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Introduction

We assume that we have a set of data collected in some way (e.g., independent or

not (i.e sequential), complete or not, etc.),

to analyze, in some sense (e.g., for prediction, exploration, selection, visualisation,

etc.), some scenario or system, in a broad sense.

prediction clustering, dimensionality reduction, visualisation, etc

We assume that the data are represented by random variables ↪→ statistical

learning framework
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Representation
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Representation
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Unsupervised Learning

Clustering / Representation / Data viz / Dimensionality reduction
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Unsupervised Analysis

Representation / Data viz / Dimensionality reduction
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Unsupervised Analysis

Representation / Data viz / Dimensionality reduction
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Unsupervised analysis
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Unsupervised analysis

Clustering
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Unsupervised analysis

Clustering
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Figure – A three-class example of a real data set : Iris data of Fisher.
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Unsupervised analysis

Clustering
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Figure – Iris data : Clustering results with EM for a GMM and AIC.
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Unsupervised Learning
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Clustering

Clustering is often referred to as unsupervised learning in the sense

that the class labels of the data are unknown (missing, hidden). Only

the observations X = (x1, . . . ,xn) are given,

suitable for many applications where labeled data is difficult to obtain.

also used to explore and characterize a dataset before running a

supervised learning task.

In clustering, the data are grouped by some notion of dissimilarity.

⇒ a dissimilarity measure must be defined based on the data.

the aim of clustering is to find a partition of the data by dividing

them into clusters (groups) such that the data within a group tend to

be more similar to one another as compared to the data belonging to

different groups.

There is, distance-based, model-based, hierarchical, topographical

clustering approaches, etc
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Example 3 : Iris data
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Example 3 : Iris data
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Example 3 : Iris data
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Illustrations

image originale

objects in cluster 1 objects in cluster 2 objects in cluster 3

F. Chamroukhi T3A: Machine Learning 18/1



Illustrations

image originale image segmentee par GMM−EM (K=5)

objects in cluster 1 objects in cluster 2 objects in cluster 4 objects in cluster 5 objects in cluster 3
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Illustrations

image originale image segmentee par GMM−EM (K=3)

objects in cluster 1 objects in cluster 2 objects in cluster 3
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Illustrations

image originale image segmentee par GMM−CEM (K=5)

objects in cluster 1 objects in cluster 2 objects in cluster 4 objects in cluster 5 objects in cluster 3
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Example : Image segmentation
image originale image etiquetee par les classes estimees

image originale image segmentee par GMM−EM (K=3)

image originale image segmentee par GMM−CEM (K=5)
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example 2 : Fault detection

Real data (curves)
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example 2 : Fault detection

Clustering results
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K-means

a straightforward and widely used clustering algorithm, is one of the

most important algorithms in unsupervised learning.

Each cluster is represented by its mean (cluster centroid) µk in Rd.

K-means

(µ̂1, . . . , µ̂K , ẑ) ∈ arg min
µ1,...,µK ,z

J (µ1, . . . ,µK , z)

objective function : J (µ1, . . . ,µK , z) =
∑K

k=1

∑n
i=1 ||xi − µzi ||

2

Initialization : (µ
(0)
1 , . . . ,µ

(0)
K ) (eg, randomly chosen data points)

1 Assignment step : z
(q)
i = argmin

z∈Z
||xi − µz||2

2 Relocation step : µ
(q+1)
k =

∑n
i=1 z

(q)
ik xi∑n

i=1 z
(q)
ik

,

⇒ The K-means algorithm is simple to implement and relatively fast.
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K-means

a straightforward and widely used clustering algorithm, is one of the

most important algorithms in unsupervised learning.

an iterative clustering algorithm that partitions a given dataset into a

predefined number of clusters K.

the value K is chosen by prior knowledge ; how many clusters are

desired ; ..

In K-means, each cluster is represented by its mean (cluster centroid)

µk in Rd.

The default measure of dissimilarity for K-means is the Euclidean

distance ||.||2.

K-means attempts to minimize the following nonnegative objective

function referred to as distortion measure :

J(µ1, . . . ,µK , z) =
K∑
k=1

n∑
i=1

zik||xi − µk||2

which corresponds to the total squared Euclidean distance between

each data point xi and its closest cluster representative µzi .
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K-means

start with an initial solution (µ
(0)
1 , . . . ,µ

(0)
K ) (eg, by randomly

choosing K points in Rd or some data points)

1 Assignment step : Each data point is assigned to its closest centroid

using the Euclidian distance : ∀i = 1, . . . , n

z
(q)
ik =

{
1 if k = argmin

z∈Z
||xi − µz||2

0 otherwise.

2 Relocation step : Each cluster representative is relocated to the

center (i.e., arithmetic mean) of all data points assigned to it :

µ
(q+1)
k =

∑n
i=1 z

(q)
ik xi∑n

i=1 z
(q)
ik

,

q being the current iteration.
⇒ The K-means algorithm is simple to implement and relatively fast.
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Algorithm 1 K-means
Input: Données (x1, ...,xn), nombre de clusters K

Iteration : t← 0 ; Ψ(0) = (µ
(0)
1 , ...,µ

(0)
K )/* Initialize the means */

Distorsion : J (t) ← +∞ ; converge← 0

while (converge 6= 1) do

for k ← 1 to K do

Dk = ||X− 1nµ
>(t)
k ||2 /* Calculate the Euclidean Distances */

end

z(t) = argmink Dk /* Classification step */

for k ← 1 to K do

µ
(t+1)
k =

∑
i z

(t)
ik
xi∑

i z
(t)
ik

/* Relocation Step */

end

J (q+1) /*Calculate the distortion error */

/*Test of convergence*/

if |J (t+1) − J (t)| < ε then
converge= 1

end

end

Result: les classes (z1, . . . , zn) et les centres des classes (µ1, . . . ,µK)
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Illustration
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Illustration
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Illustration
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Illustration
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Illustration
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Fuzzy K−means

Easy adaptation of K-means to obtain fuzzy version ofstandard K-means (?)

The minimized criterion is given by :

J(µ1, . . . ,µK) =
K∑
k=1

n∑
i=1

τvik||xi − µk||
2 (1)

where τik ∈ (0, 1) with
K∑
k=1

τik = 1 and 1 ≤ v <∞ (2)

τik denotes the fuzzy cluster membership for the ith data point and v is a

constant fixed by the user (typically v = 2) that determines the degree of fuzziness

(degree of overlap between groups). Standard K-means arises when v = 1.

start with an initial solution (µ
(0)
1 , . . . ,µ

(0)
K )

Step 1 : compute the fuzzy memberships : τ
v(q)
ik =

(∑K
`=1

(
||xi−µ

(q)
k
||

||xi−µ
(q)
`
||

) 2
v−1

)−1

·

Step 2 : Relocation step : Each cluster representative is relocated to the weighted

mean with weight the τ
v(q)
ik ’s : µ

(q+1)
k =

∑n
i=1 τ

v(q)
ik

xi∑n
i=1 τ

v(q)
ik

·
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Clustering via finite mixture models

In the previous section we saw the main common partition-based

clustering algorithm, that is K-means.

Now we describe general clustering methods based on finite mixture

models.

⇒ This approach is known as the model-based clustering

The clustering problem is reformulated as a density estimation

problem

the data probability density function is assumed to be a mixture

density, each component density being associated with a cluster.

⇒ The problem of clustering becomes the one of estimating the

parameters of the assumed mixture model (e.g, estimating the means

and the covariances for Gaussian mixtures).
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Mixture models

Finite mixture models are an example of latent variable models

widely used in probabilistic machine learning and pattern recognition.

very useful to model heterogeneous classes since they assume that

each class is composed of sub-classes.

The finite mixture model decomposes the density of x into a weighted

linear combination of K component densities.

The mixture model allows for placing K component densities in the

input space to approximate the true density.

⇒ Mixtures provide a natural generalization of the simple parametric

density model which is global, to a weighted sum of these models,

allowing local adaptation to the density of the data in the input space.
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Model definition

Let z represent a discrete random variable (binomial or multinomial)

which takes its values in the finite set Z = {1, . . . ,K}.
In a general setting, the mixture density of x is

f(x;Ψ) =

K∑
k=1

p(z = k)f(x|z = k;Ψk)

=

K∑
k=1

πkfk(x;Ψk),

I πk = p(z = k) : the probability that a randomly chosen data point was

generated by component k. Referred to as mixing proportions

πk ≥ 0 ∀k, and
∑K
k=1 πk = 1.

I f1, . . . , fK are the component densities.
I Each fk typically consists of a relatively simple parametric model

p(x|z = k;Ψk) (such as a Gaussian distribution with parameters

Ψk = (µk,Σk)).
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Model definition

Figure – Graphical representation of a

mixture model.
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Parameter estimation for the mixture model

The common parameter estimation methods for mixture models :

the maximum likelihood

the Bayesian methods (Maximum A Posteriori (MAP)) where a prior

distribution is assumed for the model parameters

⇒ In this course, we focus on the maximum likelihood framework.

maximize the observed-data likelihood as a function of the parameters

Ψ = (π1, . . . , πK ,Ψk, . . . ,ΨK), over the parameter space Ω

The optimization algorithm is the Expectation-Maximization (EM)

algorithm
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Parameter estimation for the mixture model

Assume we have an i.i.d sample X = (x1, . . . ,xn).

The observed-data log-likelihood of Ψ given X is given by :

L(Ψ;X) = log

n∏
i=1

p(xi;Ψ)

=

n∑
i=1

log

K∑
k=1

πkfk
(
xi;Ψk

)
.

the log-likelihood to be maximized results in a nonlinear function due

to the logarithm of the sum

very difficult to maximize it in a closed form

⇒ maximize it (locally) using iterative procedures such as gradient

ascent, a Newton Raphson procedure or the

Expectation-Maximization (EM) algorithm

⇒ We will focus on the EM algorithm which is widely used and

particularly adapted for mixture models.
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EM algorithm

a broadly applicable approach to the iterative computation of

maximum likelihood estimates in the framework of latent data models.

In particular, the EM algorithm simplifies considerably the problem of

fitting finite mixture models by maximum likelihood.

an iterative algorithm where each iteration consists of two steps :

1 the Expectation step (E-step) : computes the expectation of the

complete-data log-likelihood, given the observations X = (x1, . . . ,xn)

and a current value Ψ(q) of the model parameter

2 the Maximization step (M-step) : Maximize the expected

complete-data log-likelihood over the parameter space
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EM algorithm

let X = (x1, . . . ,xn) be a set of n i.i.d observations with xi ∈ Rd

z = (z1, . . . , zn) denote the corresponding unobserved (missing)

labels with zi ∈ Z = {1, . . . ,K}.
The complete-data : (X, z) = ((x1, z1), . . . , (xn, zn))
The complete-data log-likelihood :

Lc(Ψ;X, z) = log p((x1, z1), . . . , (xn, zn);Ψ) = log

n∏
i=1

p(xi, zi;Ψ)

=

n∑
i=1

log

K∏
k=1

[
p(zi = k)p(x|zi = k;Ψk)

]zik
=

n∑
i=1

K∑
k=1

zik log πkfk
(
xi;Ψk

)
,

where zik = 1 if zi = k (i.e, when xi is generated by the kth

component density) and zik = 0 otherwise.

this log-likelihood depends on the unobservable data z !.
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EM algorithm

The EM algorithm starts with an initial parameter Ψ(0) and iteratively

alternates between the two following steps until convergence :

E-step (Expectation) : computes the expectation of the

complete-data log-likelihood given the observations X and the current

value Ψ(q) of the parameter Ψ (q being the current iteration).

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;X, z)|X;Ψ(q)

]
=

n∑
i=1

K∑
k=1

E[zik|xi,Ψ(q)] log πkfk
(
xi;Ψk

)
=

n∑
i=1

K∑
k=1

p(zik = 1|xi;Ψ(q)) log πkfk
(
xi;Ψk

)
=

n∑
i=1

K∑
k=1

τ
(q)
ik log πkfk

(
xi;Ψk

)
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EM algorithm

where

τ
(q)
ik = p(zi = k|xi;Ψ(q)) =

πkfk
(
xi;Ψ

(q)
k

)∑K
`=1 π`f`

(
xi;Ψ

(q)
`

)
is the posterior probability that xi originates from the kth component

density.

In E[zik|xi,Ψ(q)], we used the fact that conditional expectations and

conditional probabilities are the same for the indicator binary-valued

variables zik : E[zik|xi,Ψ(q)] = p(zik = 1|xi,Ψ(q)).

⇒ From the expression of Q(Ψ,Ψ(q)), we can see that this step

simply requires the computation of the posterior probabilities τ
(q)
ik .
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EM algorithm

M-step (Maximization) : updates the estimate of Ψ by the value Ψ(q+1)

of Ψ that maximizes the Q-function Q(Ψ,Ψ(q)) with respect to Ψ over
the parameter space Ω :

Ψ(q+1) = argmax
Ψ∈Ω

Q(Ψ,Ψ(q)).

We can write

Q(Ψ,Ψ(q)) = Qπ(π1, . . . , πK ,Ψ
(q)) +

K∑
k=1

QΨk
(Ψk,Ψ

(q))

where

Qπ(π1, . . . , πK ,Ψ
(q)) =

n∑
i=1

K∑
k=1

τ
(q)
ik log πk

QΨk
(Ψk,Ψ

(q)) =

n∑
i=1

τ
(q)
ik log fk

(
xi;Ψk

)
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M-Step

⇒ the maximization of the function Q(Ψ;Ψ(q)) w.r.t Ψ can be performed

by separately maximizing Qπ with respect to the mixing proportions

(π1, . . . , πK) and QΨk
with respect to parameters Ψk for each of the K

components densities.

The function Qπ is maximized with respect to (π1, . . . , πK) ∈ [0, 1]K

subject to the constraint
∑

k πk = 1. This maximization is done in a

closed using Lagrange multipliers form and leads to

π
(q+1)
k =

∑n
i=1 τ

(q)
ik

n
=
n
(q)
k

n
,

n
(q)
k can be viewed as the expected cardinal number of the

subpopulation k estimated at iteration q.

The update of Ψk depends on the form of the density fk (e.g.,

Gaussian)
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EM for Gaussian mixture models (GMMs)

The Gaussian mixture model (GMM) :

f(xi;Ψ) =

K∑
k=1

πkN (xi;µk,Σk),

Figure – Graphical representation of

a Gaussian mixture model.
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Figure – An example of a three-component

Gaussian mixture density in R2.
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EM for GMMs

The observed-data log-likelihood of Ψ for the Gaussian mixture

model :

L(Ψ;X) =

n∑
i=1

log

K∑
k=1

πkN
(
xi;µk,Σk

)
.

The complete-data log-likelihood of Ψ for the Gaussian mixture

model :

Lc(Ψ;X, z) =

n∑
i=1

K∑
k=1

zik log πkN
(
xi;µkΣk

)
.

EM :

Starts with an initial parameter

Ψ(0) = (π
(0)
1 , . . . , π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) where Ψ

(0)
k = (µ

(0)
k ,Σ

(0)
k )
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E-Step for GMMs

the expected complete-data log-likelihood :

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;X, z)|X;Ψ(q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik log πk +

n∑
i=1

K∑
k=1

τ
(q)
ik logN (xi;µk,Σk) .

⇒ This step therefore computes the posterior probabilities

τ
(q)
ik = p(zi = k|xi,Ψ(q)) =

πkN (xi;µ
(q)
k ,Σ

(q)
k )∑K

`=1 π`N (xi;µ
(q)
` ,Σ

(q)
` )

that xi originates from the kth component density.
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M-Step for GMMs

update the parameter Ψ by the value Ψ(q+1) of Ψ that maximizes

the function Q(Ψ,Ψ(q)) w.r.t Ψ over the parameter space Ω.

µ
(q+1)
k =

1

n
(q)
k

n∑
i=1

τ
(q)
ik xi,

Σ
(q+1)
k =

1

n
(q)
k

n∑
i=1

τ
(q)
ik (xi − µ(q+1))(xi − µ(q+1))T .

The E- and M-steps are alternated iteratively until the change in the

log likelihood value are less than some specified threshold.
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Algorithm 2 Pseudo code of the EM algorithm for GMMs.

Inputs : a data set (x1, . . . ,xn) and the number of clusters

K

fix a threshold ε > 0 ; set q ← 0 (iteration)

Initialize : Ψ(0) = (π
(0)
1 , . . . , π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) with Ψ

(0)
k = (µ

(0)
K ,Σ

(0)
K )

while increment in log-likelihood > ε do

E-step :

for k = 1, . . . ,K do

Compute τ
(q)
ik =

πkN (xi;µ
(q)
k ,Σ

(q)
k )∑K

`=1 π`N (xi;µ
(q)
` ,Σ

(q)
` )

for i = 1, . . . , n

end for

M-step :

for k = 1, . . . ,K do

Compute π
(q+1)
k =

∑n
i=1 τ

(q)
ik

n

Compute µ
(q+1)
k = 1

n
(q)
k

∑n
i=1 τ

(q)
ik xi

Compute Σ
(q+1)
k = 1

n
(q)
k

∑n
i=1 τ

(q)
ik (xi − µ(q+1))(xi − µ(q+1))T

end for

q ← q + 1

end while

Outputs : Ψ̂ = Ψ(q) ; τ̂ik = τ
(q)
ik (a fuzzy partition of the data)

F. Chamroukhi T3A: Machine Learning 47/1



Initialization Strategies and stopping rules

for EM

The initialization of EM is a crucial point since it maximizes locally

the log-likelihood.

if the initial value is inappropriately selected, the EM algorithm may

lead to an unsatisfactory estimation.

The most used strategy : use several EM tries and select the solution

maximizing the log-likelihood among those runs.

For each run of EM, one can initialize it
I randomly
I by Computing a parameter estimate from another clustering algorithm

such as K-means, Classification EM, Stochastic EM ...
I with a few number of steps of EM itself.

Stop EM when the relative increase of the log-likelihood between two

iterations is below a fixed threshold |L(q+1)−L(q)
L(q) | ≤ ε or when a

predefined number of iterations is reached.
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EM properties

The EM algorithm always monotonically increases the observed-data

log-likelihood.

The sequence of parameter estimates generated by the EM algorithm

converges toward at least a local maximum or a stationary value of

the incomplete-data likelihood function.

numerical stability

simplicity of implementation

reliable convergence

In general, both the E- and M-steps will have particularly simple

forms when the complete-data probability density function is from the

exponential family ;

Some drawbacks : EM is sometimes very slow to converge especially

for high dimensional data ;

in some problems, the E- or M-step may be analytically intractable

(but this can be tackled by using EM extensions)
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EM extensions

The EM variants mainly aim at :

1 increasing the convergence speed of EM and addressing the

optimization problem in the M-step

2 computing the E-step when it is intractable.

In the first case, one can speak about deterministic algorithms :
I e.g., Incremental EM (IEM)
I Gradient EM
I Generalized EM (GEM) algorithm
I Expectation Conditional Maximization (ECM)
I Expectation Conditional Maximization Either (ECME)

In the second case, one can speak about stochastic algorithms :
I e.g., Monte Carlo EM (MCEM)
I Stochastic EM (SEM)
I Simulated Annealing EM (SAEM)
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Mixture approach/Classification approach

Two main approaches are possible. The former is refereed to as the
mixture approach or the estimation approach and the latter is known as
the classification approach.

1 The mixture approach consists of two steps :

1 The parameters of the mixture density are estimated by maximizing the

observed-data likelihood generally via the EM algorithm

2 After performing the probability density estimation, the posterior

probabilities τik are then used to determine the cluster memberships

through the MAP principle.

2 The classification approach

I consists in optimizing a classification likelihood function which is (can

be) the complete-data likelihood by using the CEM algorithm ?.
I The cluster memberships and the model parameters are estimated

simultaneously as the learning proceeds.
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Classification EM (CEM) algorithm

we saw that EM computes the maximum likelihood (ML) estimate of

a mixture model.

The Classification EM (CEM) algorithm ? estimates both the mixture

model parameters and the classes’ labels by maximizing the

completed-data log-likelihood Lc(Ψ;X, z) = log p(X, z;Ψ)

start with an initial parameter Ψ(0)

1 Step 1 : Compute the missing data z(q+1) given the observations and

the current estimated model parameters Ψ(q) :

z(q+1) = arg max
z∈Zn

Lc(Ψ(q);X, z)

2 Step 2 : Compute the model parameters update Ψ(q+1) by

maximizing the complete-data log-likelihood given the current

estimation of the missing data z(q+1) :

Ψ(q+1) = argmax
Ψ∈Ω

Lc(Ψ;X, z(q+1)).
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CEM for GMMs

the CEM algorithm, for the case of mixture models, is equivalent to

integrating a classification step (C-step) between the E- and the M-

steps of the EM algorithm.

The C-step assigns the observations to the component densities by

using the MAP rule :

1 E-step : Compute the conditional posterior probabilities τ
(q)
ik that the

observation xi arises from the kth component density.

2 C-step : Assign each observation xi to the component maximizing the

conditional posterior probability τik :

z
(q+1)
i = argmax

k∈Z
τ
(q)
ik (i = 1, . . . , n).

⇒ this step provides a hard partition of the data

3 M-step : Update the mixture model parameters by maximizing the

completed-data log-likelihood for the partition provided by the C-step.
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Algorithm 3 Pseudo code of the CEM algorithm for GMMs.
Inputs : a data set X and the number of clusters K

fix a threshold ε > 0 ; set q ← 0 (iteration)

Initialize : Ψ(0) = (π
(0)
1 , . . . , π

(0)
K
,Ψ

(0)
1 , . . . ,Ψ

(0)
K

) with Ψ
(0)
k

= (µ
(0)
K
,Σ

(0)
K

)

while increment in the complete-data log-likelihood > ε do
E-step :

for k = 1, . . . , K do

Compute τ
(q)
ik

==
πkN(xi;µ

(q)
k

,Σ
(q)
k

)∑K
`=1

π`N(xi;µ
(q)
`

,Σ
(q)
`

)

end for
C-step :

for k = 1, . . . , K do

Compute z
(q)
i = arg max

k∈Z
τ
(q)
ik

for i = 1, . . . , n

Set z
(q)
ik

= 1 if z
(q)
i = k and z

(q)
ik

= 0 otherwise, for i = 1, . . . , n

end for
M-step :

for k = 1, . . . , K do

Compute π
(q+1)
k

=

∑n
i=1 z

(q)
ik

n

Compute µ
(q+1)
k

= 1

n
(q)
k

∑n
i=1 z

(q)
ik

xi

Compute Σ
(q+1)
k

= 1

n
(q)
k

∑n
i=1 z

(q)
ik

(xi − µ(q+1))(xi − µ(q+1))T

end for
q ← q + 1

end while

Output : Ψ̂ = Ψ(q) ; ẑi = z
(q)
i (i = 1, . . . , n)
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CEM algorithm

CEM is easy to implement, typically faster to converge than EM and

monotonically improves the complete-data log-likelihood as the

learning proceeds.

converges toward a local maximum of the complete-data log-likelihood

! CEM provides biased estimates of the mixture model parameters.

Indeed, CEM updates the model parameters from a truncated sample

contrary to EM for which the model parameters are updated from the

whole data through the fuzzy posterior probabilities and therefore the

parameter estimations provided by EM are more accurate.

link with K-means :
I It can be shown that CEM which is formulated in a probabilistic

framework, generalizes K-means
I From a probabilistic point of view, K-means is equivalent to a

particular case of the CEM algorithm for a mixture of K Gaussian

densities with the same proportions πk = 1
K ∀k and identical isotropic

covariance matrices Σk = σ2I ∀k.
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Parsimonious Gaussian mixtures

Parsimonious Gaussian mixture models are statistical models that

allow for capturing a specific cluster shapes (e.g., clusters having the

same shape or different shapes, spherical or elliptical clusters, etc).

decompositions of the covariance matrices for the Gaussian mixture

model :

Σk = λkDkAkD
T
k

where
I λk represents the volume of the kth cluster (the amount of space of

the cluster).
I Dk is a matrix with columns corresponding to the eigenvectors of Σk

that determines the orientation of the cluster.
I Ak is a diagonal matrix, whose diagonal entries are the normalized

eigenvalues of Σk arranged in a decreasing order and its determinant is

1. This matrix is associated with the shape of the cluster.
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Parsimonious Gaussian mixtures

This eigenvalue decomposition provides three main families of

models : the spherical family, the diagonal family, and the general

family

and produces 14 different models, according to the choice of the

configuration for the parameters λk, Ak, and Dk

In addition to providing flexible statistical models for the clusters,

parsimonious Gaussian mixture can be viewed as techniques for

reducing the number of parameters in the model.

imposing constraints on the covariance matrices reduces the

dimension of the optimization problem.

The EM algorithms therefore provide more accurate estimations

compared to the full mixture model.
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Model selection

The problem of choosing the number of clusters can be seen as a

model selection problem.

The model selection task consists of choosing a suitable compromise

between flexibility so that a reasonable fit to the available data is

obtained, and over-fitting.

A common way is to use a criterion (score function) that ensure the

compromise.

In general, we choose an overall score function that is explicitly

composed of two components : a component that measures the

goodness of fit of the model to the data, and a penalty component

that governs the model complexity :

score(model) = error(model) + penalty(model)

which will be minimized.
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Model selection

The complexity of a model M is related to the number of its (free)

parameters ν, the penalty function then involves the number of model

parameters.

Let M denote a model, L(Ψ̂) its log-likelihood and ν the number of

its free parameters. Consider that we fitted M different model

structures (M1, . . . ,MM ), from which we wish to choose the “best”

one (ideally the one providing the best prediction on future data).

Assume we have estimated the model parameters Ψ̂m for each model

structure Mm (m = 1, . . . ,M) from a sample of n observations

X = (x1, . . . ,xn) and now we wish to choose among these fitted

models.
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Model selection

• Akaike Information Criterion (AIC) :

AIC(Mm) = L(Ψ̂m)− νm
• Bayesian Information Criterion (BIC) :

BIC(Mm) = L(Ψ̂m)−
νm log(n)

2

• Integrated Classification Likelihood (ICL) :

ICL(Mm) = Lc(Ψ̂m)−
νm log(n)

2

where Lc(Ψ̂m) is the complete-data log-likelihood for the model Mm and
νm denotes the number of free model parameters. For example, in the case
of a d-dimensional Gaussian mixture model we have :

ν = (K − 1)︸ ︷︷ ︸
πk’s

+K × d)︸ ︷︷ ︸
{µk}

+K × d× (d+ 1)

2︸ ︷︷ ︸
{Σk}

=
K × (d+ 1)× (d+ 2)

2
− 1.
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Examples

−2 0 2
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0

2

Figure – Clustering results obtained with K-means algorithm (left) with K = 2 and the EM

algorithm (right). The cluster centers are shown by the red and blue crosses and the ellipses are

the contours of the Gaussian component densities at level 0.4 estimated by EM. The number of

clusters for EM have been chosen by BIC for K = 1, . . . , 4.
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Iris Data

Figure – A three-class example of a real data set : Iris data of Fisher.
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Iris Data

Figure – Iris data : Clustering results with EM for a GMM and AIC.
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Iris Data

Figure – Iris data of Fisher : The data are colored according to the true partition.

F. Chamroukhi T3A: Machine Learning 62/1



Examples

1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

x1

x2

Iris Data clustering GMM : EM iteration : 0
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Iris Data clustering GMM : EM iteration : 1
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Iris Data clustering GMM : EM iteration : 2
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Iris Data clustering GMM : EM iteration : 3
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Iris Data clustering GMM : EM iteration : 4
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Iris Data clustering GMM : EM iteration : 5
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Iris Data clustering GMM : EM iteration : 6
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Iris Data clustering GMM : EM iteration : 7
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Iris Data clustering GMM : EM iteration : 8
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Iris Data clustering GMM : EM iteration : 11
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Iris Data clustering GMM : EM iteration : 15
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Iris Data clustering GMM : EM iteration : 16
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