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Unsupervised Learning

Clustering / Representation / Data viz / Dimensionality reduction
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Representation / Data viz / Dimensionality reduction
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Representation / Data viz / Dimensionality reduction
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m Unsupervised learning for dimensionality reduction
m Principal Component Analysis (PCA)

m Probabilistic PCA (PPCA)

m Factor Analysis (FA)
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m Dimensionality reduction for high dimensional data (for
representation /visualization etc)

Principal Component Analysis (PCA) [Pearson, 1901, Hotelling,
1933),

m Probabilistic PCA [Tipping and Bishop, 1997, 1999, Roweis, 1998]
Factor Analysis (FA)[Spearman, 1904, Thurstone, 1947],
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Principal Component Analysis (PCA) université
m PCA is a linear projection which maximizes the variance in the
projected space [Hotelling, 1933].

Consider a sample X = (x1,...,X,) with x; € R?.
= The aim is to project the data onto a space having dimensionality
M < d while maximizing the variance of the projected data.

Consider the sample mean vector and the sample covariance matrix :
X = %Z?:l X and S = %Z?zl(xi — i)(Xl — i)T.
= The variance of the projected data is therefore given by the scalar :

1 - _
v(u) = - Z;(uTxi —u'x)(ul'x; — %)’ =ul'Su- (1)
1=
The principal axes (the direction vectors) are then given by :

u = argmaxu’Su (2)
ucRd
subject to u’u =1 and u/’ u, = 0forj#k
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The absence of a probability density model and associated likelihood
measure.

Deriving PCA from the perspective of density estimation would offer a
number of important advantages, including the following :

m The likelihood measure allows comparison with other density models

m We can derive EM for PCA and hence deal with possible missing
values

m Possibility to perform Bayesian inference (e.g. for model selection)

m Possibility of computing the the posterior class probabilities if PCA is
used to model the class-conditional densities in classification,

m The value of the probability density function would give a measure of
the novelty of a new data point.

m PCA model could be extended to a mixture framework.

= Use Probabilistic Principal Component Analysis (PPCA)
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Latent variable model for PPCA [Tipping and Bishop, 1997, 1999,
Roweis, 1998] :

X; = Waz;+ p+ €; Observed data = linear transf. of z + additive Gaussian noise
z; ~ N(0,071)latent variables of the principal component subspace

€ ~ N(0,1)zero-mean Gaussian noise

xi|z; ~ N(Wz; + u,o?l) conditional density for the observed data
x; ~ N(u, wwT 1 O’2|) marginal density for the observed data

< (W, u,0?) : Parameter estimation using EM [Tipping and Bishop,
1997, 1999, Roweis, 1998|

F. CHAMROUKHI T3A: Machine Learning



EM for PPCA université

NB : for u, we get its closed form solution : g =X
Only W and o2 are computed in an iterative way by EM

E-step : By using the old parameters values, compute

Elz] = (WIW 4% 'WT(x; — ) (3)
E(z;z]] = o*(WIW +021)7! 4 E[z]E[z;]" (4

M-step

Wi = |:Z(xi—x)IE[Z,—]T:| [ZE[Z#?]] (%)

=1 =1
ol — % ; [pei — %I — 2Bl " Wik (xi — %) + trace(Efzi! [Woe Wi,
(6)

NB. Here E[] is actually E[.|X, {W, u, 52} o1d]
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Factor Analysis (FA) [Spearman, 1904, Thurstone, 1947]
FA is closely related to PPCA
The only difference is

x;|z; ~ N(Wz; + p, ¥) conditional density for the observed data
W is a d x d digonal matrix; rather than
x;|z; ~ N(Wz; + u,o°1) conditional density for the observed data

(isotropic covariance matrix).
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Factor Analysis (FA) 1] université

Generative model

X; = Wz;+ p+ €; Observed data = linear transf. of z + additive Gaussian noise
z; ~ N(0,W)latent variables of the principal component subspace

€ ~ N(0,1)zero-mean Gaussian noise

(Wz; + p, ¥) conditional density for the observed data
(1, ww’ 1 W) marginal density for the observed data

Xi|Zi ~ N
N

X;
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E-step
Elz] = (I1+ W/ 'w)"'wl(w-1x;, — %) (7)
Elzizl] = (1+ W O 'W)~' 4 E[z]E[z,]” (8)

M-step
Wnew = |:Z(XZ —X)E[zi]T:| [ZE[ZZZZ‘]} (9)
Uy = diag {s - WneW% iE[zi](xi - x)T} (10)

NB. Here E[.] is actually E[.|X, {W, u, ¥} 4]
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m Introduction

Principal Component Analysis (PCA)

m Probabilistic Principal Component Analysis (PPCA)

Factor Analysis (FA)

m tSNE
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Introduction | université

Until now we have considered discrete latent data models (GMM, HMM)
and continuous ones (GTM, etc); now we will see other continuous latent
data models

The aim here is the dimensionality reduction for preprocessing,
compression, feature extraction, visualization etc of high dimensional data

Principal Component Analysis (PCA) [Pearson, 1901, Hotelling, 1933],
Factor Analysis (FA)[Spearman, 1904, Thurstone, 1947],

Independent Component Analysis (ICA)[Comon, 1994, Hyvarinen, 2001],
etc

are examples of well-known techniques which can be used to achieve this
task.
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PCA is a well-established technique for dimensionality reduction,

A linear projection technique that maximizes the variance in the
projected space

Equivalently, it minimizes the reconstruction error (after the
dimensionality reduction)
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Two views of PCA :

First view : PCA maximizing the projected variance [Hotelling, 1933]

Second view : minimizing the reconstruction error (after the
dimensionality reduction)

The most common derivation of PCA is in terms of a standardized linear
projection which maximizes the variance in the projected space [Hotelling,
1933].

Consider a set of observed d-dimensional data vector X = (x1,...,Xy)

= The aim is to project the data onto a space having dimensionality
M < d while maximizing the variance of the projected data.
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Consider the sample mean vector and the sample covariance matrix :

1 n
X = —) x;
n-
=1
1 & B N
S = - (x; —X)(x; — %) -
i=1

Let us first consider the projection onto a one-dimensional space (M = 1).
The direction of this space can be defined using a d-dimensional direction

unit vector uy (with ulu; = 1)

The linear projection of a data vector x; on the projected space is given by

the scalar :

11’{ X

F. CHAMROUKHI T3A: Machine Learning
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= The variance of the projected data is therefore given by the scalar :

n

1
v(u)) = EZ(u{xi—ulTi)(ufxi—u{i)T:ulTSul- (11)
i=1

The principal axe (the direction vector) is then given by :

u; = arg max u’ Su; subject to ulu; = 1. (12)
ulele

The normalisation condition is namely to prevent |u;| — oo

This is a constrained maximization problem = Use a Lagrange multiplier
to solve it

F. CHAMROUKHI T3A: Machine Learning



Principal Component Analysis (PCA) IV universite

PARIS-SACLAY

The unconstrained maximization is therefore given by

u = arg max ul Su; + A\ (1 —uluy)- (13)

u; €R4

T T M_ S+s7T
Juj Suy +ai(1 wmw) _ proabd 2Su; — 2\ u; =0
1
= Su; = A\juy (14)

=- uy must be an eigenvector of the data covariance matrix S, with
eigenvalue \;

The variance (11) in the projected space is then given by

ulTSul = uT)\1u1

A (since ufu; =1) (15)

F. CHAMROUKHI T3A: Machine Learning
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= The variance will be maximum if we set u; equal to the eigenvector
having the largest eigenvalue \;.

= The eigenvector uy is known as the first principal component or the
first principal axe.

We can define additional principal components in an incremental way :

The new direction to be chosen is that which maximizes the projected
variance amongst all possible directions orthogonal to those already
considered.
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Principal Component Analysis (PCA) VI universite

x2
o

F. CHAMROUKHI T3A: Machine Learning



Principal Component Analysis (PCA) VII université

PARIS-SACLAY

General case :

Consider the general case of a projection space of dimension M (M
principal components).

The optimal linear projection for which the projected variance is
maximized is defined by M eigenvectors uy,...,ups of the data
covariance matrix S corresponding to the largest eigenvalues A\1,..., s

The result was shown for one principal components (M = 1).

Now suppose that the result holds for M principal components and we aim
to show that it holds for M + 1 (by induction)

For ups41, the projected variance in the direction ups41 is given by

T
ujrq i Sunt

F. CHAMROUKHI T3A: Machine Learning
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We therefore maximize the variance uTM+1SUM+1 by taking into account
the normalization constraint and the orthogonality constraints :

m normalization constraint : u}\F/[_H is normalized to unit length, that is :
ujA;[+1uM+1 =1

m orthogonal constraint : up;41 orthogonal to the existing vectors
up,...,uyy, thatis: uil\‘jHuA. =0fork#£#M+1

= Use a Lagrange multiplier A\psy1 and Lagrange multipliers
ne,k=1,..., M to enforce these constraints.

F. CHAMROUKHI T3A: Machine Learning
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Principal Component Analysis (PCA) IX universite

= Thus we solve the following unconstrained maximization problem

m

T T T
UM+1 = arg 11;1]\1/[3:5? uM+1SUM+1 + )\A]+1(1 — u]\,1+1u]\,1+1)+ Z 7]'1,.11‘\/4»—1 uz
k=1

= arg max v ({ug, Mk} e, AM+1, UN+1) (16)
UM 41

v ({uk7 T]k};cn:p )\M—I-la uM+1)
611M+1

m
=0 <:>2811M+1—2)\M+111M+1—|-Z ngur =0

k=1
m
@uj Supr 1A+ uj uM+1+Z nkuf u, =0
N——— k=1
0 0 -
njuf u;=n;
&n=0 for j=1,....m (17)

We therefore obtain : Suy;11 = Ayry1upr+1
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= ujps41 must be an eigenvector of S with eigenvalue Apr1q -

The projected variance in direction uysy1 is therefore given by

T T
Wy Suppr = U AM4 U4
= Am (18)
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= The variance will be maximum if we set uys11 equal to the eigenvector
having the largest eigenvalue A1 amongst those not previously selected.

Thus the result holds also for projection spaces of dimensionality M + 1,
which completes the inductive step.

Since we have already shown this result explicitly for M = 1, if follows
that the result must hold for any M < d.

F. CHAMROUKHI T3A: Machine Learning



Principal Component Analysis (PCA) XII université

PARIS-SACLAY

Second view : minimization of the reconstruction error PCA
minimizes the reconstruction error, that is the squared error between a
data point x; and its approximation X;, averaged over all the data points :

— 15 C_ %2
J = n Zi:l Ixi — %]
Consider one direction u in the projection space

Here we will show minimizing this error w.r.t u is equivalent to maximizing
the projected variance (11) on the direction u

Let us assume that all the original vectors x; have been centered :

Xf = X; — )_(i
By using the fact that the projection of a data vector x onto the direction
u is given by the scalar u’x; x is then represented by (u”x)u in the

projected space,
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Principal Component Analysis (PCA) XIII  ynwersie

The reconstruction error for the centred data is then given by :

T = =3 xS — =92 72u<x1—x,>—[u (x; — %;)u]|?

n =1

= (i wil? - 2 T s — x0T i - 0] + 30 [ s — %1%l ?)
nti=1 i=1 i=1

= I3 e wl? ——Z[u (i — %12 + = ST (s — %)
n =1 ni=1
1 n

= ;mzluxl—xln _5;1[" (x; — %))

Sl RN o S SR
ni=1 i=1

= liux-ﬂuﬁﬂfsu
- i — %

o
I
A

(19)

The first term does not depend on u. Thus the vector u that minimizes
J(u) is the same one that maximizes the projected variance u?’Su (11).
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Summary :

PCA reduces the dimensionality of the data while retaining as much as
possible of the variation present in the original dataset

X - [n < d ] Linear Proj. onto U:[ul,,..,uM]\ X —X,U: [n y M]; M<d

To perform PCA on a data set X

calculate the mean data vector x
calculate the data covariance matrix S

calculate the eigenvectors and the corresponding eigenvalues of S
(e.g., by using the eig function in Matlab)

F. CHAMROUKHI T3A: Machine Learning




Principal Component Analysis (PCA) XV unversité

PARIS-SACLAY

the eigenvalues A1, ..., Ayq are sorted in decreasing order; the
eigenvectors uq, ..., uy are placed according to the resulting order

the projection space (the space of principal axes) is then obtained by
taking the M first eigenvectors U = [uy,...,uy; M <d

the projected data are given by X = X, U where X, is the centered
data matrix

How to choose M 7 for example one way is to choose the first M
components that capture a specified percentage e.g., 90%, 95%, or 99%,

M
of the cumulative percentage of variance. cpv(M) = 100 (Q) %

d
m=1 )\m

Disadvantage : One disadvantage of both these definitions of PCA is the
absence of a probability density model and associated likelihood measure.

F. CHAMROUKHI T3A: Machine Learning
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Deriving PCA from the perspective of density estimation would offer a
number of important advantages, including the following :

m The likelihood measure would permit comparison with other density
models

m We can derive EM for PCA and hence deal with missing values in the
data set

m Possibility to perform Bayesian inference (e.g. for model selection)

m Possibility of computing the the posterior class probabilities if PCA is
used to model the class-conditional densities in a classification
problem,

m The value of the probability density function would give a measure of
the novelty of a new data point.

m PCA model could be extended to a mixture framework.

= Use Probabilistic Principal Component Analysis (PPCA)

F. CHAMROUKHI T3A: Machine Learning
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PCA can be formulated into a probabilistic framework : the Probabilistic
Principal Component Analysis (PPCA) [Tipping and Bishop, 1997, 1999,
Roweis, 1998]

The PC can be expressed as the maximum likelihood solution of a latent
continuous variable model and the model parameter are optimized using
EM [Tipping and Bishop, 1997, 1999, Roweis, 1998]

= Generative formulation : the latent variable model for PPCA :

X; = Waz;+ p+ €; Observed data = linear transf. of z + additive Gaussian noise
z; ~ N(0,0°1)latent variables of the principal component subspace
€ ~ N(0,1)zero-mean Gaussian noise
xi|zi ~ N(Wz;+p,o 2I) conditional density for the observed data
x; ~ N(u, WWT + 5?1) marginal density for the observed data
(20

F. CHAMROUKHI T3A: Machine Learning
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Model parameters : (W, 1, 0%) where W a [d x M] matrix whose columns
represent the principal subspace, p a d-dimensional vector

m Assume we have an i.i.d sample X = (x1,...,Xp).
m The observed-data log-likelihood is given by :

LW, p,0%) = log[]p(xis W, p,0%) =log [ [N (1, WWT + o°1)
=1 =1 c

" 1og 2m — 10g|Cl — 5 D" (ki — )" O (xi — o)

i=1
= -2amw 27r+110 |C| + trace C_lli(x-— ) (xi — )
= 2 g D) g n 2 i Hn i yv3

= —g (dlog27r + % log |C| + trace {C_ls})
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= Analytical solutions
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ML estimates [Tipping and Bishop, 1999] :

- IR _
po= - in =X (22)
i=1
1 d
~2
m=M+1
W = Upy(Ly —o2D)/?R, (24)
where Uy is a [d x M| matrix whose columns are the first M
eigenvectors [uy, ..., uys] of the data covariance-matrix S corresponding
to the the first M largest eigenvalues [A1, ..., A\y/]

Lys is an [M x M| matrix whose diagonal elements are the corresponding
eigenvalues [A1,..., A

R is an [M x M] arbitrary orthogonal matrix (RR” = 1)

F. CHAMROUKHI T3A: Machine Learning
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The PPCA is expressed as a latent data model : so we can use EM to find
the ML estimates for PPCA

While we have exact solutions; using EM, as it is iterative, may have an
advantage in spaces of high dimensionality compared to when working with
the sample data covariance matrix S (for the eignvalues and eigenvalues)

The EM procedure can also be extended to Factor Analysis for which there
is no analytical solutions

The log-likelihood of the PPCA model parameters (W, i, 02) for the

complete-data (X,Z) = (x1,21,...,Xn,2n) :
LW, p, 0% X, Z) =log [ [ p(xi, 2 W, 1, 0%) = > " [log p(xi|z;)+log p(z:)
i=1 i=1

F. CHAMROUKHI T3A: Machine Learning
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Complete-data log-likelihood :
L(W,p,0%) = > [logp(xi|z:) + log p(z:)]

i=1
= Z[logN(x;Wzi + p,0°1) + log N (zi; 0, 0°1)]

i=1

1

= —Z{ log(2mo?) ftrace(z z; ) + 397 sz ul?

_iszT (xi — ) + L trace(zmZ WWT} (25)
o

Expected complete-data log-likelihood (the Q@-function) :

" (d 1 1 :
BIL (W, ) X (W 0o = — D { & log(2e0) + Strace(Bizia]) + 1 I —
i=1

1 T Tk o
s trace(Elz;z; [WW"(26

1 AT T (o
LB TW )+ 5

o2

F. CHAMROUKHI T3A: Machine Learning



EM for PPCA Il université

N A PARIS-SACLAY
NB : for p, we get its closed form solution : 1 = X

Only W and o2 are computed in an iterative way by EM

E-step : By using the old parameters values, compute

Elz;] = (WIW +o21)"WT(x; — %) (27)
Elziz]] = o*(WIW 4 %)~ + E[z;]E[z;]" (28)

M-step

WHEW

i=1

{Zn:( ; — %)E[z] ] [ZEZZ ]_1 (29)

O-r?ew = i Z {”Xz - }_("2 - 2E[Zi]TWZ;w(Xi - i) + trace(]E[ZizzT]Wnewwz;w}
nd ~

(30)

NB. Here E[.] is actually E[.|X, {W, i, 0%}o1d]
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Factor Analysis (FA) [Spearman, 1904, Thurstone, 1947]
FA is closely related to PPCA
The only difference is
x;|z; ~ N (Wz; + p, ¥) conditional density for the observed data
W is a d x d digonal matrix; rather than
x;|z; ~ N(Wz; + p, azl) conditional density for the observed data

(isotropic covariance matrix).

F. CHAMROUKHI T3A: Machine Learning
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Generative model

Xi

Z;

€
Xi|Z;

X

W2z, + 1 + €; Observed data = linear transf. of z + additive Gaussian noise
N (0, &) latent variables of the principal component subspace

N (0, 1) zero-mean Gaussian noise

N(Wz; + p, ®) conditional density for the observed data

N (p, WWT 4 ¥) marginal density for the observed data

F. CHAMROUKHI T3A: Machine Learning
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EM
E-step
Elz;] = (I1+ W/ 'w)"'wl(w 1k, — %) (31)
Elziz!] = (1+WT® W)~ + E[z]E[z;]T (32)
M-step

Woew = |:Z(xi = :‘c)IE[zi]T] [Z E[zizf]} (33)
U oo = diag {s — wneW% iE[zi](xi — x)T} (34)

NB. Here E[] is actually E[.|X,{W, u, ¥} 4]

F. CHAMROUKHI T3A: Machine Learning
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lllustration on PCA (Face Recognition) seen in classroom
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tSNE : course materials and pdf available on

https://chamroukhi.com/Teaching/ML-MscAI-DS/tSNE-en.pdf
https://chamroukhi.com/Teaching/ML-MscAI-DS/tSNE-fr.pdf

F. CHAMROUKHI T3A: Machine Learning
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