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Données Iris : Les Iris est un jeu de données pré-
senté par Ronald Fisher en 1936 et qui consiste
en des données multivariées qui ont été collec-
tées afin de quantifier les variations de morpholo-
gie des fleurs d’iris de trois espèces : Iris setosa,
Iris virginica et Iris versicolor. Le jeu de données
comprend 50 observations de chacune des trois
espèces d’iris. Quatre caractéristiques ont été me-
surées pour chaque observation : la longueur et la
largeur des sépales et des pétales, en centimètres.
Sur la base de la combinaison de ces quatre va-
riables, Fisher a élaboré un modèle d’analyse per-
mettant de distinguer les espèces les unes des
autres.
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Comprendre la communication chez des espèces animales
Apporter une aide au biologistes pour comprendre la communications chez
certaines espèces (eg. des mammifères marins, s’ils ont un éventuel alphabet,
comment ils migrent, etc)

chants de baleine ; Chants de oiseaux
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Analyse automatique du chant de baleine
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Analyse automatique du chant de baleine
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High-dimensional FDA by clustering/segmentation
Non-stationary time series/functions
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Objectives
Curve clustering/classification (functional data analysis framework)
Deal with the problem of regime changes ↪→ Curve segmentation
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Application to temporal data modeling and segmentation
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Données temporelles d’expression génomique (YeungMBC2001 1,
Chamroukhi 2016)
384 niveaux d’expression des gènes sur 17 pas de temps.
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1. http://faculty.washington.edu/kayee/model/
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Données temporelles d’expression génomique (YeungMBC2001 2, Chamroukhi
2016)

384 niveaux d’expression des gènes sur 17 pas de temps.
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EM-like clustering results for yeast cell cycle data

Time course Gene expression data as in ? 3

384 genes expression levels over 17 time points.
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Robust EM−MixReg clustering : iteration 84; K = 5
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Figure – EM-like clustering results with the bSRM model.

Rand index : 0.7914 which indicates that the partition is quite well defined.

3. http://faculty.washington.edu/kayee/model/
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Time-Series clustering
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Time-Series clustering
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Time series clustering and segmentation
Application to Topex/Poseidon satellite data
The Topex/Poseidon radar satellite data 4 contains n = 472 waveforms of the
measured echoes, sampled at m = 70 (number of echoes)
We considered the same number of clusters (twenty) and a piecewise linear
approximation of four segments per cluster as in ?.
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4. Satellite data are available at
http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.
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CEM-PWRM clustering of the satellite data
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Cadre général de l’analyse statistique de données

Les statistiques jouent un rôle central en analyse de données
Permet de quantifier la composante aléatoire dans les données
Un cadre bien établi pour tenir compte de l’incertitude (cadre
probabiliste) et pour établir des méthodes généralisables de prédiction
et d’estimation
Permet une décision souple : par ex. intervalle de confiance en
régression et probabilités a posteriori en classification
Généralement se prête facilement à l’interprétabilité, aide à la
compréhension du processus génératif sous-jacent
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Cadre général
Analyse statistique de données

L’analyse statistique des données est la branche scientifique qui permet de
convertir des données brutes observées pour un échantillon dans des
scénarios réels ou en laboratoire, à travers des modélisations statistiques en
les représentant sous forme de variables aléatoires, en des informations et
connaissances généralisables à l’échelle de la population étudiée.

Les scénarios du monde réel sont en effet très souvent perçus avec
incertitude, entachés d’incomplétude, corrompus par du bruit, peuvent
provenir de problèmes de grande dimension, etc, et une modélisation
probabiliste dans laquelle les données sont représentées sous forme de
variables aléatoires et de lois de probabilités est ainsi une façon naturelle et
de choix de s’y prendre.

L’approche statistique pour décrire, représenter, et inférer des connaissances
interprétables et des règles de décision à partir des données, repose ainsi
essentiellement sur la construction et l’inférence de modèles aléatoires
pouvant accommoder la nature et la richesse des données brutes observées
pour représenter et comprendre au mieux les informations et connaissances
qui les composent.
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Ces informations peuvent consister par exemple en des statistiques
permettant de synthétiser et résumer les données étudiées, en les décrivant
au mieux, de les visualiser, etc, on parle dans ce cas d’approche descriptive,
ou des modèles ou attributs pertinents construits à représenter au mieux les
données originales pour permettre une meilleure prédiction dans des
scénarios futurs, on parle dans ce cas d’approche prédictive, où des modèles
et règles de décision sont inférés à partir des données observées.

L’approche statistique est aussi généralement celle qui se prête le mieux à
l’interprétabilité et l’explicabilité, souvent demandées aussi bien pour des
besoins méthodologiques, qu’appliqués, et repose sur un formalisme
théorique solide.

Dans ce cours on se place dans le cadre dans lequel on suppose que les
données du problème peuvent être représentées par une variable ou un
vecteur aléatoire X , ou un couple aléatoire (X ,Y ) ∈ X × Y où X est un
vecteur de descripteurs potentiellement grand décrivant une certaine variable
d’intérêt Y .
On considère un échantillon aléatoire (X i ,Yi )i=1,...,n et on suppose que l’on
dispose d’un échantillon d’observations (ensemble d’apprentissage)
D = (x i , yi )i=1,...,n.
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Apprentissage statistique (statistical machine learning)
Ce cours portera sur la formalisation du problème du point de vue de
l’apprentissage statistique. On y présentera quelques fondamentaux de
l’apprentissage avec un focus sur l’estimation statistique paramétrique, en
particulier en prédiction, en clustering et en traitement de séquences.
Dans le cas de la prédiction l’objectif est de voir comment apprendre un modèle
de prédiction φ̂ : X → Y sur les données d’apprentissage D pour lequel ŷ = φ̂(x)
est une bonne approximation de la vraie sortie y (au sens d’un certain critère
d’optimalité, i.e en minimisant la version empirique d’un risque théorique
R(φ) = E` (Y , φ(X )) pour une fonction de perte `). C’est le cas des problèmes
de régression et de classification supervisée (discrimination).
On considèrera des modèles paramétriques φ(X ;θ) en régression, i.e.,
ŷ = Eθ̂(Y |X = x) et en classification, i.e., ŷ = argmaxy∈Y Pθ̂(Y = y |X = x).
Une partie portera sur l’apprentissage non-supervisé où l’on dispose uniquement
d’observations marginales (X i )i=1,...,n du couple (X ,Y ) et où l’objectif est de
reconstruire les données manquantes (Yi )i=1,...,n (e.g typiquement une structure
latente). On s’intéressera à la fois au cas où les données sont séquentielles (i.e
(Yi )i est un processus caché, typiquement Markovien) ou non (e.g. modélisation
par mélange de densités). La dernière partie sera dédiée a la segmentation et au
clustering de données temporelles hétérogènes et non-stationnaires.
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Overview

1 Aspects introductifs

2 Introduction on pattern recognition

3 Classification

4 Mixture models

5 Clustering

6 Topographic Learning

7 Models for sequential data

8 Latent data models for dimensionality reduction

Faïcel Chamroukhi (UNICAEN/LMNO) Advanced Statistics & Machine Learning 20 / 194



Introduction on pattern recognition

1 Aspects introductifs

2 Introduction on pattern recognition
Concepts
Machine learning context
Objectives
Generative/Discriminative

3 Classification

4 Mixture models

5 Clustering

6 Topographic Learning

7 Models for sequential data

8 Latent data models for dimensionality reduction
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Pattern recognition system

Data acquisition

Preprocessing
Feature extraction

Dimensionality reduction

Feature selection
Dimensionality reduction

Classifier design

Classifier evaluation

- Sensors
-> Rough data 

- Denoising
- Data standardization
- Feature extraction
-> Features

- Feature selection
- Optimize the reprezentation space:
linear/nonlinear projection
-> "Optimal features"

- Chose the learning approach
- Learn the classes' parameters (if generative)
learn the decision boundaries (eg, discriminative)
- Model selection
-> Decision rule

classes

Patterns

- "Score (e.g, classification error rate)"

Figure – Basic stages involved in the design of a pattern recognition system.Faïcel Chamroukhi (UNICAEN/LMNO) Advanced Statistics & Machine Learning 22 / 194



Data analysis process

Data acquisition : the sensors part in which the rough data (e.g,
speech signals, images ...) are acquired (e.g., measured) through
dedicated sensors.

Data Preprocessing : denoising, standardization,... feature
extraction for data representation.
Feature selection : optimization of the representation space by
applying for example, linear or nonlinear dimensionality reduction
techniques, in a supervised or unsupervised context.
Classifier design : Given a training set of (selected) features
(observations) → design of a decision rule with respect to a chosen
optimality criterion
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Data analysis process

Classifier evaluation : Once the classifier is designed, its
performance has to be assesses for example by computing the
classification error rate on new data examples, in order to evaluate its
generalization capabilities.

• these stages are not independent. They are highly interrelated and,
depending on the results, one may go back to redesign earlier stages in
order to improve the overall performance.

• There are some methods that combine stages, for example, a
statistical learning at two stages (learning for feature extraction and
learning for classification).

• Some stages can also be removed, for example when the classifier is
directly built without feature extraction nor feature selection.
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Data representation

Speech signal representation :
Linear Predictive Coding (LPC)
Mel Frequency Cepstrum Coding (MFCC)
. . .

Image representation :
Histogram
Local Binary Patterns (LBP)
. . .
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Data Classification

We talk about ”direct" classification, e.g., K -NN

Very often, the classification task involves a learning problem (e.g.,
Neural Networks, Support Vector Machines, Gaussian Discriminant
Analysis, Gaussian Mixtures, Hidden Markov Models,...)
⇒ we learn a decision rule, or a functional mapping between possibly
labeled features and the considered classes.
The main questions concerning the classifier design : the type of the
approach (generative, discriminative,..), linear/non-linear separation,
and the type of the criterion.
⇒ In this course, we focus on probabilistic classifiers in a maximum
likelihood estimation (MLE) framework.
Probabilistic approaches can easily address problems related to missing
information and allows for the integration of prior knowledge (Bayesian
approaches), such as experts information.
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Machine learning context

The paradigm for automatically (without human intervention) learning
from raw data is known as machine learning

acquisition of knowledge from rough data for analysis, interpretation,
prediction.

automatically extracting useful information, possibly unknown, from
rough data :
I features
I simplified models
I classes,...
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Machine learning context

Statistical learning = machine learning + Statistics

distinguished by the fact that the data are assumed to be realizations
of random variables ⇒ define probability densities over the data ⇒
statistical (probabilistic) models.

take benefit from the asymptotic properties of the estimators, e.g.,
consistency (e.g., Maximum likelihood)
To make accurate decisions and predictions for future data, there is an
important need to understand the processes generating the data.

⇒ This therefore leads us to generative learning
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Machine learning context

Supervised/Unsupervised :
Supervised learning : both the input (observation) and the output
(target : class in classification) are available

The objective is to predict the class of new data given predefined
learned classes : classification (discrimination) problem

In several application domains, we are confronted with the problem of
missing information (class label missing, unknown, hidden).
⇒ an unsupervised learning problem
The objective is to discover possible classes (exploratory analysis)
main models : latent data models : e.g., mixture models, HMMs
⇒ a clustering/segmentation problem.
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Machine learning context

Static/Dynamic :
Two contexts for the classification problem :

Static context : The classification rules are taken from static modeling
techniques because the data are assumed to be independent

this hypothesis may be restrictive regarding some real phenomena

dynamical framework : building decision rules from sequential data (or
time series).
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Objectives

machine learning concepts for data analysis

overview of some statistical learning approaches from the literature,
with a particular focus on generative learning (see how they work).

How can we define an accurate discrimination rule by considering both
homogeneous and dispersed data ? (classification (discrimination)

When expert information is missing, how can we automatically search
for possible classes ? unsupervised learning for segmentation,
clustering..

How can we model the underlying (dynamical) behavior from
sequential data ? (Sequential modeling)
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Discriminative learning

Two main approaches are generally used in the statistical learning
literature : the discriminative approach and the generative approach
Discriminative approaches (especially used in supervised learning
(classification, regression)) learn a direct map from the inputs x to the
output y , or they directly learn a model of the conditional distribution
p(y |x).
From the conditional distribution p(y |x), we can make predictions of y
for any new value of x by using the Maximum A Posteriori (MAP)
classification rule :

ŷ = argmax
y∈Y

p(y |x).
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Generative learning

Generative classifiers learn a model of the joint distribution p(x, y)

⇒ model the class conditional density p(x|y) together with the prior
probability p(y).
The required posterior class probability is then computed using Bayes’
theorem

p(y |x) =
p(y)p(x|y)∑
y ′ p(y ′)p(x|y ′)

.

the outputs y are not always available (i.e., they may be missing or
hidden)
⇒ generative approaches are more suitable for unsupervised learning.

⇒ In this course we focus on probabilistic models for data modeling,
discrimination and clustering.
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Classification (discrimination)

1 Aspects introductifs

2 Introduction on pattern recognition

3 Classification
K-nearest neighbors (KNN)
Multi-class logistic regression
Neural Network
Gaussian Discriminant Analysis
Mixture Discriminant Analysis

4 Mixture models

5 Clustering

6 Topographic Learning

7 Models for sequential data

8 Latent data models for dimensionality reduction
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Data Classification

Given a training data set comprising n labeled observations
((x1, y1), . . . , (xn, yn)) where x denotes the observation (or the input)
which is assumed to be continuous-valued in X = Rd

y denotes the target variable (or the output) representing the class
label which is a discrete-valued variable in Y = {1, . . . ,K}

K being the number of classes.

In classification, the aim is to predict the value of the class label y for
a new observation x.
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K-NN

a direct supervised classification approach

Does not need "learning" but only storing the data
It’s Son very simple : its principle is as follows : the class of a new
data point is the one of its nearest neighbors (the majority among the
K nearest neighbors) in the sense of a chosen distance (e.g, Euclidean
distance)

d(xi , xj) =

√√√√ d∑
k=1

(xik − xjk)2 (1)

⇒ As it needs computing, for each test data point, the distances with
all the data points from the labeled training set, it may be
computationally expensive for large data sets.
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K-NN

Algorithm 1 K -NN algorithm.
Inputs : Labeled data set : Xtrain = (xtrain

1 , ..., xtrain
n ) and ytrain =

(y train
1 , ..., y train

n ) ; Test data set Xtest = (xtest
1 , ..., xtest

m ) ; number of NN :
K

for i = 1, . . . ,m do
for j = 1, . . . , n do

compute the Euclidean distances dij between xtest
i and xtrain

j

dj ←||xi − xj||2
end for
The class y test

i for the ith example is the one of its nearest neighbors :
Sort the distance vector dj in an increasing order for j = 1, . . . , n
Get at the same time the indexes of the elements in the new order
Get the classes of the first K elements
⇒ the class y test

i is the majority class
end for

Output : Classes of the test data ytest = (y test
1 , ..., y test

m )
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K-NN
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K-NN
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Multi-class logistic regression
a probabilistic supervised discriminative approach
directly models the classes’ posterior probabilities via :

p(y = k |x) = πk(x;w) =
exp(wT

k x)∑K
h=1 exp(wT

h x)
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x

p(y=1|x)
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1

p(y=1|x)

x

a logistic transformation of a linear function in x
ensures that the posterior probabilities are constrained to sum to one
and remain in [0, 1].
The model parameter : w = (w1, . . . ,wK )T
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Parameter estimation for Multi-class logistic regression
The maximum likelihood is used to fit the model.
The conditional log-likelihood of w for the given class labels
y = (y1, . . . , yn) conditionally on the inputs X = (x1, . . . , xn) :

L(w) = L(w;X, y) = log
n∏

i=1

p(yi |xi ;w)

= log
n∏

i=1

K∏
k=1

p(yi = k |xi ;w)yik

=
n∑

i=1

K∑
k=1

yik log πk(xi ;w)

where yik is an indicator binary variable such that yik = 1 if and only
yi = k (i.e, xi belongs to the class k).
This log-likelihood is convex but can not be maximized in a closed
form.
The Newton-Raphson (NR) algorithm is generally used
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Newton-Raphson for Multi-class logistic regression

The Newton-Raphson algorithm is an iterative numerical optimization
algorithm

starts from an initial arbitrary solution w(0), and updates the
estimation of w

A single NR update is given by :

w(l+1) = w(l) −
[
∂2L(w)

∂w∂wT

]−1
∂L(w)

∂w
(2)

where the Hessian and the gradient of L(w) (which are respectively
the second and first derivative of L(w)) are evaluated at w = w(l).
NR can be stopped when the relative variation of L(w) is below a
prefixed threshold.
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IRLS I

The gradient component ∂L(w)
∂wh

(h = 1, . . . ,K − 1) is given by

∂L(w)

∂wh
=

n∑
i=1

(
yih − πh(xi ;w)

)
xi

which can be formulated in a matrix form as

∂L(w)

∂wh
= XT (yh − ph)

where X is the n × (d + 1) matrix whose rows are the input vectors xi , yh
is the n × 1 column vector whose elements are the indicator variables yih
for the hth logistic component :

yh = (y1h, . . . , ynh)T
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IRLS II

and ph is the n × 1 column vector of logistic probabilities corresponding to
the ith input

ph = (πh(x1;w), . . . , πh(xn;w))T .

Thus, the matrix formulation of the gradient of L(w) for all the logistic
components is

∂L(w)

∂w
= X∗T (Y − P) (3)
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where Y = (yT1 , . . . , y
T
K−1)T and P = (pT1 , . . . ,p

T
K−1)T are n × (K − 1)

column vectors and X∗ is the (n × (K − 1)) by (d + 1) matrix of K − 1
copies of X such that X∗ = (XT , . . . ,XT )T .
The Hessian matrix is composed of (K − 1)× (K − 1) block matrices
where each block matrix is of dimension (d + 1)× (d + 1) and is given by :

∂2L(w)

∂wh∂wT
k

= −
n∑

i=1

πh(xi ;w) (δhk − πk(xi ;w)) xixTi

which can be formulated in a matrix form as

∂2L(w)

∂wh∂wT
k

= −XTWhkX

where Whk is the n × n diagonal matrix whose diagonal elements are
πh(xi ;w) (δhk − πk(xi ;w)) for i = 1, . . . , n. For all the logistic components
(h, k = 1, . . . ,K − 1), the Hessian takes the following form :

∂2L(w)

∂w∂wT
= −X∗TWX∗ (4)
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where W is the (n × (K − 1)) by (n × (K − 1)) matrix composed of
(K − 1))× (K − 1)) block matrices, each block is Whk

(h, k = 1, . . . ,K − 1). It can be shown that the Hessian matrix for the
multi-class logistic regression model is positive semi definite and therefore
the optimized log-likelihood is concave.
The NR algorithm (2) in this case can therefore be reformulated from the
Equations (3) and (4) as

w(l+1) = w(l) + (X∗TW(l)X∗)−1X∗T (Y − P(l))

= (X∗TW(l)X∗)−1
[
X∗TW(l)X∗w(l) + X∗T (Y − P(l))

]
= (X∗TW(l)X)−1X∗T

[
W(l)X∗w(l) + (Y − P(l))

]
= (X∗TW(l)X∗)−1X∗TW(l)Y∗

where Y∗ = X∗w(l) + (W(l))−1(Y − P(l)) which yields in the Iteratively
Reweighted Least Squares (IRLS) algorithm.
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Neural Network

notes vues en cours

Input Neurons Hidden Neurons Output Neurons

Figure – Graphical representation of Multi-Layer Perceptron (MLP).
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Linear Discriminant Analysis

generative approach that consists in modeling each conditional-class
density by a multivariate Gaussian :

p(x|y = k ;Ψk) =
1

(2π)
d
2 |Σk |

1
2
exp
(
− 1

2
(x− µk)TΣ−1

k (x− µk)
)

µk ∈ Rd is the mean vector
Σk ∈ Rd×d is the covariance matrix
Ψk = (µk ,Σk) for k = 1, . . . ,K .

Linear Discriminant Analysis (LDA) arises when we assume that all the
classes have a common covariance matrix Σk = Σ ∀k = 1, . . . ,K .
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Linear Discriminant Analysis

The term “linear" in LDA is due to the fact that the decision
boundaries between each pair of classes k and h are linear.

The decision boundary between classes k and h, which is the set of
inputs x verifying p(y = k |x) = p(y = h|x), or by equivalence :

log
p(y = g |x;Ψk)

p(y = h|x;Ψh)
= 0⇔ log

πk
πh

+ log
N (x;µk ,Σ)

N (x;µh,Σ)
=

⇔ log πk

πh
− 1

2 (µk + µh)TΣ−1(µk − µh) + xTΣ−1(µk − µh) = 0,

⇒ a linear function in x and therefore the classes will be separated by
hyperplanes in the input space.
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Linear Discriminant Analysis : Parameter Estimation
Each of the class prior probabilities πk is calculated with the
proportion of the class g in the training data set :

πk =

∑
i |yi=k

n
=

nk
n
.

The parameters Ψk are estimated by maximum likelihood
the log-likelihood of Ψk given an i.i.d sample :

L(Ψk) = log
∏

i |yi=k

N (xi ;µk ,Σ) =
∑
i |yi=k

logN (xi ;µk ,Σ).

⇒ The problem is solved in a closed form

µ̂k =
1
nk

∑
i |yi=k

xi ,

Σ̂ =
1

n − K

K∑
k=1

∑
i |yi=k

(xi − µ̂k)(xi − µ̂k)T ,
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Illustration

Linear Discriminant Analysis (LDA)

 

 

Figure – A three-classes classification example of a synthetic data set in which one of the classes occurs into two

sub-classes, with training data points denoted in blue (�), green (×), and red (◦). Ellipses denote the contours of

the class probability density functions, lines denote the decision boundaries, and the background colors denote the

respective classes of the decision regions. We see that LDA provides linear separation.
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Quadratic Discriminant Analysis
Quadratic Discriminant Analysis (QDA) is an extension of LDA that
considers a different covariance matrix for each class.

The decision functions are quadratic :

log
p(y = k|x)

p(y = h|x)
= log

πk
πh
− 1

2
log
|Σk |
|Σh|

−1
2
{(x− µk)TΣ−1

k (x− µk)− (x− µh)TΣ−1
h (x− µh)} = 0.

⇒ This function is quadratic in x, we then get quadratic discriminant
functions in the input space.
The parameters Ψk for QDA are estimated similarly as for LDA, except
that separate covariance matrix must be estimated for each class :

µ̂k =
1
nk

∑
i|yi=k

xi

Σ̂k =
1
nk

∑
i|yi=k

(xi − µ̂k)(xi − µ̂k)T .
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Illustration

Quadratic Discriminant Analysis (QDA)

 

 

Figure – A three-classes classification example of a synthetic data set in which one of the classes occurs into two

sub-classes, with training data points denoted in blue (�), green (×), and red (◦). Ellipses denote the contours of

the class probability density functions, lines denote the decision boundaries, and the background colors denote the

respective classes of the decision regions. We see that QDA provides quadratic boundaries in the plan.
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Mixture Discriminant Analysis

for Gaussian discriminant analysis, in both LDA and QDA, each class
density is modeled by a single Gaussian.

This may be limited for modeling non homogeneous classes where the
classes are dispersed.

⇒ In Mixture Discriminant Analysis (MDA) each class density is
modeled by a Gaussian mixture density

with MDA, we can therefore capture many specific properties of real
data such as multimodality, unobserved heterogeneity,
heteroskedasticity, etc.
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Mixture Discriminant Analysis (MDA)

Each class g is modeled by a Gaussian mixture density :

p(x|y = k ;Ψk) =

Rk∑
r=1

πkrN (x;µkr ,Σkr )

where Rk is the number of mixture components for class k

Ψk = (πk1, . . . , πkRk
,µk1, . . . ,µkRk

, . . . ,Σk1, . . . ,ΣkRk
)

is the parameter vector of the mixture density of class k
the πkr ’s (r = 1, . . . ,Rk) are the non-negative mixing proportions
satisfying

∑Rk
r=1 πkr = 1 ∀k .

we can allow a different covariance matrix for each mixture component
as well as a common covariance matrix
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Illustration

Mixture Discriminant Analysis (MDA)

 

 

Figure – A three-classes classification example of a synthetic data set in which one of the classes occurs into two

sub-classes, with training data points denoted in blue (�), green (×), and red (◦). Ellipses denote the contours of

the class probability density functions, lines denote the decision boundaries, and the background colors denote the

respective classes of the decision regions. We see that MDA provides more non-linear decision boundaries.
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Illustrations of Logistic Regression, LDA, QDA and MDA
Multi−class Logistic Regression

 

 

Figure – A three-classes classification example of a synthetic data set in which one of the classes occurs into two

sub-classes, with training data points denoted in blue (�), green (×), and red (◦). Ellipses denote the contours of

the class probability density functions, lines denote the decision boundaries, and the background colors denote the

respective classes of the decision regions. We see that both LDA and Logistic regression provide linear separation,

while QDA and MDA provide non linear separation. MDA can further deal the problem of heterogeneous classes.
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Illustrations of Logistic Regression, LDA, QDA and MDA
Linear Discriminant Analysis (LDA)

 

 

Figure – A three-classes classification example of a synthetic data set in which one of the classes occurs into two

sub-classes, with training data points denoted in blue (�), green (×), and red (◦). Ellipses denote the contours of

the class probability density functions, lines denote the decision boundaries, and the background colors denote the

respective classes of the decision regions. We see that both LDA and Logistic regression provide linear separation,

while QDA and MDA provide non linear separation. MDA can further deal the problem of heterogeneous classes.
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Illustrations of Logistic Regression, LDA, QDA and MDA
Quadratic Discriminant Analysis (QDA)

 

 

Figure – A three-classes classification example of a synthetic data set in which one of the classes occurs into two

sub-classes, with training data points denoted in blue (�), green (×), and red (◦). Ellipses denote the contours of

the class probability density functions, lines denote the decision boundaries, and the background colors denote the

respective classes of the decision regions. We see that both LDA and Logistic regression provide linear separation,

while QDA and MDA provide non linear separation. MDA can further deal the problem of heterogeneous classes.
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Illustrations of Logistic Regression, LDA, QDA and MDA
Mixture Discriminant Analysis (MDA)

 

 

Figure – A three-classes classification example of a synthetic data set in which one of the classes occurs into two

sub-classes, with training data points denoted in blue (�), green (×), and red (◦). Ellipses denote the contours of

the class probability density functions, lines denote the decision boundaries, and the background colors denote the

respective classes of the decision regions. We see that both LDA and Logistic regression provide linear separation,

while QDA and MDA provide non linear separation. MDA can further deal the problem of heterogeneous classes.
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Mixture models

1 Aspects introductifs

2 Introduction on pattern recognition

3 Classification

4 Mixture models
Mixture models
EM algorithm
EM extensions

5 Clustering

6 Topographic Learning

7 Models for sequential data

8 Latent data models for dimensionality reduction
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Mixture models

Finite mixture models are an example of latent variable models

widely used in probabilistic machine learning and pattern recognition.

very useful to model heterogeneous classes since they assume that
each class is composed of sub-classes.
The finite mixture model decomposes the density of x into a weighted
linear combination of K component densities.

The mixture model allows for placing K component densities in the
input space to approximate the true density.
⇒ Mixtures provide a natural generalization of the simple parametric
density model which is global, to a weighted sum of these models,
allowing local adaptation to the density of the data in the input space.
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Model definition
Let z represent a discrete random variable (binomial or multinomial)
which takes its values in the finite set Z = {1, . . . ,K}.
In a general setting, the mixture density of x is

f (x;Ψ) =
K∑

k=1

p(z = k)f (x|z = k;Ψk)

=
K∑

k=1

πk fk(x;Ψk),

I πk = p(z = k) : the probability that a randomly chosen data point was
generated by component k . Referred to as mixing proportions
πk ≥ 0 ∀k , and

∑K
k=1 πk = 1.

I f1, . . . , fK are the component densities.
I Each fk typically consists of a relatively simple parametric model

p(x|z = k ;Ψk) (such as a Gaussian distribution with parameters
Ψk = (µk ,Σk)).
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Model definition

Figure – Graphical representation
of a mixture model.
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Parameter estimation for the mixture model

The common parameter estimation methods for mixture models :

the maximum likelihood
the Bayesian methods (Maximum A Posteriori (MAP)) where a prior
distribution is assumed for the model parameters

⇒ In this course, we focus on the maximum likelihood framework.
maximize the observed-data likelihood as a function of the parameters
Ψ = (π1, . . . , πK ,Ψk , . . . ,ΨK ), over the parameter space Ω

The optimization algorithm is the Expectation-Maximization (EM)
algorithm
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Parameter estimation for the mixture model
Assume we have an i.i.d sample X = (x1, . . . , xn).
The observed-data log-likelihood of Ψ given X is given by :

L(Ψ;X) = log
n∏

i=1

p(xi ;Ψ)

=
n∑

i=1

log
K∑

k=1

πk fk
(
xi ;Ψk

)
.

the log-likelihood to be maximized results in a nonlinear function due
to the logarithm of the sum
very difficult to maximize it in a closed form
⇒ maximize it (locally) using iterative procedures such as gradient
ascent, a Newton Raphson procedure or the Expectation-Maximization
(EM) algorithm
⇒ We will focus on the EM algorithm which is widely used and
particularly adapted for mixture models.
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EM algorithm

a broadly applicable approach to the iterative computation of
maximum likelihood estimates in the framework of latent data models.
In particular, the EM algorithm simplifies considerably the problem of
fitting finite mixture models by maximum likelihood.

an iterative algorithm where each iteration consists of two steps :
1 the Expectation step (E-step) : computes the expectation of the

complete-data log-likelihood, given the observations X = (x1, . . . , xn)

and a current value Ψ(q) of the model parameter
2 the Maximization step (M-step) : Maximize the expected

complete-data log-likelihood over the parameter space
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EM algorithm
let X = (x1, . . . , xn) be a set of n i.i.d observations with xi ∈ Rd

z = (z1, . . . , zn) denote the corresponding unobserved (missing) labels
with zi ∈ Z = {1, . . . ,K}.
The complete-data : (X, z) = ((x1, z1), . . . , (xn, zn))
The complete-data log-likelihood :

Lc(Ψ;X, z) = log p((x1, z1), . . . , (xn, zn);Ψ) = log
n∏

i=1

p(xi , zi ;Ψ)

=
n∑

i=1

log
K∏

k=1

[
p(zi = k)p(x|zi = k;Ψk)

]zik
=

n∑
i=1

K∑
k=1

zik log πk fk
(
xi ;Ψk

)
,

where zik = 1 if zi = k (i.e, when xi is generated by the kth
component density) and zik = 0 otherwise.
this log-likelihood depends on the unobservable data z !.
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EM algorithm
The EM algorithm starts with an initial parameter Ψ(0) and iteratively
alternates between the two following steps until convergence :
E-step (Expectation) : computes the expectation of the
complete-data log-likelihood given the observations X and the current
value Ψ(q) of the parameter Ψ (q being the current iteration).

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;X, z)|X;Ψ(q)

]
=

n∑
i=1

K∑
k=1

E[zik |xi ,Ψ(q)] log πk fk
(
xi ;Ψk

)
=

n∑
i=1

K∑
k=1

p(zik = 1|xi ;Ψ(q)) log πk fk
(
xi ;Ψk

)
=

n∑
i=1

K∑
k=1

τ
(q)
ik log πk fk

(
xi ;Ψk

)
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EM algorithm

where

τ
(q)
ik = p(zi = k|xi ;Ψ(q)) =

πk fk
(
xi ;Ψ

(q)
k

)∑K
`=1 π`f`

(
xi ;Ψ

(q)
`

)
is the posterior probability that xi originates from the kth component
density.
In E[zik |xi ,Ψ(q)], we used the fact that conditional expectations and
conditional probabilities are the same for the indicator binary-valued
variables zik : E[zik |xi ,Ψ(q)] = p(zik = 1|xi ,Ψ(q)).

⇒ From the expression of Q(Ψ,Ψ(q)), we can see that this step
simply requires the computation of the posterior probabilities τ (q)

ik .
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EM algorithm
M-step (Maximization) : updates the estimate of Ψ by the value Ψ(q+1)

of Ψ that maximizes the Q-function Q(Ψ,Ψ(q)) with respect to Ψ over
the parameter space Ω :

Ψ(q+1) = argmax
Ψ∈Ω

Q(Ψ,Ψ(q)).

We can write

Q(Ψ,Ψ(q)) = Qπ(π1, . . . , πK ,Ψ
(q)) +

K∑
k=1

QΨk
(Ψk ,Ψ

(q))

where

Qπ(π1, . . . , πK ,Ψ
(q)) =

n∑
i=1

K∑
k=1

τ
(q)
ik log πk

QΨk
(Ψk ,Ψ

(q)) =
n∑

i=1

τ
(q)
ik log fk

(
xi ;Ψk

)
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M-Step

⇒ the maximization of the function Q(Ψ;Ψ(q)) w.r.t Ψ can be performed
by separately maximizing Qπ with respect to the mixing proportions
(π1, . . . , πK ) and QΨk

with respect to parameters Ψk for each of the K
components densities.

The function Qπ is maximized with respect to (π1, . . . , πK ) ∈ [0, 1]K

subject to the constraint
∑

k πk = 1. This maximization is done in a
closed using Lagrange multipliers form and leads to

π
(q+1)
k =

∑n
i=1 τ

(q)
ik

n
=

n
(q)
k

n
,

n
(q)
k can be viewed as the expected cardinal number of the

subpopulation k estimated at iteration q.
The update of Ψk depends on the form of the density fk (e.g.,
Gaussian)
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EM for Gaussian mixture models (GMMs)
The Gaussian mixture model (GMM) :

f (xi ;Ψ) =
K∑

k=1

πkN (xi ;µk ,Σk),

Figure – Graphical
representation of a Gaussian
mixture model.
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Figure – An example of a three-component
Gaussian mixture density in R2.
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EM for GMMs

The observed-data log-likelihood of Ψ for the Gaussian mixture
model :

L(Ψ;X) =
n∑

i=1

log
K∑

k=1

πkN
(
xi ;µk ,Σk

)
.

The complete-data log-likelihood of Ψ for the Gaussian mixture
model :

Lc(Ψ;X, z) =
n∑

i=1

K∑
k=1

zik log πkN
(
xi ;µkΣk

)
.

EM :
Starts with an initial parameter Ψ(0) = (π

(0)
1 , . . . , π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K )

where Ψ
(0)
k = (µ

(0)
k ,Σ

(0)
k )
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E-Step for GMMs

the expected complete-data log-likelihood :

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;X, z)|X;Ψ(q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik log πk +

n∑
i=1

K∑
k=1

τ
(q)
ik logN (xi ;µk ,Σk) .

⇒ This step therefore computes the posterior probabilities

τ
(q)
ik = p(zi = k |xi ,Ψ(q)) =

πkN (xi ;µ
(q)
k ,Σ

(q)
k )∑K

`=1 π`N (xi ;µ
(q)
` ,Σ

(q)
` )

that xi originates from the kth component density.
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M-Step for GMMs

update the parameter Ψ by the value Ψ(q+1) of Ψ that maximizes the
function Q(Ψ,Ψ(q)) w.r.t Ψ over the parameter space Ω.

µ
(q+1)
k =

1

n
(q)
k

n∑
i=1

τ
(q)
ik xi ,

Σ
(q+1)
k =

1

n
(q)
k

n∑
i=1

τ
(q)
ik (xi − µ(q+1))(xi − µ(q+1))T .

The E- and M-steps are alternated iteratively until the change in the
log likelihood value are less than some specified threshold.
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Algorithm 2 Pseudo code of the EM algorithm for GMMs.
Inputs : a data set (x1, . . . , xn) and the number of clusters K
fix a threshold ε > 0 ; set q ← 0 (iteration)
Initialize : Ψ(0) = (π

(0)
1 , . . . , π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) with Ψ

(0)
k = (µ

(0)
K ,Σ

(0)
K )

while increment in log-likelihood > ε do
E-step :
for k = 1, . . . ,K do

Compute τ (q)
ik =

πkN (xi ;µ
(q)
k ,Σ

(q)
k )∑K

`=1 π`N (xi ;µ
(q)
` ,Σ

(q)
` )

for i = 1, . . . , n

end for
M-step :
for k = 1, . . . ,K do

Compute π(q+1)
k =

∑n
i=1 τ

(q)
ik

n

Compute µ
(q+1)
k = 1

n
(q)
k

∑n
i=1 τ

(q)
ik xi

Compute Σ
(q+1)
k = 1

n
(q)
k

∑n
i=1 τ

(q)
ik (xi − µ(q+1))(xi − µ(q+1))T

end for
q ← q + 1

end while
Outputs : Ψ̂ = Ψ(q) ; τ̂ik = τ

(q)
ik (a fuzzy partition of the data)
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Initialization Strategies and stopping rules for EM

The initialization of EM is a crucial point since it maximizes locally
the log-likelihood.
if the initial value is inappropriately selected, the EM algorithm may
lead to an unsatisfactory estimation.
The most used strategy : use several EM tries and select the solution
maximizing the log-likelihood among those runs.
For each run of EM, one can initialize it
I randomly
I by Computing a parameter estimate from another clustering algorithm

such as K -means, Classification EM, Stochastic EM ...
I with a few number of steps of EM itself.

Stop EM when the relative increase of the log-likelihood between two
iterations is below a fixed threshold |L(q+1)−L(q)

L(q) | ≤ ε or when a
predefined number of iterations is reached.
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EM properties
The EM algorithm always monotonically increases the observed-data
log-likelihood.
The sequence of parameter estimates generated by the EM algorithm
converges toward at least a local maximum or a stationary value of the
incomplete-data likelihood function.
numerical stability
simplicity of implementation
reliable convergence
In general, both the E- and M-steps will have particularly simple forms
when the complete-data probability density function is from the
exponential family ;
Some drawbacks : EM is sometimes very slow to converge especially
for high dimensional data ;
in some problems, the E- or M-step may be analytically intractable
(but this can be tackled by using EM extensions)
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EM extensions

The EM variants mainly aim at :
1 increasing the convergence speed of EM and addressing the

optimization problem in the M-step
2 computing the E-step when it is intractable.

In the first case, one can speak about deterministic algorithms :
I e.g., Incremental EM (IEM)
I Gradient EM
I Generalized EM (GEM) algorithm
I Expectation Conditional Maximization (ECM)
I Expectation Conditional Maximization Either (ECME)

In the second case, one can speak about stochastic algorithms :
I e.g., Monte Carlo EM (MCEM)
I Stochastic EM (SEM)
I Simulated Annealing EM (SAEM)
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Clustering

1 Aspects introductifs

2 Introduction on pattern recognition

3 Classification

4 Mixture models

5 Clustering
K -means
Model-based clustering
Model selection

6 Topographic Learning

7 Models for sequential data

8 Latent data models for dimensionality reduction
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Clustering

Clustering is often referred to as unsupervised learning in the sense
that the class labels of the data are unknown (missing, hidden). Only
the observations X = (x1, . . . , xn) are given,
suitable for many applications where labeled data is difficult to obtain.
also used to explore and characterize a dataset before running a
supervised learning task.
In clustering, the data are grouped by some notion of dissimilarity.
⇒ a dissimilarity measure must be defined based on the data.
the aim of clustering is to find a partition of the data by dividing them
into clusters (groups) such that the data within a group tend to be
more similar to one another as compared to the data belonging to
different groups.
There is, distance-based, model-based, hierarchical, topographical
clustering approaches, etc
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Example : Image segmentation
image originale image etiquetee par les classes estimees

image originale image segmentee par GMM−EM (K=3)

image originale image segmentee par GMM−CEM (K=5)
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example 2 : Fault detection
Real data (curves)
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example 2 : Fault detection
Clustering results
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Example 3 : Iris data
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Example 3 : Iris data
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Example 3 : Iris data
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K -means
a straightforward and widely used clustering algorithm, is one of the
most important algorithms in unsupervised learning.
an iterative clustering algorithm that partitions a given dataset into a
predefined number of clusters K .
the value K is chosen by prior knowledge ; how many clusters are
desired ; ..
In K -means, each cluster is represented by its mean (cluster centroid)
µk in Rd .
The default measure of dissimilarity for K -means is the Euclidean
distance ||.||2.
K -means attempts to minimize the following nonnegative objective
function referred to as distortion measure :

J(µ1, . . . ,µK , z) =
K∑

k=1

n∑
i=1

zik||xi − µk||2

which corresponds to the total squared Euclidean distance between
each data point xi and its closest cluster representative µzi .
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K -means
start with an initial solution (µ

(0)
1 , . . . ,µ

(0)
K ) (eg, by randomly

choosing K points in Rd or some data points)

1 Assignment step : Each data point is assigned to its closest centroid
using the Euclidian distance : ∀i = 1, . . . , n

z
(q)
ik =

{
1 if k = argmin

z∈Z
||xi − µz||2

0 otherwise.

2 Relocation step : Each cluster representative is relocated to the
center (i.e., arithmetic mean) of all data points assigned to it :

µ
(q+1)
k =

∑n
i=1 z

(q)
ik xi∑n

i=1 z
(q)
ik

,

q being the current iteration.
⇒ The K -means algorithm is simple to implement and relatively fast.
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Illustration
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Illustration
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Geyser Data clustering K−means : K−means iteration : 1
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Illustration
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Illustration
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Illustration
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Illustration
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Clustering via finite mixture models

In the previous section we saw the main common partition-based
clustering algorithm, that is K -means.
Now we describe general clustering methods based on finite mixture
models.
⇒ This approach is known as the model-based clustering
The clustering problem is reformulated as a density estimation problem
the data probability density function is assumed to be a mixture
density, each component density being associated with a cluster.
⇒ The problem of clustering becomes the one of estimating the
parameters of the assumed mixture model (e.g, estimating the means
and the covariances for Gaussian mixtures).
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Mixture approach/Classification approach

Two main approaches are possible. The former is refereed to as the mixture
approach or the estimation approach and the latter is known as the
classification approach.

1 The mixture approach consists of two steps :
1 The parameters of the mixture density are estimated by maximizing the

observed-data likelihood generally via the EM algorithm
2 After performing the probability density estimation, the posterior

probabilities τik are then used to determine the cluster memberships
through the MAP principle.

2 The classification approach
I consists in optimizing a classification likelihood function which is (can

be) the complete-data likelihood by using the CEM algorithm Celeux
and Govaert (1992).

I The cluster memberships and the model parameters are estimated
simultaneously as the learning proceeds.
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Classification EM (CEM) algorithm
we saw that EM computes the maximum likelihood (ML) estimate of
a mixture model.
The Classification EM (CEM) algorithm Celeux and Govaert (1992)
estimates both the mixture model parameters and the classes’ labels
by maximizing the completed-data log-likelihood
Lc(Ψ;X, z) = log p(X, z;Ψ)

start with an initial parameter Ψ(0)

1 Step 1 : Compute the missing data z(q+1) given the observations and
the current estimated model parameters Ψ(q) :

z(q+1) = arg max
z∈Zn

Lc(Ψ(q);X, z)

2 Step 2 : Compute the model parameters update Ψ(q+1) by
maximizing the complete-data log-likelihood given the current
estimation of the missing data z(q+1) :

Ψ(q+1) = argmax
Ψ∈Ω
Lc(Ψ;X, z(q+1)).
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CEM for GMMs

the CEM algorithm, for the case of mixture models, is equivalent to
integrating a classification step (C-step) between the E- and the M-
steps of the EM algorithm.
The C-step assigns the observations to the component densities by
using the MAP rule :

1 E-step : Compute the conditional posterior probabilities τ (q)
ik that the

observation xi arises from the kth component density.
2 C-step : Assign each observation xi to the component maximizing the

conditional posterior probability τik :

z
(q+1)
i = argmax

k∈Z
τ

(q)
ik (i = 1, . . . , n).

⇒ this step provides a hard partition of the data
3 M-step : Update the mixture model parameters by maximizing the

completed-data log-likelihood for the partition provided by the C-step.
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Algorithm 3 Pseudo code of the CEM algorithm for GMMs.
Inputs : a data set X and the number of clusters K

fix a threshold ε > 0 ; set q ← 0 (iteration)

Initialize : Ψ(0) = (π
(0)
1 , . . . , π

(0)
K
,Ψ

(0)
1 , . . . ,Ψ

(0)
K

) with Ψ
(0)
k

= (µ
(0)
K
,Σ

(0)
K

)
while increment in the complete-data log-likelihood > ε do

E-step :
for k = 1, . . . ,K do

Compute τ (q)
ik

==
πkN (xi ;µ

(q)
k
,Σ

(q)
k

)∑K
`=1 π`N (xi ;µ

(q)
`
,Σ

(q)
`

)

end for
C-step :
for k = 1, . . . ,K do

Compute z
(q)
i = arg max

k∈Z
τ

(q)
ik

for i = 1, . . . , n

Set z
(q)
ik

= 1 if z(q)
i = k and z

(q)
ik

= 0 otherwise, for i = 1, . . . , n
end for
M-step :
for k = 1, . . . ,K do

Compute π(q+1)
k

=

∑n
i=1 z

(q)
ik

n

Compute µ
(q+1)
k

= 1
n

(q)
k

∑n
i=1 z

(q)
ik

xi

Compute Σ
(q+1)
k

= 1
n

(q)
k

∑n
i=1 z

(q)
ik

(xi − µ(q+1))(xi − µ(q+1))T

end for
q ← q + 1

end while

Output : Ψ̂ = Ψ(q) ; ẑi = z
(q)
i (i = 1, . . . , n)
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CEM algorithm

CEM is easy to implement, typically faster to converge than EM and
monotonically improves the complete-data log-likelihood as the
learning proceeds.
converges toward a local maximum of the complete-data log-likelihood
! CEM provides biased estimates of the mixture model parameters.
Indeed, CEM updates the model parameters from a truncated sample
contrary to EM for which the model parameters are updated from the
whole data through the fuzzy posterior probabilities and therefore the
parameter estimations provided by EM are more accurate.
link with K -means :
I It can be shown that CEM which is formulated in a probabilistic

framework, generalizes K -means
I From a probabilistic point of view, K -means is equivalent to a

particular case of the CEM algorithm for a mixture of K Gaussian
densities with the same proportions πk = 1

K ∀k and identical isotropic
covariance matrices Σk = σ2I ∀k .
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Parsimonious Gaussian mixtures

Parsimonious Gaussian mixture models are statistical models that
allow for capturing a specific cluster shapes (e.g., clusters having the
same shape or different shapes, spherical or elliptical clusters, etc).
decompositions of the covariance matrices for the Gaussian mixture
model :

Σk = λkDkAkDT
k

where
I λk represents the volume of the kth cluster (the amount of space of

the cluster).
I Dk is a matrix with columns corresponding to the eigenvectors of Σk

that determines the orientation of the cluster.
I Ak is a diagonal matrix, whose diagonal entries are the normalized

eigenvalues of Σk arranged in a decreasing order and its determinant is
1. This matrix is associated with the shape of the cluster.
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Parsimonious Gaussian mixtures

This eigenvalue decomposition provides three main families of models :
the spherical family, the diagonal family, and the general family
and produces 14 different models, according to the choice of the
configuration for the parameters λk , Ak , and Dk

In addition to providing flexible statistical models for the clusters,
parsimonious Gaussian mixture can be viewed as techniques for
reducing the number of parameters in the model.
imposing constraints on the covariance matrices reduces the dimension
of the optimization problem.
The EM algorithms therefore provide more accurate estimations
compared to the full mixture model.
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Model selection

The problem of choosing the number of clusters can be seen as a
model selection problem.
The model selection task consists of choosing a suitable compromise
between flexibility so that a reasonable fit to the available data is
obtained, and over-fitting.
A common way is to use a criterion (score function) that ensure the
compromise.
In general, we choose an overall score function that is explicitly
composed of two components : a component that measures the
goodness of fit of the model to the data, and a penalty component
that governs the model complexity :

score(model) = error(model) + penalty(model)

which will be minimized.
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Model selection

The complexity of a modelM is related to the number of its (free)
parameters ν, the penalty function then involves the number of model
parameters.
LetM denote a model, L(Ψ̂) its log-likelihood and ν the number of
its free parameters. Consider that we fitted M different model
structures (M1, . . . ,MM), from which we wish to choose the “best"
one (ideally the one providing the best prediction on future data).
Assume we have estimated the model parameters Ψ̂m for each model
structureMm (m = 1, . . . ,M) from a sample of n observations
X = (x1, . . . , xn) and now we wish to choose among these fitted
models.
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Model selection
• Akaike Information Criterion (AIC) :

AIC(Mm) = L(Ψ̂m)− νm
• Bayesian Information Criterion (BIC) :

BIC(Mm) = L(Ψ̂m)− νm log(n)

2
• Integrated Classification Likelihood (ICL) :

ICL(Mm) = Lc(Ψ̂m)− νm log(n)

2

where Lc(Ψ̂m) is the complete-data log-likelihood for the modelMm and
νm denotes the number of free model parameters. For example, in the case
of a d-dimensional Gaussian mixture model we have :

ν = (K − 1)︸ ︷︷ ︸
πk ’s

+K × d)︸ ︷︷ ︸
{µk}

+K × d × (d + 1)

2︸ ︷︷ ︸
{Σk}

=
K × (d + 1)× (d + 2)

2
− 1.
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Examples
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Figure – Clustering results obtained with K -means algorithm (left) with K = 2
and the EM algorithm (right). The cluster centers are shown by the red and blue
crosses and the ellipses are the contours of the Gaussian component densities at
level 0.4 estimated by EM. The number of clusters for EM have been chosen by
BIC for K = 1, . . . , 4.
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Examples
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Figure – A three-class example of a real data set : Iris data of Fisher.
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Iris Data

Figure – Iris data : Clustering results with EM for a GMM and AIC.
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Iris Data

Figure – Iris data of Fisher : The data are colored according to the true partition.
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Iris Data clustering GMM : EM iteration : 0
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Iris Data clustering GMM : EM iteration : 1
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Iris Data clustering GMM : EM iteration : 2
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Iris Data clustering GMM : EM iteration : 3
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Iris Data clustering GMM : EM iteration : 4
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Iris Data clustering GMM : EM iteration : 5
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Iris Data clustering GMM : EM iteration : 6
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Iris Data clustering GMM : EM iteration : 7
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Iris Data clustering GMM : EM iteration : 8
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Iris Data clustering GMM : EM iteration : 9
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Iris Data clustering GMM : EM iteration : 10
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Iris Data clustering GMM : EM iteration : 11
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Iris Data clustering GMM : EM iteration : 12
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Iris Data clustering GMM : EM iteration : 13
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Iris Data clustering GMM : EM iteration : 14
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Iris Data clustering GMM : EM iteration : 15
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Iris Data clustering GMM : EM iteration : 16
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Iris Data clustering GMM : EM iteration : 17
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Iris Data clustering GMM : EM iteration : 18
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Iris Data clustering GMM : EM iteration : 19
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Iris Data clustering GMM : EM iteration : 20
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Iris Data clustering GMM : EM iteration : 21
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Topographic Learning for clustering/visualisation

Self-Organizing Maps (SOMs)

Generative Topographic Mapping (GTM)

Formulation of the Generative Topographic Mapping (GTM)

GTM Through Time

Formulation of the GTM Through Time (GTM-TT)
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Introduction I

Topographic learning has become a widely used approach for the analysis,
dimensionality reduction, visualization of high-dimensional data.

One of the most used topographic approaches is the self-organizing map
(SOM) (Kohonen, 2001) and its generative version : the Generative
Topographic Mapping (GTM) (Bishop and Williams, 1998).

The SOM idea consists in an unsupervised learning approach based on
artificial neural networks and was inspired from the competitive learning.
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Competitive learning I

Competitive learning (Kong and Kosko, 1991) is an unsupervised adaptive
process during which the neurons of a neural network (units) compete for
the right to respond to a subset of the input data

Each unit (neuron) of the network gradually becomes specialized of a
subset of the data

When an input is presented, the neuron that is best to represent it in the
sense of a chosen similarity measure, typically an Euclidean distance, wins
the competition and is allowed to “learn” from it, this is the well-known
“winner-take-all” rule.

During the learning process, the neurons (units) compete for the right to
respond to a subset of the input data and each unit of the network
becomes specialized of a subset of the data.
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Competitive learning II
When an input xi is presented, the neuron that is best to represent it (in
the sense of a chosen similarity measure, typically a distance (Euclidean))
wins the competition and it allowed to learn from it.

Only the winner neuron (also called the best matching unit (BMU)) is
updated, that is :

µ
(q+1)
zi = µ

(q)
zi + α(q)(xi − µ

(q)
zi ) (5)

where
zi = arg min

k∈Z
||xi − µk||2 (6)

is the index of the winner prototype and 0 < α(q) < 1 is the learning rate
which decreases monotonically as the learning proceeds.
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Competitive learning III
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Competitive learning IV
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Competitive learning V
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Competitive learning VI
If α(q) = 1

(#class zi )(q)+1 , one obtains the sequential K -means algorithm

with (#class zi )(q) being the number observations assigned to the neuron
zi at the previous iteration.

Some limitations :

In the standard formulation of the competitive learning, only the winner
neuron is updated, this is the well-known “winner-take-all" rule.

In addition, it does not consider the order between the neurons (i.e, when
the neurons are located on a map lattice).

⇒ The self-organizing map (SOM) generalizes the competitive learning by
allowing also the neighbors of the winner to be updated and for which the
neurons become ordered on a map lattice.
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Self-Organizing Maps (SOMs) I
The self-organizing map (SOM) (Kohonen, 2001, 1989; Kohonen et al.,
2000) is a neural-based approach for the exploration and visualization of
high-dimensional data.

It derives an orderly mapping of multidimensional data onto a regular
typically 2-dimensional grid (map).

It is a non linear projection method that converts complex nonlinear
relationships in the high-dimensional space into simpler geometric
relationships in the plan such that the important topological and metric
relationships are conveyed.

The data are organized on the map in such a way that observations that
are close together in the high-dimensional space are also closer to each
other on the map.
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Self-Organizing Maps (SOMs) II
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Self-Organizing Maps (SOMs) III
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Self-Organizing Maps (SOMs) IV
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Self-Organizing Maps (SOMs) V

The Learning process of the SOM

There are two methods used in learning the SOM : incremental (sequential)
learning and batch learning.

The incremental learning method is an iterative procedure

we start with a data point xi and a set of d-dimensional model vectors µk

called neurons, units or prototypes.

Each neuron (prototype) is associated with a coordinate vector rk on a 2-D
map lattice and starts with some initial value µ

(q=0)
k ).

At each iteration, a vector xi is selected and the distance (typically
Euclidean, but other choices are possible) between it and all the prototypes
is calculated (for the competition).
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Self-Organizing Maps (SOMs) VI

The best-matching unit (BMU) or prototype (the winner of the
competition) is found and is denoted by µzi

zi = arg min
k∈Z
||xi − µk||2. (7)

Once the closest prototype µzi is found, the prototypes are updated so that
µzi is moved closer to the data vector xi . The neighbors of the BMU µzi
are also updated, in a weighted manner (the cooperation) as follows :

µ
(q+1)
k = µ

(q)
k + α(q)K(q)(zi , k)(xi − µ

(q)
k ) (8)

q denotes iteration number, 0 < α(q) < 1 is the learning rate which
decreases monotonically as the learning proceeds

K(zi , k) is a chosen neighborhood function around the winner unit zi (in
general we have K(q)(zi , zi ) = 1).
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Self-Organizing Maps (SOMs) VII
The neighborhood function can for example be a Gaussian centered at the
best-matching unit :

K(q)(zi , k) = exp
(
−||rk − rzi||2

2σ2(q)

)
r denotes the coordinates of the prototypes on the map, σ(q) the width of
the neighborhood which decreases monotonically as the learning proceeds.

⇒ Due to the neighborhood function, the units which are closer to the
BMU will be more affected than the others.

The previous steps are repeated until all the patterns xi (i = 1, . . . , n) in
the training set have been processed (at iteration q).

To achieve a better convergence towards the desired mapping it is usually
required to repeat the previous loop until some convergence criteria are
met (loop on iteration q (q = 1, . . . , qmax)).
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Self-Organizing Maps (SOMs) VIII

After the training step, we have the set of prototypes over the 2-D
coordinates on the map.

In a clustering context, to find a partition of the data one can run a stand
clustering algorithm on the prototypes, such as K -means or hierarchical
clustering

Thus, from this point of view of clustering, SOM can be seen as a
particular initialization for a later clustering step
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Self-Organizing Maps (SOMs) IX

The batch training

The batch training is also iterative, but, at each iteration, it uses the whole
data set before adjustments are made rather than a single data vector.

At each step of the algorithm, the data set is partitioned such that each
observation is associated with its nearest model vector (prototype) in the
sense of the Euclidean distance : zi = argmink∈Z ||xi − µk||2

The updated prototypes (units) µ(q+1)
k are found as a weighted average of

the data, where the weight of each observation is the value of the
neighborhood function at its BMU zi , that is K(q)(zi , k) :

µ
(q+1)
k =

∑n
i=1K(q)(zi , k)xi∑
i=1K(q)(zi , k)

. (9)
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Self-Organizing Maps (SOMs) X
SOM as optimizing a cost function

We note that while the SOM can be seen as an unsupervised learning
algorithm (stochastically) minimizing the following cost function (Kaski,
1997; Kohonen, 2001)

JSOM(µ1, . . . ,µK , z) =
K∑

k=1

n∑
i=1

K(zi , k)||xi − µk||2, (10)

The previous learning rules for the SOM correspond to a gradient descent
in minimizing this SOM cost function

Several methods exist for visualizing the resulting map and prototypes,
among them one can cite the U-matrix (Ultsch and Siemon, 1990) that is
often used to locate clusters in the data.
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Self-Organizing Maps (SOMs) XI

Limitations

Note that, at the origin, the SOM algorithm is based on heuristics and is
not derived from the optimization of an objective function.

In addition, the preservation of the neighborhood structure is not
guaranteed by the SOM method, and there could be problems with
convergence of the prototype vectors.

The SOM does not define a density model, the choice of how the
neighborhood function should shrink during training is also sensitive (the
parameter σ).

⇒ The generative topographic mapping (GTM) (Bishop and Williams,
1998) was inspired by the SOM and attempts to overcome its limitations.
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Self-Organizing Maps (SOMs) XII

The GTM is described in terms of a latent variable model (or space) with
dimensionality d (Bishop and Williams, 1998).

The goal is to find a representation for the distribution p(x) of
d-dimensional data, in terms of a smaller number of p latent variables
where p < d and often take d = 2 for ease of visualization.

Additionally, the model parameters learning is performed the
Expectation-Maximization (EM) algorithm in a maximum likelihood
framework.

Both convergence and topographic ordering are guaranteed with the GTM.
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Generative Topographic Mapping (GTM) I
The Generative Topographic Mapping (GTM) (Bishop and Williams,
1998), is a non-linear probabilistic projection method for data visualization,
dimensionality reduction, etc

It was inspired by the SOM and attempts to overcome its limitations
through a probabilistic formulation.

The GTM is described in terms of a latent variable (or space) model
with dimensionality L

⇒ the goal is to find a representation for the distribution p(y) of
d-dimensional data, in terms of a smaller number of L latent variables
where L < d (often take L = 2 for visualization in the plan)

⇒ the model parameters learning is performed by the well-established EM
algorithm
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Generative Topographic Mapping (GTM) II

GTM has a well established statistical background and relies on the
well-known stability and convergence properties of the
Expectation-Maximization (EM) algorithm (Dempster et al., 1977).

Both convergence and topographic ordering are guaranteed with the GTM.

In addition, GTM performs soft clustering in contrary to SOM which
assigns the neurons to the clusters in a hard way.

Further comparisons with the SOM algorithm can be found in (Bishop and
Williams, 1998).
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Generative Topographic Mapping (GTM) III

Let Y = (y1, . . . , yn) be a set of n iid multidimensional data vectors
yi = (yi1, . . . , yid)T ∈ Rd

Let z = (z1, . . . , zn) be the associated unknown (hidden) states with
zi ∈ {1, . . . ,K}.

Now consider a two-dimensional latent space (the map) x = (x1, x2)T on
which we aim to visualize the data.
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Generative Topographic Mapping (GTM) IV

the GTM model is a latent data (space) model asd is based on the finite
mixture model formulation (McLachlan and Peel., 2000)

The aim is to represent the distribution of the observed data p(yi ) in the
data space Rd in terms of a number of L < d-dimensional latent variables
x with prior distribution p(x).

The distribution p(y) is then obtained by integration over the distribution
of x by considering a specified conditional density p(y|x), that is :

p(yi ) =

∫
X
p(yi |x)p(x)dx. (11)

For computational tractability of this integral, the GTM model assumes
that the latent variables x have a prior Dirac mixture density given by

p(x) =
1
K

K∑
k=1

δ(x− xk) (12)

xk represents the coordinates of the Dirac placement on the latent space.
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Generative Topographic Mapping (GTM) V
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Generative Topographic Mapping (GTM) VI

To specify the conditional density of the observations y on the latent
variables x, For the GTM, this is achieved by considering a parametric
non-linear mapping function f(x;W) that maps the latent data x from the
latent space to corresponding points in the data space.

⇒ the conditional density of the observations is then given as a Gaussian
density centered at the projected points f(x;W) with variance β−1 :

p(yi |xk) =

(
β

2π

)d/2

exp
{
−β
2
||yi − f(xk ;W)||2

}
= N (yi ; f(xk ;W), β−1Id)(13)

f(xk ;W) = W˘(xk) is a d-dimensional point in the manifold embedded in
data space

W is a d ×M matrix of parameters that govern the mapping,

˘(xk) = (Φ1(xk), . . . ,ΦM(xk)) consists of M non-linear basis functions (in
the standard model φm(xk) is a Gaussian : Φm(xk) = exp

{
−||xk−µm||

2

2σ2

}
).
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Generative Topographic Mapping (GTM) VII

The GTM density (11) finally results in the following mixture density :

p(yi ;W, β) =

∫
X
p(yi |x)p(x)dx =

1
K

K∑
k=1

p(yi |xk) =
1
K

K∑
k=1

N (yi ; f(xk ;W), β−1Id).

(14)
The estimation of the GTM models parameters (W, β) from and i.i.d data
sample is performed by maximizing the observed-data likelihood

p(Y; ¯) =
n∏

i=1

1
K

K∑
k=1

N (yi ; f(xk ;W), β−1Id). (15)

via the EM algorithm (see the previous chapters or (Bishop and Williams,
1997)(Bishop et al., 1998)).
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Generative Topographic Mapping (GTM) VIII

Some limitations

The standard GTM model (Bishop and Williams, 1997; Bishop et al., 1998)
is dedicated to i.i.d data

The independence assumption becomes however very restricting for
analyzing sequences.

⇒ the GTM Through Time (GTM-TT) (Bishop et al., 1997) overcomes
these two limitations by relying on a hidden Markov model (HMM)
formulation
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GTM Through Time I
The GTM through time (GTM-TT) model extends the standard GTM
model to learn from sequences by relaxing the independence assumption.

More specifically, the GTM-TT model incorporates the standard GTM
model as the emission density in a Hidden Markov Model (HMM) (HMM
will be studied later) as follows :

The hidden sequence (z1, . . . , zn) indicating the location on the latent
space (xzt ) at each time step is a Markov chain with initial distribution π
and transition matrix A : πk = p(z1 = k) and A`k = p(zt = k |zt−1 = `)

The conditional emission density function is the one of the GTM model,

that is p(yt |xzt ) =
(
β
2π

)d/2
exp
{
−β

2||yt − f(xzt ;W)||2
}

where zt denotes
the state at time t.
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GTM Through Time II
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GTM Through Time III

Learning the GTM-TT

The model parameters (π,A, β,W) are estimated by maximizing the
observed data likelihood, which is expressed as the one of a standard HMM
as follows

p(Y; ¯) =
∑
z1

. . .
∑
zn

p(z1)p(y1|xz1)
n∏

t=2

p(zt |zt−1)p(yt |xzt ). (16)

The maximization is performed by the EM (Baum-Welch) algorithm
(Bishop et al., 1997)(Dempster et al., 1977)(Baum et al., 1970) where the
E-step includes a forward-backward recursion to evaluate the posterior
state distribution and to compute the likelihood.
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Models for sequential data

Markov chains

Hidden Markov Models (HMMs)

Types of HMMs

Parameter estimation for HMMs

Inference in HMMs

Viterbi algorithm
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Sequential data modeling

Until now we have considered independence assumption for the
observations which were assumed to be independent and identically
distributed (i.i.d).
Now we will relax this assumption by allowing a dependence between
the data : the data are supposed to be an observation sequence and
therefore ordered in the time.
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Markov Chains

Markov chains are a statistical modeling approach for sequences
A Markov chain is a sequence of n random variables (z1, . . . , zn),
generally referred to as the states of the chain, verifying the Markov
property that is, the current state given the previous state sequence
depends only on the previous state :

p(zt |zt−1, zt−2, . . . , z1) = p(zt |zt−1) ∀t > 1.

The probabilities p(.|.) computed from the distribution p are called the
transition probabilities.
When the transition probabilities do not depend on t, the chain is
called a homogeneous or a stationary Markov chain.
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Markov Chains

The standard Markov chain can be extended by assuming that the
current state depends on a history of the state sequence, in this cas
one can speak about high order Markov chains (see for example the
thesis of (Muri, 1997)).
A Markov chain of order p, p being a finite integer, can be defined as

p(zt |zt−1, zt−2, . . . , z1) = p(zt |zt−1, . . . , zt−p) ∀t > p.
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Hidden Markov Model (HMM)
Markov chains are often integrated in a statistical latent data model
for sequential data where the hidden sequence is assumed to be a
Markov chain.
The resulting model is the so-called hidden Markov model (HMM)
Hidden Markov Models (HMMs) are a class of latent data models
widely used in many application domains, including speech
recognition, image analysis, time series prediction, etc Rabiner (1989);
Derrode and Pieczynski (2006), etc.
data are no longer assumed to be independent.
It can be seen as a generalization of the mixture model by relaxing the
independence assumption.
Let us denote by Y = (y1, . . . , yn) the observation sequence where the
multidimensional data example yt is observed data at time t, and let
us denote by z = (z1, . . . , zn) the hidden state sequence where the
discrete random variable zt which takes its values in the finite set
Z = {1, . . . ,K} represents the unobserved state associated with yt .
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Hidden Markov Model (HMM)
An HMM is fully determined by :
I the initial distribution π = (π1, . . . , πK ) where πk = p(z1 = k); k ∈
{1, . . . ,K},

I the matrix of transition probabilities A where A`k = p(zt = k|zt−1 = `)
for t = 2, . . . , n, satisfying

∑
k A`k = 1,

I the set of parameters (Ψ1, . . . ,ΨK ) of the parametric conditional
probability densities of the observed data p(yt |zt = k;Ψk) for
t = 1, . . . , n and k = 1, . . . ,K . These probabilities are also called the
emission probabilities.

e.g., a Gaussian HMM :

Figure – Graphical model structure for a Gaussian HMM.
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Types of Hidden Markov Models
HMMs can be classified according to the properties of their hidden
Markov chain and the type of the emission state distribution.

Homogeneous HMMs : models for which the hidden Markov chain has
a stationary transition matrix.

Non-homogeneous HMMs arise in the case when a temporal
dependency is assumed for the HMM transition probabilities. (Diebold
et al., 1994; Hughes et al., 1999; Meila and Jordan, 1996)
Left-right HMMs : the states proceed from left to right according to
the state indexes in a successive manner, for example such as in
speech signals (Rabiner and Juang, 1993; Rabiner, 1989)
⇒ imposing some restriction for the model through imposing
particular constraints on the transition matrix : e.g.,

A =

 a11 a12 0
0 a22 a23
0 0 a33

 .
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Types of Hidden Markov Models

high order HMMs : when the current state depends on a finite history
of the HMM states rather than only on the previous one

Input Output HMMs (IOHMMs) (Bengio and Frasconi, 1995, 1996)

Autoregressive HMM further generalize the standard HMMs by
allowing the observations to be Autoregressive Markov chains (Muri,
1997; Rabiner, 1989; Juang and Rabiner, 1985; Celeux et al., 2004;
Frühwirth-Schnatter, 2006).

Another HMM extension lies in the Semi-Markov HMM Murphy
(2002) which is like an HMM except each state can emit a sequence
of observations.
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Parameter estimation for a HMM

Ψ = (π,A,Ψ1, . . . ,ΨK ) : the model parameter vector to be
estimated.

The parameter estimation is performed by maximum likelihood.
The observed-data log-likelihood to be maximized is given by :

L(Ψ) = log p(Y;Ψ) = log
∑
z

p(Y, z;Ψ)

= log
∑

z1,...,zn

p(z1;π)
n∏

t=2

p(zt |zt−1;A)
n∏

t=1

p(yt |zt ;Ψ).

this log-likelihood is difficult to maximize directly
⇒ use the EM algorithm, known as Baum Welch algorithm in the
context of HMMs
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Hidden Markov Model (HMM)
the distribution of a particular configuration z = (z1, . . . , zn) of the
latent state sequence is written as

p(z;π,A) = p(z1;π)
n∏

t=2

p(zt |zt−1;A),

conditional independence of the HMM : that is the observation
sequence is independent given a particular configuration of the hidden
state sequence
⇒ the conditional distribution of the observed sequence :

p(Y|z;Ψ) =
n∏

t=1

p(yt |zt ;Ψ).

⇒ We then get the joint distribution (the complete-data likelihood) :

p(Y, z;Ψ) = p(z;A, π)p(Y|z; θ)

= p(z1;π)
n∏

t=2

p(zt |zt−1;A)
n∏

t=1

p(yt |zt ;Ψ).
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Deriving EM for HMMs

complete-data likelihood of Ψ :

p(Y, z;Ψ) = p(z1;π)
n∏

t=2

p(zt |zt−1; A)
n∏

t=1

p(yt |zt ;Ψ)

=
K∏

k=1
p(z1 = k;π)z1k

n∏
t=2

K∏
k=1

K∏
`=1

p(zt = k|zt−1 = `; A)
zt−1,`ztk

n∏
t=1

K∏
k=1

p(yt |zt = k; Ψk )ztk

=
K∏

k=1

π
z1k
k

n∏
t=2

K∏
k=1

K∏
`=1

Azt−1,`ztk
`k

n∏
t=1

K∏
k=1

p(yt |zt = k;Ψk)ztk

ztk = 1 if zt = k (i.e yt originates from the kth state at time t) and
ztk = 0 otherwise.
complete-data log-likelihood of Ψ :

Lc(Ψ) = log p(Y , z;Ψ)

=
K∑

k=1

z1k log πk +
n∑

t=2

K∑
k=1

K∑
`=1

ztkzt−1,` logA`k +
n∑

t=1

K∑
k=1

ztk log p(yt |zt = k;Ψk).
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The EM (Baum-Welch) algorithm
Start with an initial parameter Ψ(0) and repeat the E- and M- steps until
convergence :

E-step : compute the expectation of the complete-data log-likelihood :

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ)|Y;Ψ(q)

]
=

K∑
k=1

E
[
z1k |Y;Ψ(q)

]
log πk +

n∑
t=2

K∑
k=1

K∑
`=1

E
[
ztkzt−1,`|Y;Ψ(q)

]
logA`k +

n∑
t=1

K∑
k=1

E
[
ztk |Y;Ψ(q)

]
log p(yt |zt = k;Ψk)

=
K∑

k=1

p(z1 = k|Y;Ψ(q)) log πk +
n∑

t=2

K∑
k=1

K∑
`=1

p(zt = k, zt−1 = `|Y;Ψ(q)) logA`k

+
n∑

t=1

K∑
k=1

p(zt = k|Y;Ψ(q)) log p(yt |zt = k;Ψk)

=
K∑

k=1

τ
(q)
1k log πk +

n∑
t=2

K∑
k=1

K∑
`=1

ξ
(q)
t`k logA`k +

n∑
t=1

K∑
k=1

τ
(q)
tk log p(yt |zt = k;Ψk),
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The EM (Baum-Welch) algorithm
where

τ
(q)
tk = p(zt = k |Y;Ψ(q)) ∀t = 1, . . . , n and k = 1, . . . ,K is the
posterior probability of the state k at time t given the whole
observation sequence and the current parameter estimation Ψ(q). The
τtk ’s are also referred to as the smoothing probabilities,

ξ
(q)
t`k = p(zt = k , zt−1 = `|Y;Ψ(q)) ∀t = 2, . . . , n and k , ` = 1, . . . ,K
is the joint posterior probability of the state k at time t and the state
` at time t − 1 given the whole observation sequence and the current
parameter estimation Ψ(q).

As shown in the expression of the Q-function, this step requires the
computation of the posterior probabilities τ (q)

tk and ξ(q)
t`k .

⇒ These posterior probabilities are computed by the forward-backward
recursions.
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Forward-Backward

The forward procedure computes recursively the probabilities

αtk = p(y1, . . . , yt , zt = k ;Ψ),

⇒ the probability of observing the partial sequence (y1, . . . , yt) and
ending with the state k at time t.

⇒ the log-likelihood L can be computed after the forward pass as :

log p(Y;Ψ) = log
K∑

k=1

αnk .
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Forward-Backward

The backward procedure computes the probabilities

βtk = p(yt+1, . . . , yn|zt = k ;Ψ)

⇒ the probability of observing the rest of the sequence (yt+1, . . . , y1)
knowing that we start with the k at time t.

The forward and backward probabilities are computed recursively by
the so-called Forward-Backward algorithm

Notice that in practice, since the recursive computation of the α’s and
the β’s involve repeated multiplications of small numbers which causes
underflow problems, their computation is performed using a scaling
technique in order to avoid underflow problems.
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Posterior probabilities for an HMM
The posterior probability of the state k at time t given the whole sequence
of observations Y and a model parameters Ψ is computed from the
Forward-Backward and is given by

τtk = p(zt = k |Y)

=
p(Y, zt = k)

p(Y)

=
p(Y|zt = k)p(zt = k)∑K
l=1 p(Y|zt = l)p(zt = l)

=
p(y1, . . . , yt |zt = k)p(yt+1, . . . , yn|zt = k)p(zt = k)∑K
l=1 p(y1, . . . , yt |zt = l)p(yt+1, . . . , yn|zt = l)p(zt = l)

=
p(y1, . . . , yt , zt = k)p(yt+1, . . . , yn|zt = k)∑K
l=1 p(y1, . . . , yt , zt = l)p(yt+1, . . . , yn|zt = l)

=
αtkβtk∑K
l=1 αtlβtl

· (17)
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Joint posterior probabilities for an HMM

The joint posterior probabilities of the state k at time t and the state ` at
time t − 1 given the whole sequence of observations are therefore given by

ξt`k = p(zt = k , zt−1 = `|Y)

=
p(zt = k , zt−1 = `,Y)

p(Y)

=
p(zt = k , zt−1 = `,Y)∑K

`=1
∑K

k=1 p(zt = k , zt−1 = `,Y)

=
p(Y|zt = k , zt−1 = `)p(zt = k , zt−1 = `)∑K

`=1
∑K

k=1 p(Y|zt = k , zt−1 = `)p(zt = k , zt−1 = `)

=
p(y1, . . . , yt−1, yt , yt+1, . . . , y1|zt = k , zt−1 = `)p(zt = k, zt−1 = `)∑K

`=1
∑K

k=1 p(Y|zt = k , zt−1 = `)p(zt = k, zt−1 = `)

=
α(t−1)`p(yt |zt = k)βtkA`k∑K

`=1
∑K

k=1 α(t−1)`p(yt |zt = k)βtkA`k
· (18)
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Forward-Backward

The posterior probabilities are then expressed in function of the
forward backward probabilities as follows :

τ
(q)
tk =

α
(q)
tk β

(q)
tk∑K

k=1 α
(q)
tk β

(q)
tk

and

ξ
(q)
t`k =

α
(q)
t−1,`p(yt |zt = k ;θ(q))β

(q)
tk A(q)

`k∑K
`=1
∑K

k=1 α
(q)
t−1,`p(y(q)

t |zt = k ;Ψ)β
(q)
tk A(q)

`k

.
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Forward Recursion
αtk = p(y1, . . . , yt , zt = k)

= p(y1, . . . , yt |zt = k)p(zt = k)

= p(y1, . . . , yt−1|zt = k)p(yt |zt = k)p(zt = k)

= p(y1, . . . , yt−1, zt = k)p(yt |zt = k)

=
K∑
`=1

p(y1, . . . , yt−1, zt−1 = `, zt = k)p(yt |zt = k)

=
K∑
`=1

p(y1, . . . , yt−1|zt−1 = `)p(zt = k , zt−1 = `)p(yt |zt = k)

=
K∑
`=1

p(y1, . . . , yt−1, zt = k |zt−1 = `)p(zt = k |zt−1 = `)p(zt−1 = `)p(yt |zt = k)

=
K∑
`=1

p(y1, . . . , yt−1, zt−1 = `)p(zt = k |zt−1 = `)p(yt |zt = k)

=
[ K∑
`=1

α(t−1)`A`k
]
p(yt |zt = k) (19)
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Backward Recursion

βt` = p(yt+1, . . . , yn|zt = `)

=
K∑

k=1

p(yt+1, . . . , yn, zt+1 = k |zt = `)

=
K∑

k=1

p(yt+1, . . . , yn|zt+1 = k , zt = `)p(zt+1 = k |zt = `)

=
K∑

k=1

p(yt+2, . . . , yn|zt+1 = k , zt = `)p(zt+1 = k |zt = `)p(yt+1|zt+1 = k)

=
K∑

k=1

p(yt+2, . . . , yn|zt+1 = k)p(zt+1 = k |zt = `)p(yt+1|zt+1 = k)

=
K∑

k=1

β(t+1)kA`kp(yt+1|zt+1 = k). (20)
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Forward-Backward

The computation of these quantities is therefore performed by the Forward
Backward procedure. For all `, k = 1, . . . ,K :

For all `, k = 1, . . . ,K :

1 Forward procedure
I α1k = p(y1, z1 = 1;Ψ) = p(z1 = 1)p(y1|z1 = 1;θ) = πkp(y1|z1 =

k;θ) for t = 1,
I αtk = [

∑K
`=1 α(t−1)`A`k ]p(yt |zt = k ;Ψ) ∀ t = 2, . . . , n.

2 Backward procedure
I βnk = 1 for t = n,
I βt` =

∑K
k=1 β(t+1)kA`kp(yt+1|zt+1 = k ;Ψ) ∀ t = n − 1, . . . , 1.
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The EM (Baum-Welch) algorithm
M-step : update the value of Ψ by computing the parameter Ψ(q+1)

maximizing the expectation Q-function with respect to Ψ. The Q-function
can be decomposed as

Q(Ψ,Ψ(q)) = Qπ(π,Ψ(q)) + QA(A,Ψ(q)) +
K∑

k=1

Q(Ψk ,Ψ
(q))

with

Qπ(π,Ψ(q)) =
K∑

k=1

τ
(q)
1k log πk ,

QA(A,Ψ(q)) =
n∑

t=2

K∑
k=1

K∑
`=1

ξ
(q)
t`k logA`k ,

QΨk
(Ψ,Ψ(q)) =

n∑
t=1

τ
(q)
tk log p(yt |zt = k ; ¯k

)
.
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The maximization of Q(Ψ,Ψ(q)) with respect to Ψ is then performed
by separately maximizing Qπ(π,Ψ(q)), QA(A,Ψ(q)) and
QΨk

(Ψ,Ψ(q)) (k = 1, . . . ,K ).

The updating formulas for the Markov chain parameters are given by :

π
(q+1)
k = argmax

πk
Qπ(π,Ψ(q)) subject to

∑
k

πk = 1

= τ
(q)
1k

A(q+1)
`k = argmax

A`k
QA(s1,Ψ(q)) subject to

∑
k

A`k = 1

=

∑n
t=2 ξ

(q)
tk`∑n

t=2
∑

k ξ
(q)
t`k

=

∑n
t=2 ξ

(q)
tk`∑n

t=2 τ
(q)
t`

These constrained maximizations are solved using Lagrange multipliers.
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The maximization of Q(Ψ,Ψ(q)) with respect to QΨk
(Ψ,Ψ(q))

(k = 1, . . . ,K ) depends on the form of emission probability function.
Foa example, for the Gaussian case where
p(y t |zt = k ;Ψk = N (yt ;µk ,Σk), we have the following updating
formulas :

The updating formulas are given by :

µ
(q+1)
k =

1∑n
t=1 τ

(q)
tk

n∑
t=1

τ
(q)
tk yt

Σ
(q+1)
k =

1∑n
t=1 τ

(q)
tk

n∑
t=1

τ
(q)
tk (yt − µ

(q+1)
k )(yt − µ

(q+1)
k )T .
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Gaussian HMM

an HMM with Gaussian emission probabilities :

yt = µzt + εt ; εt ∼ N (0,Σzt ),

the latent sequence z = (z1, . . . , zn) is drawn from a first-order
homogeneous Markov chain
the εt are independent random variables distributed according to a
Gaussian distribution with zero mean and covariance matrix Σzt .
the state conditional density p(yt |zt = k ;Ψk) is Gaussian :

p(yt |zt = k;Ψk) = N (yt ;µk ,Σk)

where Ψk = (µk ,Σk).
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Gaussian HMM

Figure – Graphical model structure for a Gaussian HMM.

The model parameters are learned in a maximum likelihood framework
by the EM algorithm.
EM (Baum-Welch in this context of HMMs) includes
forward-backward recursions to compute the E-Step
the M-step is performed in a similar way as for a Gaussian mixture
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Viterbi decoding algorithm I

Recall that we have three basic problems associated with HMMs :

1 Find p(y1, . . . , yn;Ψ), that is the likelhiood for an observation
sequence Y = (y1, . . . , yn) given an HMM (Ψ) : an evaluation
problem.
⇒ As seen previously, we use the forward (or the backward) procedure
for this since it is much more efficient than direct evaluation.

2 Find an HMM (Ψ) given an observation sequence (y1, . . . , yn) : a
Learning problem
⇒ As seen before, the Baum-Welch (EM) algorithm solves this
problem,

3 Given an observation sequence y1, . . . , yn and a HMM (Ψ), find the
most likely state sequence z = (z1, . . . , zn) that have generated
y1, . . . , yn under Ψ : an Inference problem.
⇒ As we can see it now, the Viterbi algorithm solves this problem
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Viterbi decoding algorithm II
The Viterbi algorithm (Viterbi, 1967; Forney, 1973) provides an efficient
dynamic programming approach to computing the most likely state
sequence (ẑ1, . . . , ẑn) that have generated an observation sequence
(y1, . . . , yn), given a set of HMM parameters (Ψ).

It estimates the following MAP state sequence :

ẑ = arg max
z1,...,zn

p(y1, . . . , yn, z1, . . . , zn;Ψ)

= arg max
z1,...,zn

p(z1)p(y1|z1)
n∏

t=2

p(zt |zt−1)p(yt |zt)

= arg min
z1,...,zn

[
− log π − log p(y1|z1) +

n∑
t=2

− log p(zt |zt−1)− log p(yt |zt)
]
.

The Viterbi algorithm works on the dynamic programming principle that is :
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Viterbi decoding algorithm III

The minimum cost path to zt = k is equivalent to the minimum cost path
to node zt−1 plus the cost of a transition from zt−1 to zt = k (and the
cost incurred by observation yt given zt = k).

The MAP state sequence is then determined by starting at node zt and
reconstructing the optimal path backwards based on the stored calculations.

Viterbi decoding reduces the computation cost to O(K 2n) operations
instead of the brute force O(Kn) operations. The Viterbi algorithm steps
are outlined in Algorithm 4.
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Viterbi decoding algorithm IV
Algorithm 4 Pseudo code of the Viterbi algorithm for an HMM.
Inputs : Observations (y1, . . . , yn) and HMM paramsΨ
1: Initialization : initialize minimum path sum to state z1 = k for k = 1, . . . ,K :

S1(z1 = k) = − log πk − log p(y1|z1 = k)
2: Recursion : for t = 2, . . . , n and for k = 1, . . . ,K , calculate the minimum path

sum to state zt = k :

St(zt = k) = − log p(yt |zt = k) + min
zt−1

[
St−1(zt−1)− log p(zt = k|zt−1)

]
and let

z∗t−1(zt) = argmin
zt−1

[
St−1(zt−1)− log p(zt = k|zt−1)

]
3: Termination : compute minzn Sn(zn) and set ẑn = argminzn Sn(zn)
4: State sequence backtracking : iteratively set, for t = n − 1, . . . , 1

ẑt = z∗t (ẑt+1)

Outputs : The most likely state sequence (ẑ1, . . . , ẑn).
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Latent data models for dimensionality reduction

Introduction

Principal Component Analysis (PCA)

Probabilistic Principal Component Analysis (PPCA)

Factor Analysis (FA)

tSNE
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Introduction I
Until now we have considered discrete latent data models (GMM, HMM)
and continuous ones (GTM, etc) ; now we will see other continuous latent
data models

The aim here is the dimensionality reduction for preprocessing,
compression, feature extraction, visualization etc of high dimensional data

Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933),

Factor Analysis (FA)(Spearman, 1904; Thurstone, 1947),

Independent Component Analysis (ICA)(Comon, 1994; Hyvärinen, 2001),
etc

are examples of well-known techniques which can be used to achieve this
task.
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Introduction II

PCA is a well-established technique for dimensionality reduction,

A linear projection technique that maximizes the variance in the
projected space

Equivalently, it minimizes the reconstruction error (after the
dimensionality reduction)
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Principal Component Analysis (PCA) I
Two views of PCA :

1 First view : PCA maximizing the projected variance (Hotelling, 1933)
2 Second view : minimizing the reconstruction error (after the

dimensionality reduction)

The most common derivation of PCA is in terms of a standardized linear
projection which maximizes the variance in the projected space (Hotelling,
1933).

Consider a set of observed d-dimensional data vector X = (x1, . . . , xn)

⇒ The aim is to project the data onto a space having dimensionality
M < d while maximizing the variance of the projected data.
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Principal Component Analysis (PCA) II

Consider the sample mean vector and the sample covariance matrix :

x̄ =
1
n

n∑
i=1

xi

S =
1
n

n∑
i=1

(xi − x̄)(xi − x̄)T ·

Let us first consider the projection onto a one-dimensional space (M = 1).
The direction of this space can be defined using a d-dimensional direction
unit vector u1 (with uT1 u1 = 1)

The linear projection of a data vector xi on the projected space is given by
the scalar :

uT1 xi
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Principal Component Analysis (PCA) III

⇒ The variance of the projected data is therefore given by the scalar :

v(u1) =
1
n

n∑
i=1

(uT1 xi − uT1 x̄)(uT1 xi − uT1 x̄)T = uT1 Su1 · (21)

The principal axe (the direction vector) is then given by :

u1 = arg max
u1∈Rd

uT1 Su1 subject to uT1 u1 = 1· (22)

The normalisation condition is namely to prevent ||u1||→ ∞

This is a constrained maximization problem ⇒ Use a Lagrange multiplier
to solve it
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Principal Component Analysis (PCA) IV

The unconstrained maximization is therefore given by

u = arg max
u1∈Rd

uT1 Su1 + λ1(1− uT1 u1)· (23)

∂uT1 Su1 + λ(1− uT1 u1)

∂u1
= 0

∂uT1 Su1
∂u1

=(S+ST )u
⇔ 2Su1 − 2λ1u1 = 0

⇔ Su1 = λ1u1 (24)

⇒ u1 must be an eigenvector of the data covariance matrix S , with
eigenvalue λ1

The variance (21) in the projected space is then given by

uT1 Su1 = uTλ1u1

= λ1 ( since uT1 u1 = 1) (25)
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Principal Component Analysis (PCA) V

⇒ The variance will be maximum if we set u1 equal to the eigenvector
having the largest eigenvalue λ1.

⇒ The eigenvector u1 is known as the first principal component or the
first principal axe.

We can define additional principal components in an incremental way :

The new direction to be chosen is that which maximizes the projected
variance amongst all possible directions orthogonal to those already
considered.
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Principal Component Analysis (PCA) VI
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Principal Component Analysis (PCA) VII

General case :

Consider the general case of a projection space of dimension M (M
principal components).

The optimal linear projection for which the projected variance is maximized
is defined by M eigenvectors u1, . . . ,uM of the data covariance matrix S
corresponding to the largest eigenvalues λ1, . . . , λM

The result was shown for one principal components (M = 1).

Now suppose that the result holds for M principal components and we aim
to show that it holds for M + 1 (by induction)

For uM+1, the projected variance in the direction uM+1 is given by

uTM+1SuM+1
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Principal Component Analysis (PCA) VIII

We therefore maximize the variance uTM+1SuM+1 by taking into account
the normalization constraint and the orthogonality constraints :

normalization constraint : uTM+1 is normalized to unit length, that is :
uTM+1uM+1 = 1
orthogonal constraint : uM+1 orthogonal to the existing vectors
u1, . . . ,uM , that is : uTM+1uk = 0 for k 6= M + 1

⇒ Use a Lagrange multiplier λM+1 and Lagrange multipliers
ηk , k = 1, . . . ,M to enforce these constraints.

⇒ Thus we solve the following unconstrained maximization problem

uM+1 = argmax
uM+1

uTM+1SuM+1 + λM+1(1− uTM+1uM+1)+
m∑

k=1

ηkuTM+1uk

= argmax
uM+1

v ({uk , ηk}mk=1, λM+1,uM+1) (26)
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Principal Component Analysis (PCA) IX

∂v ({uk , ηk}mk=1, λM+1,uM+1)

∂uM+1
= 0 ⇔2SuM+1−2λM+1uM+1+

m∑
k=1

ηkuk = 0

⇔uTj SuM+1︸ ︷︷ ︸
0

−λM+1 uTj uM+1︸ ︷︷ ︸
0

+
m∑

k=1

ηkuTj uk︸ ︷︷ ︸
ηjuT

j uj=ηj

= 0

⇔ ηj = 0 for j = 1, . . . ,m (27)

We therefore obtain : SuM+1 = λM+1uM+1

⇒ uM+1 must be an eigenvector of S with eigenvalue λM+1 .

The projected variance in direction uM+1 is therefore given by

uTM+1SuM+1 = uTM+1λM+1uM+1

= λM+1 (28)
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Principal Component Analysis (PCA) X

⇒ The variance will be maximum if we set uM+1 equal to the eigenvector
having the largest eigenvalue λM+1 amongst those not previously selected.

Thus the result holds also for projection spaces of dimensionality M + 1,
which completes the inductive step.

Since we have already shown this result explicitly for M = 1, if follows that
the result must hold for any M ≤ d .
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Principal Component Analysis (PCA) XI

Second view : minimization of the reconstruction error PCA
minimizes the reconstruction error, that is the squared error between a data
point xi and its approximation x̃i , averaged over all the data points :
J = 1

n

∑n
i=1||xi − x̃i||2

Consider one direction u in the projection space

Here we will show minimizing this error w.r.t u is equivalent to maximizing
the projected variance (21) on the direction u

Let us assume that all the original vectors xi have been centered :

xci = xi − x̄i

By using the fact that the projection of a data vector x onto the direction
u is given by the scalar uTx ; x is then represented by (uTx)u in the
projected space,
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Principal Component Analysis (PCA) XII
The reconstruction error for the centred data is then given by :

J(u) =
1

n

n∑
i=1
||xci − x̃ci ||

2 1

n

n∑
i=1
||(xi − x̄i )− [uT (xi − x̄i )u]||2

=
1

n

( n∑
i=1
||xi − x̄i||

2 − 2
n∑

i=1
[uT (xi − x̄i )][uT (xi − x̄i )] +

n∑
i=1

[uT (xi − x̄i )]2||u||2
)

=
1

n

n∑
i=1
||xi − x̄i||

2 −
2

n

n∑
i=1

[uT (xi − x̄i )]2 +
1

n

n∑
i=1

[uT (xi − x̄i )]2

=
1

n

n∑
i=1
||xi − x̄i||

2 −
1

n

n∑
i=1

[uT (xi − x̄i )]2

=
1

n

n∑
i=1
||xi − x̄i||

2 −
1

n

n∑
i=1

uT (xi − x̄i )(xi − x̄i )u

=
1

n

n∑
i=1
||xi − x̄i||

2 − uT Su

(29)

The first term does not depend on u. Thus the vector u that minimizes
J(u) is the same one that maximizes the projected variance uTSu (21).
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Principal Component Analysis (PCA) XIII

Summary :

PCA reduces the dimensionality of the data while retaining as much as
possible of the variation present in the original dataset

X : [n × d ]
Linear Proj. onto U=[u1,...,uM ]−−−−−−−−−−−−−−−−−−→ X̃ = XcU : [n ×M];M ≤ d

To perform PCA on a data set X

1 calculate the mean data vector x̄
2 calculate the data covariance matrix S
3 calculate the eigenvectors and the corresponding eigenvalues of S

(e.g., by using the eig function in Matlab)
4 the eigenvalues λ1, . . . , λd are sorted in decreasing order ; the

eigenvectors u1, . . . ,ud are placed according to the resulting order
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Principal Component Analysis (PCA) XIV
5 the projection space (the space of principal axes) is then obtained by

taking the M first eigenvectors U = [u1, . . . ,uM ];M ≤ d

6 the projected data are given by X̃ = XcU where Xc is the centered
data matrix

How to choose M ? for example one way is to choose the first M
components that capture a specified percentage e.g., 90%, 95%, or 99%,

of the cumulative percentage of variance. cpv(M) = 100
(∑M

m=1 λm∑d
m=1 λm

)
%

Disadvantage : One disadvantage of both these definitions of PCA is the
absence of a probability density model and associated likelihood measure.
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Principal Component Analysis (PCA) XV
Deriving PCA from the perspective of density estimation would offer a
number of important advantages, including the following :

The likelihood measure would permit comparison with other density
models

We can derive EM for PCA and hence deal with missing values in the
data set

Possibility to perform Bayesian inference (e.g. for model selection)

Possibility of computing the the posterior class probabilities if PCA is
used to model the class-conditional densities in a classification
problem,

The value of the probability density function would give a measure of
the novelty of a new data point.

PCA model could be extended to a mixture framework.

⇒ Use Probabilistic Principal Component Analysis (PPCA)
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Probabilistic Principal Component Analysis (PPCA) I
PCA can be formulated into a probabilistic framework : the Probabilistic
Principal Component Analysis (PPCA) (Tipping and Bishop, 1997, 1999;
Roweis, 1998)

The PC can be expressed as the maximum likelihood solution of a latent
continuous variable model and the model parameter are optimized using
EM (Tipping and Bishop, 1997, 1999; Roweis, 1998)

⇒ Generative formulation : the latent variable model for PPCA :

xi = Wzi + µ + εi Observed data = linear transf. of z + additive Gaussian noise

zi ∼ N (0, σ2I) latent variables of the principal component subspace
ε ∼ N (0, I) zero-mean Gaussian noise

xi |zi ∼ N (Wzi + µ, σ2I) conditional density for the observed data
xi ∼ N (µ,WWT + σ2I)marginal density for the observed data

(30)
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Probabilistic Principal Component Analysis (PPCA) II
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Maximum Likelihood for PPCA I
Model parameters : (W,µ, σ2) where W a [d ×M] matrix whose columns
represent the principal subspace, µ a d-dimensional vector

Assume we have an i.i.d sample X = (x1, . . . , xn).
The observed-data log-likelihood is given by :

L(W,µ, σ2) = log
n∏

i=1

p(xi ; W,µ, σ2) = log
n∏

i=1

N (µ,WWT + σ2I︸ ︷︷ ︸
C

)

= −nd

2
log 2π − n

2
log |C| − 1

2

n∑
i=1

(xi − µ)T C−1 (xi − µ)

= −n

2

(
d log 2π +

1
2
log |C|+ trace

{
C−1

1
n

n∑
i=1

(xi − µ)T (xi − µ)

})

= −n

2

(
d log 2π +

1
2
log |C|+ trace

{
C−1S

})
(31)

⇒ Analytical solutions
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Maximum Likelihood for PPCA II
ML estimates (Tipping and Bishop, 1999) :

µ̂ =
1
n

n∑
i=1

xi = x̄ (32)

σ̂2 =
1

d −M

d∑
m=M+1

λm (33)

Ŵ = UM(LM − σ̂2I)1/2R, (34)

where UM is a [d ×M] matrix whose columns are the first M eigenvectors
[u1, . . . ,uM ] of the data covariance-matrix S corresponding to the the first
M largest eigenvalues [λ1, . . . , λM ]

LM is an [M ×M] matrix whose diagonal elements are the corresponding
eigenvalues [λ1, . . . , λM ]

R is an [M ×M] arbitrary orthogonal matrix (RRT = I)
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EM for PPCA I
The PPCA is expressed as a latent data model : so we can use EM to find
the ML estimates for PPCA

While we have exact solutions ; using EM, as it is iterative, may have an
advantage in spaces of high dimensionality compared to when working with
the sample data covariance matrix S (for the eignvalues and eigenvalues)

The EM procedure can also be extended to Factor Analysis for which there
is no analytical solutions

The log-likelihood of the PPCA model parameters (W,µ, σ2) for the
complete-data (X,Z) = (x1, z1, . . . , xn, zn) :

Lc(W,µ, σ2;X,Z) = log
n∏

i=1

p(xi , zi ;W,µ, σ2) =
n∑

i=1

[log p(xi |zi )+log p(zi )]

Faïcel Chamroukhi (UNICAEN/LMNO) Advanced Statistics & Machine Learning 184 / 194



EM for PPCA II
Complete-data log-likelihood :

Lc(W,µ, σ2) =
n∑

i=1

[log p(xi |zi ) + log p(zi )]

=
n∑

i=1

[logN (x;Wzi + µ, σ2I) + logN (zi ; 0, σ2I)]

= −
n∑

i=1

{d
2
log(2πσ2) +

1
2
trace(zizTi ) +

1
2σ2
||xi − µ||2

− 1
σ2

zTi WT (xi − µ) +
1

2σ2
trace(zizTi WWT

}
(35)

Expected complete-data log-likelihood (the Q-function) :

E[Lc(W,µ, σ2)|X, {W,µ, σ2}old] = −
n∑

i=1

{d
2
log(2πσ2) +

1
2
trace(E[zizTi ]) +

1
2σ2
||xi − µ||2

− 1
σ2

E[zi ]TWT (xi − µ) +
1

2σ2
trace(E[zizTi ]WWT

}
(36)
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EM for PPCA III
NB : for µ, we get its closed form solution : µ̂ = x̄

Only W and σ2 are computed in an iterative way by EM

1 E-step : By using the old parameters values, compute

E[zi ] = (WTW + σ2I)−1WT (xi − x̄) (37)
E[zizTi ] = σ2(WTW + σ2I)−1 + E[zi ]E[zi ]T (38)

2 M-step

Wnew =

[
n∑

i=1

(xi − x̄)E[zi ]T
][

n∑
i=1

E[zizTi ]

]−1
(39)

σ2new =
1
nd

n∑
i=1

{
||xi − x̄||2 − 2E[zi ]TWT

new(xi − x̄) + trace(E[zizTi ]WnewWT
new

}
(40)

NB. Here E[.] is actually E[.|X, {W,µ, σ2}old]
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Factor Analysis (FA) I
Factor Analysis (FA) (Spearman, 1904; Thurstone, 1947)

FA is closely related to PPCA

The only difference is

xi |zi ∼ N (Wzi + µ,Ψ) conditional density for the observed data

Ψ is a d × d digonal matrix ; rather than

xi |zi ∼ N (Wzi + µ, σ2I) conditional density for the observed data

(isotropic covariance matrix).
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Factor Analysis (FA) II

Generative model

xi = Wzi + µ + εi Observed data = linear transf. of z + additive Gaussian noise

zi ∼ N (0,Ψ) latent variables of the principal component subspace
ε ∼ N (0, I) zero-mean Gaussian noise

xi |zi ∼ N (Wzi + µ,Ψ) conditional density for the observed data
xi ∼ N (µ,WWT + Ψ)marginal density for the observed data
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Factor Analysis (FA) III
EM

1 E-step

E[zi ] = (I + WTΨ−1W)−1WT (Ψ−1xi − x̄) (41)
E[zizTi ] = (I + WTΨ−1W)−1 + E[zi ]E[zi ]T (42)

2 M-step

Wnew =

[
n∑

i=1

(xi − x̄)E[zi ]T
][

n∑
i=1

E[zizTi ]

]−1
(43)

Ψnew = diag

{
S−Wnew

1
n

n∑
i=1

E[zi ](xi − x̄)T
}

(44)

NB. Here E[.] is actually E[.|X, {W,µ,Ψ}old]
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Illustration on PCA (Face Recognition) seen in classroom
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tSNE : supports vus en cours et pdf disponible sur
https://chamroukhi.com/Teaching/ApprentissageM2/tSNE.pdf
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