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Statistics and Data Science

Clustering of multivariate data

Unsupervised learning for dimensionality reduction
Time series segmentaion

Clustering of functional data

@ Unsupervised Bayesian (non-)parametric learning

Model-Based Co-Clustering of Multivariate Functional Data
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m The term “Data Science” has surged in popularity

m Data science is increasingly commonly used with “big data.”

m Data science, including Big Data has recently attracted an enormous
interest from the scientific community
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m What does Data Science mean?

m What about Statistics in the Data Science “area” ?

m There is not yet a consensus on what precisely constitutes Data Science
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Use of the term "data science” is increasingly common, as is "big
data.” But what does it mean? Is there something unique about
it? What skills do "data scientists" need to be productive in a
world deluged by data? What are the implications for scientific
inquiry? Here, I address these questions from the perspective of
predictive modeling.
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‘The fise of data science, including Big Data and data

Statement Contributors analytis, has recently atiracted enormous atfention i the
David van Dyk, Imperial College popular press for ts spectacular contributions in a wide range
(chair) of scholarly discipiines and commercial endeavors. These
Montse Fuentes, NCSU Successes are largely the fruitof the innovative and
Michael I. Jordan, UC Berkeley entrepreneurial spiri that characterize this burgeoning fild.
Michael Newton, University of Nonetheless, its nterdisciplinary nature means that a
Wisconsin substantial collaborative effort s needed for it o realize it full
Bonnie K. Ray, Pegged Software potentialfo productivty and innovation. While there is not yet
Duncan Temple Lang, UC Davis a consensus on what precisely constitutes data science, three
Hadley Wicknam, RStudio professional commurites, all within computer science and/or

statstics, are emerging as foundational to data science: ()

o and organization of data resources, (i)

Statistics and Machine Learning convert data into knowledge, and (i) Distributed and Parallel Systems
provide the computational infrastructure to carry out data analysis.

m For a review, see the report of D. Donoho (2015) : “50 years of Data Science”
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m There is not yet a consensus on what precisely constitutes Data Science, but

m Data Science can be seen (defined ?) as? :

the study of the generalizable extraction of knowledge from data.
requires an integrated skill set spanning mathematics, machine
learning, artificial intelligence, statistics, databases, and optimization

a. Vasant Dhar (2013) : Communications of the ACM, Vol. 56 No. 12 : 64-73

m Data Science clearly has an interdisciplinary nature and requires substantial
collaborative effort

m Databases, statistics and machine learning, and distributed systems are
emerging as foundational to data science

(i) Databases : organization of data resources,
(i) Statistics and Machine Learning : convert data into knowledge,

(iii) Distributed and Parallel Systems : computational infrastructure
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Statistics and Data Science

— Statistics play a central role in data science
m Allow to quantify the randomness component in the data

m A well-established background to deal with uncertainty (probabilistic
frame- work) and to establish generizable methods for prediction and
estimation

m allow soft decision : e.g. confidence interval in regression and
posterior probabilities in classification

m help for understanding the underlying generative process
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Statistical modeling for data science

m The observed data (zy,...,x,) where z; € X C R? are assumed to
represent samples from random variables X with unknown probability
distribution f

m The main questions are i) how to define flexible and generic models for f ii)
construct estimators with desirable properties to learn f from the data iii) to
deal with the computational and practical issues for “complex” data

m The area of statistical learning for the analysis of complex data.

Context and Objectives

m Context : Large-scale data are increasingly frequent : Complex data —
heterogeneous, dynamical (temporal, functional), incomplete,
high-dimension, and possibly massive

m Objectives : learn/discern useful information in an unsupervised way from
raw data :
— Reconstruct/reveal hidden structures, i.e, (hierarchy of) groups;
learn/select relevant features, etc
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Unsupervised Sparse Signal Decomposition
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Unsupervised Sparse Signal Decomposition
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Unsupervised Sparse Signal Decomposition
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Unsupervised Sparse Signal Decomposition
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Outline

Clustering of multivariate data
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Clustering of multivariate data

Geyser Data
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Clustering of multivariate data

Geyser Data clustering K-means : K-means iteration : 6
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K-means

m a straightforward and widely used clustering algorithm, is one of the
most important algorithms in unsupervised learning.

m Each cluster is represented by its mean (cluster centroid) g, in R%.

K-means MacQueen [1967]

(ﬁl,...,ﬁK,ﬁ)earg min j(ula'“auK:Z)
M- K2

objective function : T (s, ., g 7) = Y, S0 i — o |2
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K-means

m a straightforward and widely used clustering algorithm, is one of the
most important algorithms in unsupervised learning.

m Each cluster is represented by its mean (cluster centroid) g, in R%.

K-means MacQueen [1967]

(ﬁ'la“w“’K? )earg min j(ula'“auK:Z)
K152

objective function : T (s, ., g 7) = Y, S0 i — o |2

0 0
WO, O

m Initialization : .1y’ ) (eg, randomly chosen data points)

Assignment step : ZZ@ = arg rréin Ixi — p.|?
(@)
(g+1) _ fe1 Zin Xi
B Relocation step : Zn 2D

= The K-means algorithm is simple to implement and relatively fast.
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Example

Geyser Data
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Example

x2

Geyser Data clustering K-means : K-means iteration : 1

2 T T T T
o
o o © ©
15F
° ° gm o000 5
° o oo ‘to
® oo
1k o 008@ o 5 4
° % og |
0o, les) 22
00709
o5l o @68& P B Momy
oP0ogod L8 g b
4 odg
o ot g oo
or o o O oo 4
o Shg
o
-0.51 ° o ~
= 5 4
o
_15k 4
%o
5 ©
©
5 4
25 . . . . . .
-2 -15 -1 -05 0 05 1 15
x1

Statistical data science

unsupervised learning problems



Example

x2

Geyser Data clustering K-means : K-means iteration : 2
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Example

x2

Geyser Data clustering K-means : K-means iteration : 3
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Example

Geyser Data clustering K-means : K-means iteration : 4
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Example

Geyser Data clustering K-means : K-means iteration : 5
2 T T T T
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Example

Geyser Data clustering K-means : K-means iteration : 6
2 T T T T
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Example
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K-means

How to measure uncertainty ?

-2

-2 0 2 -2 0 2

FIGURE — K-means partition (left) vs GMM-EM partition (right).
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Mixtures and the EM algorithm (Model-Based Clustering)
Finite Mixture Models [McLachlan and Peel., 2000]
f(x;0) = Zszl 7 fr(x; Ox) with 7, > 0 Yk and Zszl = 1. }
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Mixtures and the EM algorithm (Model-Based Clustering)
Finite Mixture Models [McLachlan and Peel., 2000]
f(x;0) = X0 7w fu(x; 0x) with 7, > 0 Vk and Y, m, = 1.

Maximum-Likelihood Estimation

0 € argmaxg In L(6)
log-likelihood : In L(6) = 27, log "1 7 fi (25 01.).
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Statistical data science and some unsupervised learning problems



Mixtures and the EM algorithm (Model-Based Clustering)
Finite Mixture Models [McLachlan and Peel., 2000]
f(x;0) = X0 7w fu(x; 0x) with 7, > 0 Vk and Y, m, = 1.

Maximum-Likelihood Estimation

0 € argmaxg In L(6)
log-likelihood : In L(6) = 27, log "1 7 fi (25 01.).

The EM algorithm [Dempster et al., 1977]
new old
0" € arg Iglgg(E[ln L.(0)|D, 0]

complete log-likelihood : In L.(0) = >"" | Zszl Zi log [k fr (245 0% )] where Z;,
is such that Z;;, = 1if Z; = k and Z;;, = 0 otherwise.

v
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Mixtures and the EM algorithm (Model-Based Clustering)
Finite Mixture Models [McLachlan and Peel., 2000]
f(x;0) = X0 7w fu(x; 0x) with 7, > 0 Vk and Y, m, = 1.

Maximum-Likelihood Estimation

0 € argmaxg In L(6)
log-likelihood : In L(6) = 27, log "1 7 fi (25 01.).

The EM algorithm [Dempster et al., 1977]
new old
0" € arg Igléag(E[ln L.(0)|D, 0]

complete log-likelihood : In L.(0) = >"" | Zszl Zi log [k fr (245 0% )] where Z;,
is such that Z;;, = 1if Z; = k and Z;;, = 0 otherwise.

v

Clustering

z; = argmaxi<k<i P(Z; = k|wi;§), (i=1,...,n)
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Gaussian mixture models (GMMs)

The finite Gaussian mixture density is defined as :

K
Fxis @) =Y N (x5 g, i)

k=1

f(x)

FIGURE — An example of a three-component Gaussian mixture density in R2.
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EM for Gaussian mixture models

E-Step : calculates the posterior component memberships :

(@) s(a)
FkN(X‘; 12 ) b )
70 = P(Z; = klx;, ¥9) = s A;(x ku(‘”kz(q))
=17 iy Mg "5 &g

that x; originates from the kth component density.

M-Step : parameter updates :

e _ i _md

k - n T on’

@) _ 1 N\~ @

My ) Tik X
N =1
1 n

1

Egﬁ) - = Ti(;g)(xi_H(q+1))(xi_“(q+1))T.

nk =1
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Examples

Iris Data
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FIGURE — A three-class example of a real data set : Iris data of Fisher.
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FIGURE — Iris data : Clustering results with EM for a GMM and AIC.
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Examples

Iris Data
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FIGURE — Iris data of Fisher : The data are colored according to the true partition.
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Example

Iris Data clustering GMM : EM iteration : 0
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Example

Iris Data clustering GMM : EM iteration : 1
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Example

Iris Data clustering GMM : EM iteration : 2
25 T T

x2
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Example

Iris Data clustering GMM : EM iteration : 3
25 T T
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Example

Iris Data clustering GMM : EM iteration : 4
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Example

Iris Data clustering GMM : EM iteration : 5
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Example

Iris Data clustering GMM : EM iteration : 6
25 T T
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Example

Iris Data clustering GMM : EM iteration : 7
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Example

Iris Data clustering GMM : EM iteration : 8
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Example

Iris Data clustering GMM : EM iteration : 9
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Example

Iris Data clustering GMM : EM iteration : 10
25 T T

x2

Statistical data science a ng problems



Example

Iris Data clustering GMM : EM iteration : 11
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Example

Iris Data clustering GMM : EM iteration : 12
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Iris Data clustering GMM : EM iteration : 13
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Iris Data clustering GMM : EM iteration : 14
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Iris Data clustering GMM : EM iteration : 15
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Example

Iris Data clustering GMM : EM iteration : 16
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Example

Iris Data clustering GMM : EM iteration : 17
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Example

Iris Data clustering GMM : EM iteration : 18
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Example

Iris Data clustering GMM : EM iteration : 19
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Example

Iris Data clustering GMM : EM iteration : 20
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Example

Iris Data clustering GMM : EM iteration : 21
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x2
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Parsimonious GMMs for high-dimensional data

m Parsimonious Gaussian mixture models Lare statistical models that
allow for capturing a specific cluster shapes (e.g., clusters having the
same shape or different shapes, spherical or elliptical clusters, etc).

m Eigenvalue decomposition of the cluster covariance matrices :
T
= )\kaAka

where

> )i represents the volume of the kth cluster (the amount of space of
the cluster).

» Dy is a matrix with columns corresponding to the eigenvectors of 3
that determines the orientation of the cluster.

» Ay is a diagonal matrix, whose diagonal entries are the normalized
eigenvalues of 3 arranged in a decreasing order and its determinant is
1. This matrix is associated with the shape of the cluster.

1. Banfield and Raftery [1993], ?
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Parsimonious GMMs for high-dimensional data

AT Al AA ARA A
ADA, DT ADA, DT Ap A ADADT ADADT
AD, A, DY MDA, DY AD,AD} AxDpAD}
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Model selection

m The problem of choosing the number of clusters can be seen as a
model selection problem.

m The model selection task consists of choosing a suitable compromise
between flexibility so that a reasonable fit to the available data is
obtained, and over-fitting.

m A common way is to use a criterion (score function) that ensure the
compromise.

score(model) = error(model) + penalty(model complexity)

which will be minimized.

m Here the complexity of a model M is related to the number of its
(free) parameters v

FAI1CEL CHAMROUKHI Statistical data science and some unsupervised learning problems



Model selection

e Akaike Information Criterion (AIC) :

~

AIC(M,,) =In L(6,,) — vy
e Bayesian Information Criterion (BIC) :

=\ VUmlog(n)

BIC(My,) = In L(6,,)

2
e Integrated Classification Likelihood (ICL) :
ICL(M) = In Le(B) — %g(”)

~

where In L.(0,,) is the complete-data log-likelihood for the model M,,
and v, denotes the number of free model parameters. For example, in the
case of a d-dimensional Gaussian mixture model we have :
dx(d+1) Kx(d+1)x(d+2)

2 B 2 a
'S {mi} (=)

1.

v=(K-1)+ K xd)+ K x
—_— ~—
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Examples

-2

-2 0 2 -2 0 2

FIGURE — Clustering results obtained with K-means algorithm (left) with K = 2 and the EM
algorithm (right). The cluster centers are shown by the red and blue crosses and the ellipses are
the contours of the Gaussian component densities at level 0.4 estimated by EM. The number of
clusters for EM have been chosen by BIC for K =1,...,4.
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Examples

Iris Data
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FIGURE — A three-class example of a real data set : Iris data of Fisher.
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FIGURE — Iris data : Clustering results with EM for a GMM and AIC.
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Examples

Iris Data
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FIGURE — Iris data of Fisher : The data are colored according to the true partition.

Statistical data science unsupervised learning problems



Latent data models for dimensionality reduction

m Dimensionality reduction for high dimensional data (for
representation /visualization etc)

Principal Component Analysis (PCA) [Pearson, 1901, Hotelling,
1033],

m Probabilistic PCA [Tipping and Bishop, 1997, 1999, Roweis, 1998|
Factor Analysis (FA)[Spearman, 1904, Thurstone, 1947],
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Principal Component Analysis (PCA)

m PCA is a linear projection which maximizes the variance in the
projected space [Hotelling, 1933].

Consider a sample X = (x1,...,X,) with x; € R%.
= The aim is to project the data onto a space having dimensionality
M < d while maximizing the variance of the projected data.

Consider the sample mean vector and the sample covariance matrix :
X = %Z?:l X; and S = %E?zl(xi — )_()(Xi — )_()T.
=- The variance of the projected data is therefore given by the scalar :

1 _ _
v(u) = - z;(uTxi —ul'x)(ulx; —ufx)? =u’Su- (1)
1=
The principal axes (the direction vectors) are then given by :

u = argmaxu’Su (2)
ucR?

subject to u"u =1 and v u, — 0 for j # k
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x2
(2]
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Disadvantage :

The absence of a probability density model and associated likelihood
measure.

Deriving PCA from the perspective of density estimation would offer a
number of important advantages, including the following :

The likelihood measure allows comparison with other density models

We can derive EM for PCA and hence deal with possible missing
values

Possibility to perform Bayesian inference (e.g. for model selection)

Possibility of computing the the posterior class probabilities if PCA is
used to model the class-conditional densities in classification,

The value of the probability density function would give a measure of
the novelty of a new data point.

PCA model could be extended to a mixture framework.

= Use Probabilistic Principal Component Analysis (PPCA)
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Probabilistic Principal Component Analysis (PPCA)

Latent variable model for PPCA [Tipping and Bishop, 1997, 1999,
Roweis, 1998] :

X; = W2z;+ p+ €; Observed data = linear transf. of z + additive Gaussian noise
Z; ~ N(0,0'2|) latent variables of the principal component subspace

€ ~ N(0,1)zero-mean Gaussian noise

xi|z; ~ N(Wz; + u,o?l) conditional density for the observed data
X; o~ N(M,WWT + aQI) marginal density for the observed data

< (W, u,0?) : Parameter estimation using EM [Tipping and Bishop,
1997, 1999, Roweis, 1998]
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EM for PPCA

NB : for p, we get its closed form solution : 1 = X
Only W and o2 are computed in an iterative way by EM

E-step : By using the old parameters values, compute

Elz] = (WITW +o2)'WT(x; — %) (3)
E[z;z]] = o*(WIW +o?1)7! 4+ E[z]E[z;]" (4)

M-step

Wiew = |:Z(Xl _i)]E[Zi]T

=1

> Efu | ®

ol — % ; [ci = %I — 2E[z] " Wik (xi — %) + trace(Efziz! [Woen Wi,

(6)

NB. Here E[] is actually E[.|X, {W, i, 02 }oid]
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Factor Analysis (FA) |

Factor Analysis (FA) [Spearman, 1904, Thurstone, 1947]
FA is closely related to PPCA
The only difference is

x;|z; ~ N(Wz; + p, ¥) conditional density for the observed data
W is a d x d digonal matrix; rather than
x;|z; ~ N(Wz; + u,o°1) conditional density for the observed data

(isotropic covariance matrix).
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Factor Analysis (FA) Il

Generative model

X; = W2z;+ p+ €; Observed data = linear transf. of z + additive Gaussian noise
z; ~ N(0,W)latent variables of the principal component subspace

€ ~ N(0,l)zero-mean Gaussian noise

xi|zi ~ N(Wz; + u, ¥)conditional density for the observed data
x; ~ N(u, WWT 4+ ®)marginal density for the observed data
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EM for Facotr Analysis

E-step
Elzi] = (1+W/Io'wW)'wi(&1x; - x) (7)
E[zizl] = (1+ WI® "W)™ + E[zE[z;]" (8)

M-step
Wew = |:Z(x1 —R)E[zi]T:| |:ZE[Z1ZZT]:| (9)

. 1 ¢ T
T,e, = diag {s = Waew > Elzi](x: — %) } (10)

1=1

NB. Here E[.] is actually E[.|X,{W, u, ¥}4]
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Time series segmentation

Time series segmentaion
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Regression with hidden logistic process

Let y = (y1,...,Yn) be a time series of n univariate observations y; € R
observed at the time points t = (¢1,...,t,) governed by K regimes.

The Regression model with Hidden Logistic Process (RHLP) [1]

Y = ,BZIEZ +o.6 ;5 6~N(01), (i=1,...,n)
Z,L' o~ M(l,ﬂ'l(ti;W)7...,’/TK(ti;W))
Polynomial segments ﬁzTisci with z; = (1,¢;,...,t)T with logistic probabilities
l;
T (ti;w) = P(Z; = klti;w) = xpllnsh o)

Soie exp (wert; + wio)

K

Flyilti; 0) = mi(ts; w)N (yi; Br @i, 07)

k=1
m Both the mixing proportions and the component parameters are time-varying

m Parameter estimation via a the EM algorithm : EM-RHLP

Fa1cEL CHAMROUKHI
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EM-RHLP

Parameter estimation via a the EM algorithm : EM-RHLP
m Parameter estimation via a the EM algorithm (EM-RHLP)

M-Step : includes a weighted logistic regression problem < IRLS
(and weighted polynomial regressions)

m EM-RHLP algorithm complexity : O(IgwIiris K3p®n) (more advantageous
than dynamic programming).

Time series approximation and segmentation

. Ny
Approximation : a curve prototype §; = Ely;[t;; 0] = Zszl 7 (ti; W) B, T4

< The RHLP can be used as nonlinear regression model y; = f(t;;0) + ¢;
by covering functions of the form f(¢;;6) = Zszl m(ti; w)Br e [3]

Curve segmentation : Z; = arg maxy, E[z;|t;; W] = arg maxy, mg (t;; W)

Model selection : Application of BIC, ICL (vg = K(p+4) —2.)
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Application to temporal data modeling and segmentation
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Joint segmentation of multivariate time series

Multiple hidden process regression
m Data: (y4,...,9,) a time series of n multidimensional observations

Y, = (y? ,y§d>)T € R? observed at instants t = (t1,...,t,).

m Modely, =B’ z; +e; ; e~N(0,%.), (i=1,...,n)

z = (z1,...,2) A latent process generating the data

< Multiple regression with hidden logistic process : Multiple RHLP [6]
< Multiple Hidden Markov model regression (MHMMR) [7]

Application to human activity time series
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Outline

Clustering of functional data
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Functional data are increasingly frequent

[James and Hastie, 2001, James and Sugar, 2003]
[Ramsay and Silverman, 2005]

[Chamroukhi et al., 2010]

[Bouveyron and Jacques, 2011]

[Samé et al., 2011]

[Jacques and Preda, 2014]

[Bouveyron et al., 2018]

[Chamroukhi and Nguyen, 2018]

Power (Wat)

T B

950 B 3 0
wavelength Time (Second)

Tecator data Railway switch curves

phonemes aa, a0, dc, iy sh

§
]

2 4 8 10 120 10 10 30 40
frequencios echo length

Phonemes curves Satellite waveforms
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High-dimensional FDA by clustering/segmentation

Non-stationary time series/functions

250

600

altimetric echo

0 1 2 3 4 5 6

30
Time (Second) echo length

Railway curves Satellite waveforms

Objectives
m Curve clustering/classification (functional data analysis framework)

m Deal with the problem of regime changes — Curve segmentation
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Functional data clustering
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Functional data clustering
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3
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Functional data analysis context

Data
m The individuals are entire functions (e.g., curves, surfaces)
m A set of n univariate curves ((z1,Y1),.- -, (Zn,Y,,)

m (x;,y,;) consists of m; observations y, = (¥i1, . .., Yim,;) observed at the
independent covariates, (e.g., time ¢ in time series), (zi1,. .., Tim,)

Objectives : exploratory or decisional

Unsupervised classification (clustering, segmentation) of functional data,
particularly curves with regime changes : [4] [9], [C11] [16]

Discriminant analysis of functional data : [2], [5]

Functional data clustering/classification tools
m A broad literature (Kmeans-type, Model-based, etc)

= Mixture-model based cluster and discriminant analyzes
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Mixture modeling framework for functional data

m The functional mixture model :

K
fyle; ) = > afr(yle; @)

k=1

m fi(y|x) are tailored to functional data : can be polynomial (B-)spline
regression, regression using wavelet bases etc, or Gaussian process
regression, functional PCA

< more tailored to approximate smooth functions

— do not account for segmentation

Here fi(y|x) itself exhibits a clustering property via hidden variables (regimes) :
Riecewise regression model (PWR)
Regression model with a hidden Markov process (HMMR)
Regression model with hidden logistic process (RHLP)
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Piecewise regression mixture model (PWRM) [9]

m A probabilistic version of the K-means-like approach of [Hébrail et al., 2010]
K

Ry,
fyles ) => o[ 1] Nwisi Browis, o)

k=1 r=1j€l,

PWR
Iy = (&kr, Ek,r+1] are the element indexes of segment r for component k

m — Simultaneously accounts for curve clustering and segmentation

Parameter estimation
Maximum likelihood estimation : EM-PWRM

Maximum classification likelihood estimation : CEM-PWRM
— a generalization of the K-means-like algorithm of Hébrail et al. [2010] :
M-step : includes wighted piecewise regressions < dynamic programming

Complexity in O(Igm K Rnm?p?) : An issue for large m

Curve clustering : 2; = arg maxy, 7;, (W) with 7, (¥) = P(Z;|xi, y;; )
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Application to switch operation curves

Data set : n = 146 real curves of m = 511 observations.
Each curve is composed of R = 6 electromechanical phases (regimes)

CEM-PWRM partition

Power (Wat)
Power (Watt)

2 3 2 3
“Time (Second) Time (Second)

Cluster 1 Cluster 2

o 1 4 5

2 3 2 3
Time (Second) Time (Second)

EM-GMM  EM-PRM  EM-PSRM  K-means-like =~ CEM-PWRM

721.46 738.31 734.33 704.64 703.18
TABLE — Estimated intra-cluster inertia for the switch curves.
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Application to Topex/Poseidon satellite data

The Topex,/Poseidon radar satellite data? contains n = 472 waveforms of
the measured echoes, sampled at m = 70 (number of echoes)

We considered the same number of clusters (twenty) and a piecewise linear
approximation of four segments per cluster as in Hébrail et al. [2010].

Original data
250 T T

200f 1
-
150 -

100

50

10 20 30 40 50 60 70

2. Satellite data are available at
http://wuw.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html
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CEM-PWRM clustering of the satellite data
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Mixture of hidden logistic process regressions [4]

m The mixture of regressions with hidden logistic processes (MixRHLP) :

my Rk
f(y;|lzi; ¥ Zak H Zﬂkr(l‘j; Wk)N(yithgrwjv Jl%r)
= j=1r=1

RHLP
exp (Wiro + Wer15)

Ry )
D1 XD (Whrro + Whpr175)

Thr (255 W) = P(Hij = r|Zi = k25 wi) =

m Two types of component memberships :
— cluster memberships (global) Z;, = 1iff Z, = k
— regime memberships for a given cluster (local) : H;; =1 iff H;j =r
MixRHLP deals better with the quality of regime changes

m Parameter estimation via the EM algorithm : EM-MixRHLP

m EM-MixRHLP has complexity in O(IemIiris K R3*nmp3) (K-means type for
piecewise regression is in O(IxmK Rnm?p3) — EM-MixRHLP is
computationally attractive for large values of m and moderate values of R.
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EM-MixRHLP clustering of simulated data
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Functional Linear Discriminant Analysis [8]
Functional Mixture Discriminant Analysis [5]

‘Sub-Class 1 of Class 1 ‘Sub-Class 2 of Class 1 Class 2

B 3 O
Time (Seconc)

B 3 0
Time (Seconc)

£ £ £
Approach Classification error rate (%) Intra-class inertia
FLDA-PR 11.5 10.7350 x 10°
FLDA-SR 9.53 9.4503 x 10°
FLDA-RHLP 8.62 8.7633 x 10
FMDA-PRM 9.02 7.9450 x 107
FMDA-SRM 8.50 5.8312 x 10°
FMDA-MixRHLP 6.25 3.2012 x 10°
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Phonemes data

Phonemes data set used in Ferraty and Vieu [2003] 3
1000 log-periodograms (200 per cluster)

phonemes aa, ao, dcl, iy sh

2 H
£ 3
815 2

00 120 140 00 120 140

)
requencies

log-periodograms
log-periodograms

0 0«

0 80 100 120 140 6 80 20 40 60 8 100 120 140
requencios frequencios requencies

FIGURE — Original phoneme data and curves of the five classes : "ao”, "aa", "yi", "dcl”, "sh”.

3. Data from http://www.math.univ-toulouse.fr/staph/npfda/
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EM-like clustering results for Phonemes

Phonemes data set used in Ferraty and Vieu [2003]*
1000 log-periodograms (200 per cluster)

phonemes aa, ao, dol, iy sh

Robust EM-MixReq Clustering - teration 31; K - 5

Robust EM-MixReg clustering : eration 31; K = 5

H

20

Robust EM-MixRog clustering : teration 31; K =5

) 20 140
requencies

EM-PRM EM-SRM EM-bSRM
Estimated K 5 5 5
Misc. error rate  14.29 % 14.09 % 142 %
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EM-like clustering results for yeast cell cycle data

m Time course Gene expression data as in Yeung et al. [2001]°

m 384 genes expression levels over 17 time points.

Fobust EM-MixReq clustering  foration 84; K - § obust EM-MixFieg clustering - leration 84: K = 5

Transeipt Levels

FIGURE — EM-like clustering results with the bSRM model.

Rand index : 0.7914 which indicates that the partition is quite well defined.

5. http://faculty.washington.edu/kayee/model/
FaicEL CHAMROU
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Outline

@ Unsupervised Bayesian (non-)parametric learning
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Bayesian spatial spline regression with mixed-effects

m Data: ((z1,¥,),---,(n,y,)) a sample of n surfaces ¥, = (Y1, - - -, Yim,)"
and their spatial coordinates =; = (%411, Zi12), - - - » (Tim; 15 Tim,2)) T

m Propose regression and regression mixtures, with three additional features :

Include random effects
Models for spatial functional data

A full Bayesian inference

Bayesian spatial spline regression with mixed-effects [Esann 2016, 13]

Y, = Sl(,@—‘rbl) +e; e N./\/'(O,O'lei), (’L = 1,...,7’L)

m 3 : fixed-effects regression coefficients

m b; : random subject-specific regression coefficients b; 1 e; ~ N (0, &%1,,,)

m S, is a spatial design matrix.

FAI1CEL CHAMROUKHI Statistical data science and some unsupervised learning problems



Bayesian mixture of spatial spline regressions

Data : A sample of n surfaces (y1,...,¥,,) and their spatial covariates
(S1,...,S,) issued from K sub-populations

m Bayesian mixture of spatial spline regression models with mixed-effects
(BMSSR) :

y1|sl7!p Zﬂ-k y’L’ IBk+b'Lk) UkImt)

— Useful for density estimation and model-based clustering of
heterogeneous surfaces

Hierarchical prior from for the BMSSR

21y ~ D(ay,...,0K)
B, ~  N(po,%o)
birléf  ~  N(04,&714)

i ~  ZG(ao,bo)
o ~  ZG(go,ho).
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Bayesian inference of the BMSSR

m For the BMSSR, the parameter ¥ is augmented by the unknown
components labels z = (z1,..., z,)

Bayesian inference of the BMSSR using Gibbs sampling
m Sample from the analytic full conditional distributions :

Zi|oo ~ MLy 7151, .oy Tike) with 7. (1 < k < K) =P(Z; = kly;,Si; ¥)
7l.. ~D(as +ny,...,ax +ng)

By|... ~ N(vo, Vo)

big|... ~ N(v1, V1)

Tl ~ TG (g1, )

&r|... ~IG (a1, b1)

m relabel the obtained posterior parameter samples if label switching by
the K-means-like algorithm of [Celeux, 1999, Celeux et al., 2000].
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Handwritten digit clustering using the BMSSR

m BMSSR applied on a subset of the ZIPcode data set (issued from MNIST)

m Each individual y,; contains m; = 256 observations
A subset of 1000 digits randomly chosen from the test set

iy
-

&

FIGURE — Cluster mean images obtained by the BMSSR model with 12 mixture components.

The best solution is selected in terms of the Adjusted Rand Index (ARI) values,
which promotes a partition with K = 12 clusters (ARI : 0.5238).
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@ Unsupervised Bayesian (non-)parametric learning
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Dirichlet Process Parsimonious Mixtures

m Bayesian parametric inference : [Bensmail, 1995, Bensmail and Celeux, 1996,
Bensmail et al., 1997, Bensmail and Meulman, 2003]

m — Mixture models for multivariate data in a fully Bayesian framework

m < Dirichlet Process and Parsimonious Mixtures [C5,6,8], [11]

Dirichlet Processes (DP)
DP(«a, Go) [Ferguson, 1973] is a distribution over distributions :
0:|G~G; Gla,Go~DP(a,Go) ,i=1,2,...

Pélya urn representation [Blackwell and MacQueen, 1973]
AI 1

0|017-- -1 o~ rGO—FZma

DP places its probablllty mass on an infinite mixture of Dirac deltas

G—Zﬂ'k(s‘gk 0k|G0NGo, k—1,2 i WIchTK‘kzl

k=1

<> The generated parameters 0, for a DP process exhibit a clustering property
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DPM : Generative model
Gla,Go ~ DP(a,Go)
éi|G ~ G
zil0; ~ f(16:)

Chinese Restaurant Process mixtures (Pitman, 2002; Samuel and Blei, 2012)
m Latent variables (z1,...,2x,)
m Predictive distribution : x
i—1
el n
0(zi, Kica +1) + —§(zi, k) -

a+1i—1 Pt a+1i—1

p(Zi = k|Z1, "'7Zi—1;a) =

onwl.an;'_" .@

Parameters. -

m Generative model : zla ~ CRP(zy;a)

6..|Go ~ Go
X0, ~ f(162)
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Implemented parsimonious models

‘ Decomposition ‘ Model-Type ‘ Prior ‘ Applied to ‘
Al Spherical g A
Al Spherical g Ak
AA Diagonal g each diagonal element of AA
A A Diagonal g each diagonal element of A\ A
ADADT General w = = ADADT
AxDADT General ZG and W A and = = DADT
/\DAkDT* General g each diagonal element of XA,
A DA DT* General g each diagonal element of \j A
ADkADg General g each diagonal element of AA
)\kaADE General g each diagonal element of A\ A
AD, A DY * General ZG and ZW Xand B = DyA, DY
Ay DAL DY General w =) = A\,Dp A, DT )

Bayesian inference using Gibbs sampling
m Posterior distribution for the component labels :
p(zi = k|lz—;, X, O, ) x p(x;|zi; O)p(zi|z—_i; ) with p(z;]z_;; «) the CRP prior
m Posterior distribution for the component parameters :

p(0k|2, X, ©_g, 05 H) o< [, _p, P(xi|2i = k; 01)p(Oy; H) with p(8; H) : Prior
distribution over 0y

Bayesian model comparison by using Bayes Factors

_ p(X|M1)p(My) . p(X[My) . _ ; Aot
BF12 = SXn)p(its) ~ p(X| M) with the Laplace-Metropolis approximation

R | R .
P(XIMm) = [ p(X[0m, Mim)p(0m|Mm)d0y, = (21) 2 [H|2p(X|0m, M )p(8:m|Mm)
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Clustering of benchmarks

Diabetes data set, Geyser data set, Crabs data set

2 = 199.58 (Decisive)

2 logBF : ADAD” vs A\;D,AD} = 5 (Substantial)

“10g 2BF : \\DyAD! wvs A\.DAD” = 36.08 (Decisive)
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Humpback whale song decomposition

m Real fully unsupervised problem

m Data : 8.6 minutes of a Humpback whale song recording (with MFCC)

I \:‘ |
PR
A
0N R
R
A\ \: (/AN ‘
RN
Humpback Whale Spectrum of a signal (20 s). )

Objectives
m Discovering “call units”, which can be considered as a whale “alphabet”

m Find a partition of the whale song into clusters (segments), and
automatically infer the unknown number of clusters from the data.

FAICEL CHAMROUKHI Statistical data science and some unsupervised learning problems



Unsupervised decomposition of whale song signals

=
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m Sound demo of Unit 5 DPPM AI : (sec. 0) (sec. 12)
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Unsupervised decomposition of whale song signals
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Unsupervised decomposition of whale song signals

Freq [0, 5500] Hz
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Unsupervised decomposition of whale song signals

Song units
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Outline

Model-Based Co-Clustering of Multivariate Functional Data
m Model-based co-clustering
m Co-clustering of multivariate functional data
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Outline

Model-Based Co-Clustering of Multivariate Functional Data
m Model-based co-clustering
m Co-clustering of multivariate functional data
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High-dimensional functional data clustering

m Multivariate functional data are increasingly present
m e.g : Data continuously recorded for different subjects from multiple subject’

SeNsors

< Measurements collected from different network elements (transceivers, cells,
sites...) :

R
i %
H. A4 'M;f'_ ~H
s
Eis H Enel
=5 HT MLt e
niie ity MJL i
ENERDENS G Ry e LA T
I b e ]_'_]__
A Siirz I WME%“M

Data Zoom

FIGURE — An example with d = 30 and n = 20 daily observations [Ben Slimen et al., 2016].
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High-dimensional functional data clustering

Questioning

Clustering of highly multivariate functional data with two guidelines :
m (1) Mathematical guideline : warranty for estimation and selection
m (2) User guideline : keep a user-friendly meaning of the process

Both are important because clustering is a highly risky task. ..

Proposed answering

(1) Model-based co-clustering with (2) temporal curve segmentation

Novelty corresponds to combining both (1) and (2)
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Clustering VS Co-Clustering

m Simultaneous clustering of lines/indiv. (Z) and columns/var. (W)
m Can be used as a way to reduce dimensionality (var. — W)

Data clustered over columns Data co-clustered

Original Data Data clustered over rows

300

500 L o
300 300




Latent block model for co-clustering

The Latent Block Model [Govaert and Nadif, 2013]

[(X;w) = ) B(Z,W;m,p) f(X|Z,W;6)
~——— —

(zw)eZxW data kind dependent

Hypotheses
m The latent variables Z and W are independent : P(Z, W) = P(Z)P(W) and iid :
P(Z) =TI, P(2:) with z; ~ Multinomial(m1, ..., mx) where 1 = P2, = k)
P(W) =[], P(w;) with w; ~ Multinomial(p1, ..., prr) where p, = P(w; = ¢)

m Conditional independence : x;;|(zi, w;) L @isj/|(2:, w;l)
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Latent block model for co-clustering

The Latent Block Model [Govaert and Nadif, 2013]

[(X;w) = ) B(Z,W;m,p) f(X|Z,W;6)
—————

(zw)eZxW data kind dependent

Hypotheses

m The latent variables Z and W are independent : P(Z, W) = P(Z)P(W) and iid :
P(Z) =TI, P(2:) with z; ~ Multinomial(m1, ..., mx) where 1 = P2, = k)

P(W) =[], P(w;) with w; ~ Multinomial(p1, ..., prr) where p, = P(w; = ¢)

m Conditional independence : z;;|(zi, w;) L @i (zil, wjl)

< binary data : binary [Govaert and Nadif, 2003, 2008, Keribin et al., 2012],

< categorical data : multinomial [Keribin et al., 2014]

< contingency table : Poisson [Govaert and Nadif, 2003, 2006, 2008]

< continuous data : Gaussian [Lomet, 2012, Govaert and Nadif, 2013]

— functional data : functional PCA + Gaussian, see further [Ben Slimen et al., 2016]
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Inference for the latent block model

Inference of the latent block model

m variational block EM (VBEM) for maximum likelihood estimation and fuzzy
co-clustering [Govaert and Nadif, 2006, 2008].

m block classification EM (CEM) algorithm for maximum classification likelihood and
hard co-clustering [Govaert and Nadif, 2003, 2006, 2008]

m Bayesian inference [Keribin et al., 2012, 2014] : Bayesian latent block mixtures for
binary data and categorical data & a variational Bayesian inference and Gibbs
sampling.

m Number of blocks estimation : ICL criterion [Lomet, 2012, Keribin et al., 2014]
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Functional data modeling : “classical”’ approach

[Ramsay and Silverman, 2005] and many others

m Step 1 : (x,y) decomposed into a finite basis of function
(B-spline...) : Y;(t) = 2%_ cirbr(24(t)) with c estimated by OLS

m Step 2 : functional principal components analysis (PCA) which is
performed as a usual PCA of the basis expansion coefficients ¢ using

a metric defined by the inner products between the basis functions

m Step 3 : set a probability distribution on c, typically Gaussian

It defines a distribution on c instead of y. ..
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Functional data modeling : regression RHLP

Alternatively, use a segmentation via generative piecewise polynomial
regression modeling of f(y|x) [Chamroukhi et al.])

— Regression with Hidden Logistic Process (RHLP)
— See formula later

It gives a distribution on y and also a meaningful segmentation of the curve|
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RHLP for modeling different types of functions

ssoffs i p
soof: !
§ asol}f g £
= = £
2 3 4 5 B 3 Tor i £ i 0 3 o
Time (Second) Time (Second) Frequency s
1 1
o8 o o
06 08 o
= z B
- = =
0.4 0.4 o
02 02| 02
z 3 5 2 3 g kS W E T 3 o o
Time (Second) Time (Second) Freauency el
=G mownce Zpect
550 550 4
500 500
§ 450 g £
g Faso g
] 5 5
2 400 2 400 g
350 as0| -
300 300) -
250 250
5 for i m’ o

B 3
Time (Second)

B 3
Time (Second)

Froquoney 2]

atistical data science and some unsupervised learning problems



Multivariate functional data co-clustering

[Chamroukhi and Biernacki, 2017]

m Data : Y = (y;;) a data sample matrix of n individuals defined on a
set Z and d continuous functional variables defined on a set J.

m Each variable y,; is an univariate curve y;; = (yij(tl), e ,yij(tTij))
of T} observations y(t) € R linked to covariates
xij = (z4(t1), ..., w45(tr,)) at the points (ty,...,t7,), typically a
sampling time

bl

/1
BINIATRINL
L

==

N
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Embedding RHLP in co-clustering

[Chamroukhi and Biernacki, 2017]
m Functional Latent Block Model for Co-clustering :

[Y|x;@) = Y P(Z;mP(Wip)f(Y]X,Z,W;6)
(z,w)EZXW

Z Hﬂ'zlk szjje H f(yijlwiz; Ore) 570
gt NN

(z,w)EZXW i,k i,3,k,€

RHLP

with parameter vector ¥ = (77, p7,0")7, where w = (m1,...,7x)7,

P = (pla"~7pM)Tr and 6 = (0{17"'79££7-~'70}"{M)T'
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Parameter estimation : EM not feasible

— Requires the calculation of the posterior joint distribution
P(zirwje = 1]y, Tij)

< does not factorize due to the conditional dependence on the observed
curves of the row and the column labels

= Variational block EM algorithm : [Govaert and Nadif, 2008, 2013]

— We adopt this variational approximation in our context

Variational block EM algorithm

variational approximation

P(zipwje = 1y, Tij) = Pz, = 1y, ®ij) x P(wje = 1|y;;, Tij)
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Variational block EM algorithm

P(zirwje = 1|y, ®i5) = P(zie = 1|y, @ij) X P(wje = 1]y, T4j) J
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Variational block EM algorithm

P(zinwie = 1|y, Tiz) = P(ziw = Ly, i) X Plwje = 1|y, Tiz) J

Initialization : start from an initial solution at iteration ¢ = 0, and then alternate at the
(g + 1)th iteration between the following variational E- and M- steps until convergence :

VE Step Estimate the variational approximated posterior memberships :

2.(13+1)O(
X @) 7 @ 2
T exp(52;. .0, 52 B2 Tog] e (1 60N (s (1): 8L s (), 00) ) ])

~(q+1)
Wiy X
L aT(@

~ 7 2
P eXp(Zi,k,t,r 20 hY 10%[01%(15;52?)/\[ (yz‘j (1) By i (), 019, )])

R Docal) (660N (4 (1) B wis(0),0(2))
where :
m Ziyp = Pzir = y,;, ij),
B Wy = P(wje = 1|yijamij)r
8 her = P(her = 1zi, w5, 935 (t), 45 (t))
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Variational block EM algorithm

M Step update the parameters estimates 8(?+1) given the estimated posterior
memberships at the current iteration ¢ + 1 :

s(a+1)

(Q+1) i Z

T =
~(a+1)

(q+1) _ 25D
ple™) = B
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Variational block EM algorithm

M Step update the parameters estimates 8411 given the estimated posterior
memberships at the current iteration ¢ + 1 :

s(a+1)

(¢1+1) i 240 Pk

T n
platD)

(q+1) _ 2P,
P = B

The update of each block parameters O, consists in a weighted version of the
RHLP updating rules :

OF (§k0) b
%M%MLM o T o) which is the IRLS

maximisation of F(§,,) =, ., ~fg)u~)ﬁ)h(q> log aker (t; €5p) W.rt €.

(new) _ #(old) PF(grp) ]
. ﬁnew ktz _ |: 1Y)
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Variational block EM algorithm

M Step update the parameters estimates 6

+1 given the estimated posterior

memberships at the current iteration ¢ + 1 :

H

(q+1) _ X% ](ZH)
k

n

(q+1)
(g+1) _ ZJ _]%
Pe = d

The update of each block parameters O, consists in a weighted version of the
RHLP updating rules :

(new) _ g(old) _ [62F<m> -
174 174

} OF (&44)
0€1,,09¢], €= E(Old) I3

maximisation of F(§,,) =, ., ~fg)u?ﬁ)h(q> log aker (t; €5p) W.rt €.

(otd) which is the IRLS
Ere=E&),

The regression parameters updates consist in analytic WLS problems :

-1
(¢+1) _ ~(q) ~(q) T A (2) 5@ (D xT A (@)
kér [Ez 7 X Az]erij:| Ei,j Zik W VL4 X A ]kryu
2(q+1) T 252){”(2) H Aigir(y” XA where X;; is the design matrix for
Thtr > ij ’fg) ';q) trace(AE?;cr) K g
the ith curve, AE;II)W is the diagonal matrix whose diagonal elements are the
; (@) .4 _
posterior segment memberships {hmr,t 1,..., Ty}
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< It is also possible to use the Classification EM (CEM) approximation of EM [Celeux
and Govaert, 1992].

Parameter estimation by an SEM algorithm : SEM-FLBM

m — The SEM algorithm [Celeux and Diebolt, 1985] allows to overcome some
drawbacks of the variational-EM algorithm, including its sensitivity to starting
values; SEM does not use an approximation.

m Eg. SEM for latent block models for categorical data [Keribin et al., 2012, 2014]

m The formulas of VEM-FLBM and SEM-FLBM are essentially the same, except that
we incorporate a stochastic step consisting of sampling binary indicator variables
Zik, Wje and h- according to Zik, Wjie and Ay,
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Source codes are/will be made available on github

Matlab/R/Python
https://github.com/fchamroukhi

© 00 [ «iepremir

x| x x| -« P X | W ANR3IA- Recherche sur Twitt X () fehamroukh (Flcel Chamroui X

« C & GitHub, Inc. [US] | https/github.com/fchamroukhi % © 0
Overview  Repositories 6 Stars 0 Followers 4 Following 1
Popular repositories.
RHLP_Matiab MixRHLP Matiab
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github
https://github.com/fchamroukhi

Data science, Big-Data, Al

The way of the future!
Eg. In France : Interdisciplinary Institutes of Artificial Intelligence (31A)

6/11/2018

Interdisciplinary Institutes of Artificial Intelligence (3IA): the
four selected projects
The results of the 3IA (Interdisciplinary Institute of

Atrtificial Intelligence) call for expressions of
interest were made public on 6 November 2018 by

: .
, Frédérique Vidal, French Minister of Higher
I  J “ Education, Research and Innovation, and Mounir
B9

I Mahjoubi, French Secretary of State for Digital
. o ‘ Affairs. The projects of the Grenoble
o ’ ‘ ) (MIAI@Grenoble-Alpes), Nice (3IA Cote d'Azur),
‘ ‘ Paris (PRAIRIE) and Toulouse (ANITI) sites have
‘ been selected. Inria participates in three of the four

successful projects.

At the heart of the national Al strategy

Each of the Inria research centres took part in formulating 3IA Institute projects within the framework of the
considerable mobilisation of the regional academic and industry ecosystems: they are part of the dynamic
stimulated by the national plan on artificial intelligence announced by the French president following the report by
Cédric Villani.
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Data science models/algorithms

New problems (big data, etc) but ... classical methods ?

Our Core Algorithms Remain the Same

* Regression, decision trees, and cluster analysis continue to form a triad of
core algorithms for most data miners. This has been consistent since the first
Data Miner Survey in 2007.

0%  10%  20%  30%  40%  50%  60%  70%  80%  90%  100%

Regression I SN % W% @R
Decision trees INET N 32% 23% Coo%
Cluster analysis T3 3% 7% o
Time Series MNEETIN 2% 29% e
Ensemble methods WEECE 1% 18% %
Random forests. 7% 2% e
Text mining 16% 26% 2%
Factor analysis 15% % [T
Anomaly detection 1% 2% T
Neural nets 14% 19% o a%
Proprietary algorithms 10% FEVR T
Bayesian methods 13% 26% %
Association rules 18% 2% S m%

Support Vector Machines (SVM) 12%
urvival analysis 10% w0 A%

Social Network Analysis 9% 1% s
Monte Carlo methods 1% 20% o wx
Rule induction 9% 7% oo
Deep Learning 7% s

a%
Link analysis 7%
Upliftmodeling 7% % [oaas
Genetic & Evolutionary algorithms 4%
MARS I 5%

mMost of the time Often Sometimes = Rarely

Selectall that apply)
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Thank you for your attention !
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