, @]

complete log-likelihood :

log Le(¥) = 377, ZkK:1 Zir 1og [mr(rs; €)d(yis Bro + X, 022)] where
Zik =M=y, k=1,..., K

Clustering, Regression

m Expert label : Z; = argmaxi<p<k E(Zix|X:i;®), (i=1,...,n)

m Expert's mean function :
§Z|{Xz,21 :k} :ﬁk’()—Fﬁ;:rXi, (’L = 1,...,77,; k: 1,,K)

m FunME mean function : §; = S5 m(2i(¢); €){Bro + Aa i}, (i=1,...,n)
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ML parameter estimation via EM (FunME-EM)
The E-Step

Compute the expectation of the complete-data log-likelihood, given the observed data
{zi(-),y:i }i=1, using the current parameter vector 1AQM

QE:e®) = E [log L(®){a(), y}im; ¥
n K
>3 log [mulei(); )6y Beo + mixe )] (9)
i=1 k=1

where 7 d)(yl,ﬁ(s) x7 ', o2

X, My 0 /f(yi|:1:¢;W(s)), is the probability that the pair
(zi(t),y:) is generated by the kth expert.

FA1cEL CHAMROUKHI
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ML parameter estimation via EM (FunME-EM)
The E-Step

Compute the expectation of the complete-data log-likelihood, given the observed data
{zi(-),y:i }i=1, using the current parameter vector 1AQM

Q@ wY) = E[log L(@){a(), yHey; @]

n K
>3 log [mulei(); )6y Beo + mixe )] (9)

i=1 k=1

where T( = &(ys; B(S) T'r],(c ) 02,2 *) )/ f(yilzs; w(*) is the probability that the pair
(zi(t),ys) is generated by the kth expert.

The M-Step

m Update the value of the parameter vector ¥ by ¥V = arg maxg Q(¥; ¥¥)

m Separate maximizations w.r.t the gating network and the experts network

g(erl) = argmaX{Q W() ZZle log T (zi(); €)} (10)
i=1 k=1
91(:“) = argmaX{Q (0x; %) =

Zle log ¢ (yi; Br.o + my Xi, o) }(11)
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Example

Estimated a(t)
0 2 s 4 s s 70 & %0 10
Estimated 4()

+
. 450
s 1400
2
o

1200
2

1250
4
s 0 20 40 60 80 1000 1200 1400 1600 1800
o 1 2 % 4w % e 1 8 0 10 epoch
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2) Regularized MLE via an EM-lasso algorithm

<+ p>>n to ensure a good approximation of 3. (t) by ] b,(t) (tradeoff between
smoothness of the functional predictor and complexity of the estimation problem.)

Regularized Maximum-Likelihood Estimation

¥ € arg maxy log L(¥) — Pen, , (%)
log-likelihood : log L(¥) = 37", log S5 | m1(Xy; €)d(vi; Br,o + M Xi, 017)
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2) Regularized MLE via an EM-lasso algorithm
<+ p>>n to ensure a good approximation of 3. (t) by ] b,(t) (tradeoff between
smoothness of the functional predictor and complexity of the estimation problem.)

Regularized Maximum-Likelihood Estimation

¥ € arg maxy log L(¥) — Pen, , (%)
log-likelihood : log L(¥) = 37", log S5 | m1(Xy; €)d(vi; Br,o + M Xi, 017)

The EM-lasso algorithm

" € argmax Eflog LS () [{ X;, Y, vl
€

complete log-likelihood :
log LS, (¥) = D e Zszl Zix log [wk(Xi;£)¢(y¢; Br,0 + 'r]zxi,a;:Q)] — Peny , (¥)

Lasso regularization

Penx x(¥) = )\Z Ml +x Z €elly

where A and x are positive real values representing tuning parameters.
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Regularized MLE via EM-lasso (FunME-EMlasso)

The EM-lasso algorithm for FunME
m E-Step : unchanged

m M-Step : D = arg maxe {Qx  (F; @) = Q(¥; ¥®)) — Peny , (¥)}

Updating the expert’ network parameters
9§:+1) € arg maxg, QA(0x; ) with

i=1

n p
QA (05, 29) =378 Tog ¢(yi; Bro + My X6, 0%°) = XD |mws,
F=il

— A weighted LASSO problem for the n;,’s
< Apply the LASSO machinery

< the update of o1 is a weighted variant of the standard univariate Gaussian
regression
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Updating the gating network parameters

Updating the gating network parameters
£6*Y ¢ argmaxe Qx(&; %)) with

K—1 gq

(& P) erflf) log mi(rss€) = x D > €kl
=1 k=1 k=1 j=1
n K—-1 K—-1 K—-1 ¢q
= > (Z T (Oék,o + CkTrz') — log (1 + Y explawo + CkT’ri}>> —Xx D> I&wl
i=1 \ k=1 = k=1 j=1

v

— A weighted version of the regularized multinomial logistic problem (e.g [Mousavi
and Sgrensen, 2017])

m There is no closed-form solution

m we then use a Newton-Raphson with Coordinate Ascent updates of the gating
network coefficients &;.
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Coordinate Ascent for the gating network
For each expert k, for j =1,...,p:

wy  S(Zhiwars (B - 20%x)
W S war

7@ &
s (RIWP (R - 2)ix) /RIWPR,) (13)

where
m A= ( ) o+ 1+ (T ) _ i (ri;€9))) Jwir is the working response

[ Ei(s) = agfz) +r; Ck — r”Ck . fitted value excluding the contribution from (i ;

mo(ri; €9) (1 — i (r5;6)))
m W,(f) = diag(wik, . . ., wnx) and R; is the jth column of R = (r1,...,r,)",

B Wik

m S(-) is a soft-thresholding operator defined by S(u, x) = sign(u)(Ju| — x)+ and
(x)+ a shorthand for max{xz,0}

For a0, the update is given by

PO _ L Te® i
al(ctgl) = 2in wg(n o ri i) = W,‘f)(h?) = RCEt))/trace(W,(cq))
i=1 Wi
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Coordinate Ascent for the expert network
For each expert k, for j =1,...,p:

A = (S R T igmiant??) /3o

i=1
62
= S (XTWEr 0 () /(XTWOX;) (14)
where X is the jth column of the design matrix X = (x1,...,X») ",
W(Q) = diag(r4 (0 (4))

'r-g;) =y 6(")1 = X,B(q) + Béq)XJ is the residual without the contribution of the jth

coefficient
S(u,n) := sign(u)(Ju| — n)+ is the soft-thresholding operator with (.)+ = max{.,0}.

(s+1) T (g — %I ) @ (@ @
s G= i
b = 17 r—r =W, " (y — Xn,") /trace(W,;"),  (15)
i=1 Tik
2
n (s) ( +1) T,,(s+1)
g2t = Tik (yz o XMy )
?:1 Ti(lj)

/Wi (= BT 10 = XtV | ftrace( W) (16)
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Example

Estimated a(t)
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Estimated f(t)
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3) FunME by regularizing functional derivatives

m For FunME-LASSO regularization described previously, there is no actually reason
that the functions 3(.) and «(.) be sparse.

m So regularizing the parameter vectors representing these functions has no obvious
interpretability

— FLiRTI methodology [James et al., 2009] offers an interpretable and sparse fit for
functional linear regression

m Regularization is performed on the the derivatives of the coeffcient function, rather

than on the paramters of the function

— We rely on FLiRTI methodology for the regression functions (., (t) (and o, (t))

FLIRTI : determine whether the dth derivative of 3., (t) is zero or not at each point ¢;.

< can produce a highly interpretable estimate for 3., (t) curves :
Sj) (t) = 0 implies that X (t) has no effect on Y at ¢
(D (t) = 0 means that f., () is constant at t,
) (1) = 1 shows that f., (t) is a linear function of ¢, etc.
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m Let D? be the dth finite difference operator defined recursively as
D'b(t;) = plb(t;) — b(t;-1)],
D?b(t;) = DIDb(t;)] = p’[b(t;) — 2b(t;—1) + b(t;-2)];
Db(t;) = DID* 'b(t;)].
= D?b(t;) is an approximation for b(¥ (t;) = [b{¥ (¢;), ..., 65" (t;,)]"
m A, = [D%(t1), D%b(t2),...,D%(t,)]" (the approximate derivative matrix)
m Let Yz = Ap"?zi
m If ﬂi’j) (t) = 0 over a large regions of ¢ for some d, then <., s sparse.

= Y., = [z, <y 7V=.p] | provides a sparse estimate for | 23” (t1),-. -, ,§f) (tp)]".

FLIiRTI for the expert’ network of FunME

Yi=B0+m., Xit+el =0+ (A y.) xi+e)
= a0+ (x{ Ay, +er
=Be0+Vi' 7., e

and we now have 8 = (810,74 ,01>) " parameter vector of expert density k

FAI1CEL CHAMROUKHI Functional Mixtures-of-Exeperts



FLIiRTI for the gating network of FunME
B Let wy = A, where A, = [D?(t1), D%b(t2), ..., D%b(ty)]"

— we get (, :A;lwk.

The gating network probabilities become

k(v W) = exp {ak,0 + CkTri} _ exp {an,0 + 'Uika:}

LYl exp{awo +CuTr} 14+ DIt exp {aw o + v wiv}
(17)

with v; = r;'—Aq’1 is the new predictor and the new gating network parameter vector

w = ((@1,0,w] ), .-+, (@x—1,0,wik_1))" and (ax—1,0,wi)" is a null vector.

The resulting FunME distribution and parameter estimation

K
a3 ) = 3 mawis w)(yis Bro + v vi, 01) (18)
k=1
where @ = (w? ,@T ... WwT)T the unknown parameter vector of the model

— Apply the EM-Lasso algorithm developed previously with :
m Predictors : v; = x;'—A;1 and v; = r?A;l

= Regularization : on w's and ~'s : Peny , (F) = A1 [[7lly + x ony! llwsll;
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Example : Tecator data

Estimated a(t)
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Example : Phonemes data (K=5), d=0
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Example : Phonemes data (K=5), d=1
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Example : Phonemes data (K=5), d=2

Estimated A(t)

4000
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FunME for unobserved predictors

The functional predictors X;(t) are in general unobserved directly

Fa1cEL CHAMROUKHI
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FunME for unobserved predictors

We rather observe U;(t) a noisy version of X;(t)

Fa1cEL CHAMROUKHI

Uy, (0

Ugo, 0

UH(”

variable 1 variable 2 variable 9

U“z(l)
U“g(l)

Ugo 0

FIGURE — Noisy functional predictors U;;(t) t € T

USU‘S(O

Functional Mixtures-of-Exeperts



Until now the functional predictors X;(¢) are represented by basis expansion as

= wib;(t) = a{ by (1),
Jj=1

< the coefficients zi; = [ X;(t)b;(t)dt are unknown since X;(t) is not observed
— We first model U;(t) (for a single variable) as

Uz(t)IXZ(t)—I—(SZ(t), i=1,...,n, 6lNN(O,U§)
We assume that the §;'s are independent of the X;(:)'s and the Y;'s

and propose an unbiased estimator of z;; from U;(t) defined as

@,:/Ummaw
T

Indeed, we have E(%;;) = [ E(Ui(t)) = [ X; t)dt = z;;.
< Thus, an estimate X;(t) of X (t) can be given as

Xi(t) =2, b(t), i=1,...,n, (19)
with Z; = (Zi1,. .. ,L/U\ir)—r

< The previous models/algorithms apply by replacing x; by its estimate &;
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FunME for classification

Y € [G] represents the known group label of the functional predictor X(-).

m Expert modeling : functional multinomial logistic distribution

exp {,Bkg o+ fT (t)Brg (t)dt}
14+ Z A 1 exp {/Bk;gl,o + fT t)ﬁkg/(t)dt}

< use the same basis representatlon for the linear predictors
Brg,o + fT 5k9(t)dt

G

P(y:| Xi(.), Zi = k;8) = H

Kyi=g)

m M-Step : Newton-Raphson with coordinate ascent

2 (o) - 0]
oo - (ST en) e
k

with 8 = (0 1,...,60.c_1) with Bk 4 = (Brg0,n1,)T € R for g € [G — 1],
be the unknown parameter vector of expert distribution k to be estimated.

m Bayes (Maximum A Posteriori) rule :

y=arg max P(Y =y|u;¥) = argmaxZwk r; &)p(y|x; Ok)
=6 k=1
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Concluding remarks

A model for heterogeneous data with functional predictors

m The model inference can be performed by the EM algorithm

m Allows to perform feature selection

m Relying on FLiRTI methodology allows to keep the feature selection interpretable
Ongoing :

m BIC-based procedure for model selection

m Numerical experiments

m Package (currently codes ares written in Matlab and will be made public soon)

m Extension to the multivariate setting

m Extension to the case of functional predictors and functional responses
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Thank you for your attention !
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