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Introduction

What does Data Science mean ?

What about Statistics in the Data Science “area” ?

For a review, see the report of D. Donoho (2015) : “50 years of Data Science”

There is not yet a consensus on what precisely constitutes Data Science, but
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Data Science can be seen (defined ?) as a :

↪→ the study of the generalizable extraction of knowledge from data.

↪→ requires an integrated skill set spanning maths/statistics, machine learning,

optimization, databases..

a. Vasant Dhar (2013) : Communications of the ACM, Vol. 56 No. 12 : 64-73

Foundations : Databases, statistics and machine learning, and distributed systems 1

(i) Databases : organization of data resources,

(ii) Statistics and Machine Learning : convert data into knowledge,

(iii) Distributed and Parallel Systems : computational infrastructure

Statistics play a central role in data science

Allow to quantify the randomness component in the data

A well-established background to deal with uncertainty (probabilistic framework)

and to establish generalizable methods for estimation and prediction

allow soft decision : e.g. confidence intervals (error bars)

1. ASA Statement on the Role of Statistics in Data Science, oct. 2015
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Introduction

We assume that we have a set of data collected in some way (e.g., independent or

not (i.e sequential), complete or not, etc.),

to analyze, in some sense (e.g., for prediction, exploration, selection, visualisation,

etc.), some scenario or system, in a broad sense.

prediction, clustering, dimensionality reduction, visualisation, etc

We assume that the data are represented by random variables ↪→ statistical

learning framework
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Introduction

We assume that we have a set of data collected in some way (e.g., independent or

sequential, complete or incomplete).

We analyze this data for various purposes, such as :

I Prediction
I Exploration
I Selection
I Visualization
I Clustering
I Dimensionality Reduction

We assume that the data are represented by random variables, leading to the

statistical learning framework.
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Descriptive Analysis
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Predictive Analysis

Regression
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Figure – Scatter plot (◦), Target function (- -), fitted function (—)
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Predictive Analysis

Regression
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Figure – Scatter plot (◦), Target function (- -), fitted function (—)

Figure – True model (- -), realizations from the fitted model (—)
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Predictive Analysis

Classification

Multi−class Logistic Regression
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Predictive Analysis

Classification

Linear Discriminant Analysis (LDA)
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Predictive Analysis

Classification

Quadratic Discriminant Analysis (QDA)
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Predictive Analysis

Classification

Mixture Discriminant Analysis (MDA)
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Predictive Analysis

Classification
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Representation
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Representation
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Unsupervised Learning

Clustering / Representation / Data viz / Dimensionality reduction
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Unsupervised Analysis

Representation / Data viz / Dimensionality reduction
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Unsupervised Analysis

Representation / Data viz / Dimensionality reduction
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Unsupervised analysis
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Unsupervised analysis

Clustering
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Unsupervised analysis

Clustering
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Unsupervised analysis

Clustering
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Figure – A three-class example of a real data set : Iris data of Fisher.
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Unsupervised analysis

Clustering
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Figure – Iris data : Clustering results with EM for a GMM and AIC.
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Machine Learning

Machine Learning

Field of study that gives computers the ability to learn without being explicitly

programmed ; “Programming computers to learn from experience should eventually

eliminate the need for much of this detailed programming erfort.” (A. Samuel,

1959).

“Machine learning is concerned with the question of how to construct computer

programs that automatically improve with experience”. Tom M. Mitchell

Definition. A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P , if its performance at tasks in

T , as measured by P , improves with experience E. Tom M. Mitchell

Example : A handwriting recognition learning problem :

I Task T : recognizing and classifying handwritten words within images
I Performance measure P : percent of words correctly classified
I Training experience E : a database of handwritten words with given

classifications
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Notation
General used notation (deviation from this notation will be mentioned prior to use) :

x, y, z, t, ... small letter for scalars

α, β, γ, θ, . . . Greek letters for scalar parameters

x,y,z, ... boldface letters and x,y, z, . . . upright bold for vectors

α,β,θ,γ, ... boldface Greek letters for vector parameters

X,Y, Z, ..., Capitalized for random variables

X,Y ,Z,T Capitalized boldface letters for random vectors

A,B,X,Y, . . . Capitalized upright bold for Matrices

Γ,Σ,Λ,Υ Capital Greek letters for matrix parameters

X ,Y,Z, . . . Calligraphic capital letters for sets (except for standard sets N, R,..)

Θ,Ω,Θ,Ω, . . . (boldface) capital Greek for sets of (vector) parameters

P probability, E expectation, V or Var variance, Cov co-variance

A>, A−1, trace(A), |A|, diag(A) : transpose, inverse, trace, determinant, and

diagonal of A

All vectors are assumed to be column vectors
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Some analysis notions for optimization
Argmax/Argmin, Max/Min, and Supremum/Infimum of a function f defined on a set Df

arg max : arg max
x∈Df

f(x) = {x : f(x) ≥ f(y),∀y ∈ Df}

max : max
x∈Df

f(x) = f(x∗), for any x∗ ∈ arg max
x∈Df

f(x)

sup : sup f(x) = min
y:y≥f(x),∀x∈Df

y.

If g is strictly monotonic, meaning that α > β implies g(α) > g(β), then

arg max g(f(x)) = arg max f(x) and max g(f(x)) = g(max f(x)).

arg min : arg min
x∈Df

f(x) = {x : f(x) ≤ f(y), ∀y ∈ Df}

min : min
x∈Df

f(x) = f(x∗), for any x∗ ∈ arg min
x∈Df

f(x)

inf : inf f(x) = max
y:y≤f(x),∀x∈Df

y.

arg min
x∈Df

f(x) = arg max
x∈Df

−f(x)

min
x∈Df

f(x) = − max
x∈Df

−f(x)

inf
x∈Df

f(x) = − sup
x∈Df

−f(x).
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Statistical learning framework

Statistical learning “=” Machine Learning ‘+’ Statistics : the data are assumed

to be realizations of random variables ⇒ infer probabilistic models from the data

Let (X,Y ) be a pair of random variables distributed on a sample space X × Y

A joint probability distribution on X × Y is denoted as PX,Y

Let (X,Y ) be a pair of random variables distributed according to PX,Y . We use

PX (resp. PY ) to denote the marginal distribution of X (resp. Y ).

PY |X (resp. PX|Y ) to denote the conditional distribution of Y given X (resp. X

given Y ).

Supervised learning : We are given a set of observed pairs (input, output), and the

objective is the prediction of the outputs of new inputs. Classification, Regression

Unsupervised learning : The objective is to explore a set of inputs to restore or

reveal hidden information. Clustering, Dimensionality reduction (Representation)
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Generative vs Discriminative learning

Bayes decision rule : From the conditional distribution p(y|x), we can make

predictions of y for any new value of x by maximizing the conditional distribution

given the learnt model :

ŷ = arg max
y∈Y

p(y|x).

Discriminative approaches directly learn a model of the conditional distribution

p(y|x)

or learn a direct map from the input x to the output y.

(especially used in supervised learning (classification, regression))

Generative approaches learn a model of the joint distribution

p(x, y)

They model the conditional distribution p(x|y) together with the prior distribution

p(y). The required posterior distribution is then obtained using Bayes’ theorem

p(y|x) ∝ p(y)p(x|y)

F. Chamroukhi T3A: Machine Learning 29/29



Generative vs Discriminative learning

Bayes decision rule : From the conditional distribution p(y|x), we can make

predictions of y for any new value of x by maximizing the conditional distribution

given the learnt model :
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