Exercice 1. Soit X une v.a. gaussienne de densité : $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$, $\forall x \in \mathbb{R}$. On note par $\Phi(x)$ sa fonction de répartition.

- 1. Calculer $\mathbb{E}(X+1)$ et $\mathbb{V}(-2X)$
- 2. On pose $Y = e^{|X|}$.
 - (a) Déterminer la fonction de répartition de Y, notée $F_Y(x)$, en fonction de $\Phi(.)$.
 - (b) Déterminer la densité de Y, notée $f_Y(x)$.
- 3. Soit Z la v.a réelle de densité

$$f_Z(x) = \begin{cases} \frac{1}{x} \varphi(\ln(x)) & \text{si } x > 0, \\ 0 & \text{sinon.} \end{cases}$$

- (a) Déterminer la fonction de répartition de Z, notée $F_Z(x)$, en fonction de $\Phi(.)$
- (b) Calculer $\mathbb{E}(Z)$

Exercice 2. On rappelle que si (X, Y) est un couple de v.a de fonction de densité de probabilité jointe définie pour $|\rho| < 1$ (ρ étant le coefficient de corrélation) par

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \left(\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho \frac{(x-\mu_X)(y-\mu_Y)}{\sigma_X\sigma_Y} + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 \right) \right\}$$
(1)

alors X est de loi $\mathcal{N}(\mu_X, \sigma_X^2)$ et Y de loi $\mathcal{N}(\mu_Y, \sigma_Y^2)$ avec $(\mu_X, \mu_Y) \in \mathbb{R}^2$ et $(\sigma_X, \sigma_Y) \in \mathbb{R}_+^{\star 2}$. Soit (X, Y) un couple de v.a. de fonction de densité de probabilité jointe définie pour $|\rho| < 1$ par

$$f_{(X,Y)}(x,y) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{x^2 - 2\rho xy + y^2}{2(1-\rho^2)}\right).$$
 (2)

- 1. Déterminer (aucun calcul n'est nécessaire) la loi de X et la loi de Y
- 2. Déterminer la matrice de variance-covariance Σ du vecteur $V = (X, Y)^t$
- 3. Quelle est la condition nécessaire est suffisante pour que le couple (X,Y) soit indépendant?
- 4. Trouver la fonction de densité de probabilité conditionnelle de Y sachant X
- 5. Reconnaître la loi correspondante
- 6. Trouver la loi du vecteur $\mathbf{W} = (X 2Y + 1, 2X Y)^t$
- 7. En déduire la loi de H = X 2Y + 1 et celle de T = 2X Y
- 8. Quelle est la condition nécessaire est suffisante pour que le couple (H,T) soit indépendant?

Exercice 3. Soient X et Y deux v.a i.i.d suivant la loi normale $\mathcal{N}(0,1)$ et soient les v.a U = X + Y et V = X - Y.

- 1. Montrer que (U, V) est un couple Gaussien.
- 2. Montrer que les v.a U et V sont indépendantes.

Exercice 4. Soit $V = (X, Y)^t$ un vecteur gaussien centré tel que $\mathbb{E}(X^2) = 4$ et $\mathbb{E}(Y^2) = 1$, et les v.a 2X + Y et X - 3Y sont indépendantes.

- 1. Déterminer la matrice de covariance de V.
- 2. Montrer que le vecteur $W = (X + Y, 2X Y)^t$ est gaussien.
- 3. Déterminer sa matrice de covariance.

Exercice 5. Soient X_1 et X_2 deux v.a i.i.d suivant chacune la loi normale $\mathcal{N}(0,1)$. Soit $\mathbf{Y} = (Y_1, Y_2)^t$ le vecteur aléatoire tel que

$$\mathbf{Y} = \mathbf{AX} + \mathbf{B}.$$

où
$$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ -1 & 2 \end{pmatrix}$$
, $\mathbf{X} = (X_1, X_2)^t$ et $\mathbf{B} = (2, 3)^t$.

- 1. Déterminer la loi de \mathbf{Y} .
- 2. Déterminer la loi de $\mathbf{Z} = (Y_1 + Y_2 + 1, 3Y_1 Y_2)^t$.
- 3. Déterminer la loi de $Y_1 + Y_2 + 1$, et la loi de $3Y_1 Y_2$.

*

Exercice 6. Une densité de probabilité (ou loi de probabilité dans le cas discret) d'une v.a réelle X, notée $f(x;\theta)$ appartient à la famille exponentielle si $f(x;\theta)$ peut s'écrire sous la forme

$$f(x;\theta) = \exp[\eta(\theta)T(x) + a(\theta) + b(x)]. \tag{3}$$

où les fonctions η , T, a et b sont à valeurs dans \mathbb{R} . La statistique T(x) est appelée statistique exhaustive naturelle et le paramètre $\eta = \eta(\theta)$ est appelée paramètre naturel. Soit X une variable aléatoire de densité $f(x;\theta)$ appartenant à la famille exponentielle.

Déterminer une statistique exhaustive pour le paramètre θ pour un n-échantillon i.i.d (X_1, \ldots, X_n) de v.a de densité $f(x; \theta)$.

Exercice 7. Soit X une v.a suivant une loi Poisson de paramètre $\theta > 0$, i.e, $\forall x \in \mathbb{N}$:

$$p_X(x;\theta) = \mathbb{P}(X=x) = e^{-\theta} \frac{\theta^x}{x!}$$

On considère un n-échantillon (X_1, \ldots, X_n) généré suivant une loi de Poisson de paramètre θ , $p_X(x;\theta)$

- 1. Déterminer une statistique exhaustive pour θ .
- 2. Calculer l'estimateur du maximum de vraisemblance (EMV) de θ .
- 3. En déduire son expression en fonction de la statistique exhaustive calculée dans la question précédente.

Exercice 8. Risque quadratique et décomposition biais-variance Soit θ le paramètre d'une loi de probabilité et soit $\widehat{\Theta}_n$ un estimateur de ce paramètre que l'on cherche à construire à partir d'un n-échantillon de v.a. i.i.d selon cette loi.

- 1. On note par $b(\widehat{\Theta}_n, \theta)$ le biais de $\widehat{\Theta}_n$ comme estimateur de θ . Donner l'expression de $b(\widehat{\Theta}_n, \theta)$.
- 2. On appelle risque quadratique de $\widehat{\Theta}_n$ comme estimateur de θ la quantité définie par : $\ell(\widehat{\Theta}_n, \theta) = \mathbb{E}[(\widehat{\Theta}_n \theta)^2]$. Montrer que ce risque peut être décomposé selon la "décomposition biais-variance" suivante :

$$\ell(\widehat{\Theta}_n, \theta) = \operatorname{Var}(\widehat{\Theta}_n) + (b(\widehat{\Theta}_n, \theta))^2.$$

On cherche donc à trouver l'estimateur qui minimise ce risque.

- 3. Quel est, parmi tous les estimateurs sans biais de θ , celui que l'on doit choisir?
- 4. Qu'appelle-t-on un tel estimateur?

On considère un n-échantillon (X_1, \cdots, X_n) i.i.d selon la loi de Bernoulli $\mathcal{B}(\theta)$ où $\theta = \mathbb{P}(X_i = 1)$ est le paramètre à estimer. On considère les deux estimateurs suivants pour $\theta : \widehat{\Theta}_1 = X_1$ et $\widehat{\Theta}_n = \frac{\sum_{i=1}^n X_i}{n}$.

- 1. Quel est, au sens du risque quadratique, le meilleur estimateur parmi les deux?
- 2. En déduire un estimateur convergent de θ

Exercice 9. Estimateurs et Borne Inférieure de Cramér-Rao (CRLB) Soit X une v.a. gaussienne univariée de densité :

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}.$$

On considère un n-échantillon i.i.d (X_1,\ldots,X_n) de v.a de densité $f(.;\mu,\sigma^2)$

- 1. Calculer la borne inférieure de Cramér-Rao pour un estimateur sans biais de l'espérance μ (variance σ^2 connue)
- 2. Calculer l'estimateur du maximum de vraisemblance de l'espérance μ . Que peut-on remarquer ?
- 3. Montrer qu'il est sans biais
- 4. En déduire qu'il est efficace
- 5. En déduire qu'il est convergent
- 6. Calculer la la borne inférieure de Cramér-Rao pour un estimateur sans biais de la variance σ^2 (espérance μ connu)
- 7. Calculer l'estimateur du maximum de vraisemblance de la variance σ^2 qu'on notera S^2 .
- 8. On suppose que μ est connu. Montrer que que S^2 est efficace et consistent pour σ^2 .
- 9. Maintenant mn suppose que μ est inconnu. En remplaçant dans l'expression de S^2 l'espérance μ par celle de son estimateur calcuée en .2, que peut-on dire sur le biais et l'efficacité de S^2 ?
- 10. Montrer que la variance de l'estimateur S^2 est $\frac{2\sigma^4}{n-1}.$
- 11. En déduire l'efficacité de cet estimateur.
- 12. Que se passe-t-il si on considère $\frac{n}{n-1}S^2$ comme estimateur de la variance au lieu de S^2 ?

Exercice 10. Régression et maximum de vraisemblance vs moindres carrés Considérons le modèle de régression linéaire simple

$$Y_i = \beta_0 + \beta_1 X_i + E_i, \tag{4}$$

les erreurs E_i sont supposés centrées (d'espérance nulle) et de variance σ^2 connue. On cherche à estimer les cœfficients de régression (β_0, β_1) à partir d'un échantillon i.i.d. $\{(x_1, y_1), \dots, (x_n, y_n)\}$. L'objectif est de montrer que, dans le cas Gaussien, l'estimateur du maximum de vraisemblance est celui des moindres carrés. Pour ce faire

- 1. Donner l'expression de la fonction somme des carrés des résidus (RSS) minimisée par la méthode des moindres carrés. On notera cette fonction $RSS(\beta_0, \beta_1)$
- 2. On montre que sous le modèle (4) la densité conditionnelle des observations y_i est Gaussienne

$$f(y_i|x_i;\beta_0;\beta_1)$$

d'espérance conditionnelle $\mu = \mathbb{E}[Y_i|X_i]$ et de variance σ^2 .

Calculer cette espérance à partir de (4)

- 3. Décrire la fonction de log-vraisemblance conditionnelle 1 $L(\beta_0, \beta_1; y_1, \ldots, y_n | x_1, \ldots, x_n)$. On notera cette fonction $\ln L(\beta_0, \beta_1)$, où L représente la vraisemblance conditionnelle
- 4. En déduire que l'estimateur du maximum de vraisemblance est identique à celui des moindres carrés.

Exercice 11. Régression linéaire et moindres carrés On rappelle le modèle de régression linéaire simple sous sa forme matricielle :

$$Y = X\beta + E \tag{5}$$

où Y est le vecteur aléatoires des observations, X la matrice de design (matrice des prédicteurs), β le vecteur des cœfficients de régression et E le vecteur aléatoire représentant le bruit supposé centré (d'espérance nulle) et de matrice de covariance $\sigma^2 I$, I étant la matrice identité.

- 1. Donner l'expression de l'estimateur des moindres carrés (EMC) $\hat{\beta}$ de β
- 2. Montrer qu'il est sans biais
- 3. Calculer sa matrice de covariance

^{1.} Le terme "conditionnelle" ici vient du fait que, comme on est dans un contexte de régression où la variable expliquée Y qui est conditionné par la variable explicative X, on a donc une densité conditionnelle $f(y|x;\beta_0,\beta_1)$ plutôt qu'une densité (non conditionnelle) $f(y;\beta_0,\beta_1)$ comme en estimation de densité classique.