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Unsupervised Learning

Clustering / Representation / Data viz / Dimensionality reduction
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Unsupervised Analysis

Representation / Data viz / Dimensionality reduction

-1500 -1000 -500 0 500 1000 1500 2000 2500

-1500

-1000

-500

0

500

1000

1500
PCA embedding, True partition

0

1

2

3

4

5

6

7

8

9

F. Chamroukhi T3A: Machine Learning 6/50



Unsupervised Analysis

Representation / Data viz / Dimensionality reduction
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Dimensionality reduction

Unsupervised learning for dimensionality reduction

Principal Component Analysis (PCA)

Probabilistic PCA (PPCA)

Factor Analysis (FA)
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Latent data models for dimensionality

reduction

Dimensionality reduction for high dimensional data (for

representation/visualization etc)

Principal Component Analysis (PCA) [Pearson, 1901, Hotelling,

1933],

Probabilistic PCA [Tipping and Bishop, 1997, 1999, Roweis, 1998]

Factor Analysis (FA)[Spearman, 1904, Thurstone, 1947],
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Principal Component Analysis (PCA)
PCA is a linear projection which maximizes the variance in the

projected space [Hotelling, 1933].

Consider a sample X = (x1, . . . ,xn) with xi ∈ Rd.

⇒ The aim is to project the data onto a space having dimensionality

M < d while maximizing the variance of the projected data.

Consider the sample mean vector and the sample covariance matrix :
x = 1

n

∑n
i=1 xi and S = 1

n

∑n
i=1(xi − x)(xi − x)T .

⇒ The variance of the projected data is therefore given by the scalar :

v(u) =
1

n

n∑
i=1

(uTxi − uTx)(uTxi − uTx)T = uTSu · (1)

The principal axes (the direction vectors) are then given by :

u = arg max
u∈Rd

uTSu (2)

subject to uTu = 1 and uTj uk = 0 for j 6= k
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Disadvantage :

The absence of a probability density model and associated likelihood

measure.

Deriving PCA from the perspective of density estimation would offer a

number of important advantages, including the following :

The likelihood measure allows comparison with other density models

We can derive EM for PCA and hence deal with possible missing

values

Possibility to perform Bayesian inference (e.g. for model selection)

Possibility of computing the the posterior class probabilities if PCA is

used to model the class-conditional densities in classification,

The value of the probability density function would give a measure of

the novelty of a new data point.

PCA model could be extended to a mixture framework.

⇒ Use Probabilistic Principal Component Analysis (PPCA)
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Probabilistic Principal Component Analysis

(PPCA)

Latent variable model for PPCA [Tipping and Bishop, 1997, 1999,
Roweis, 1998] :

xi = Wzi + µ + εi Observed data = linear transf. of z + additive Gaussian noise

zi ∼ N (0, σ2I) latent variables of the principal component subspace

ε ∼ N (0, I) zero-mean Gaussian noise

xi|zi ∼ N (Wzi + µ, σ2I) conditional density for the observed data

xi ∼ N (µ,WWT + σ2I) marginal density for the observed data

↪→ (W,µ, σ2) : Parameter estimation using EM [Tipping and Bishop,
1997, 1999, Roweis, 1998]
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EM for PPCA

NB : for µ, we get its closed form solution : µ̂ = x

Only W and σ2 are computed in an iterative way by EM

1 E-step : By using the old parameters values, compute

E[zi] = (WTW + σ2I)−1WT (xi − x) (3)

E[ziz
T
i ] = σ2(WTW + σ2I)−1 + E[zi]E[zi]

T (4)

2 M-step

Wnew =

[
n∑

i=1

(xi − x)E[zi]
T

][
n∑

i=1

E[ziz
T
i ]

]−1

(5)

σ2
new =

1

nd

n∑
i=1

{
||xi − x||2 − 2E[zi]

TWT
new(xi − x) + trace(E[ziz

T
i ]WnewWT

new

}
(6)

NB. Here E[.] is actually E[.|X, {W,µ, σ2}old]
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Factor Analysis (FA) I

Factor Analysis (FA) [Spearman, 1904, Thurstone, 1947]
FA is closely related to PPCA
The only difference is

xi|zi ∼ N (Wzi + µ,Ψ) conditional density for the observed data

Ψ is a d× d digonal matrix ; rather than

xi|zi ∼ N (Wzi + µ, σ2I) conditional density for the observed data

(isotropic covariance matrix).
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Factor Analysis (FA) II

Generative model

xi = Wzi + µ + εi Observed data = linear transf. of z + additive Gaussian noise

zi ∼ N (0,Ψ) latent variables of the principal component subspace

ε ∼ N (0, I) zero-mean Gaussian noise

xi|zi ∼ N (Wzi + µ,Ψ) conditional density for the observed data

xi ∼ N (µ,WWT + Ψ) marginal density for the observed data
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EM for Facotr Analysis

1 E-step

E[zi] = (I + WTΨ−1W)−1WT (Ψ−1xi − x) (7)

E[ziz
T
i ] = (I + WTΨ−1W)−1 + E[zi]E[zi]

T (8)

2 M-step

Wnew =

[
n∑

i=1

(xi − x)E[zi]
T

][
n∑

i=1

E[ziz
T
i ]

]−1

(9)

Ψnew = diag

{
S−Wnew

1

n

n∑
i=1

E[zi](xi − x)T
}

(10)

NB. Here E[.] is actually E[.|X, {W,µ,Ψ}old]
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Latent data models for dimensionality

reduction

Introduction

Principal Component Analysis (PCA)

Probabilistic Principal Component Analysis (PPCA)

Factor Analysis (FA)

tSNE
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Introduction I

Until now we have considered discrete latent data models (GMM, HMM)
and continuous ones (GTM, etc) ; now we will see other continuous latent
data models

The aim here is the dimensionality reduction for preprocessing,
compression, feature extraction, visualization etc of high dimensional data

Principal Component Analysis (PCA) [Pearson, 1901, Hotelling, 1933],

Factor Analysis (FA)[Spearman, 1904, Thurstone, 1947],

Independent Component Analysis (ICA)[Comon, 1994, Hyvärinen, 2001],
etc

are examples of well-known techniques which can be used to achieve this
task.
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Introduction II

PCA is a well-established technique for dimensionality reduction,

A linear projection technique that maximizes the variance in the
projected space

Equivalently, it minimizes the reconstruction error (after the
dimensionality reduction)
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Principal Component Analysis (PCA) I

Two views of PCA :

1 First view : PCA maximizing the projected variance [Hotelling, 1933]

2 Second view : minimizing the reconstruction error (after the

dimensionality reduction)

The most common derivation of PCA is in terms of a standardized linear
projection which maximizes the variance in the projected space [Hotelling,
1933].

Consider a set of observed d-dimensional data vector X = (x1, . . . ,xn)

⇒ The aim is to project the data onto a space having dimensionality
M < d while maximizing the variance of the projected data.
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Principal Component Analysis (PCA) II

Consider the sample mean vector and the sample covariance matrix :

x̄ =
1

n

n∑
i=1

xi

S =
1

n

n∑
i=1

(xi − x̄)(xi − x̄)T ·

Let us first consider the projection onto a one-dimensional space (M = 1).
The direction of this space can be defined using a d-dimensional direction
unit vector u1 (with uT1 u1 = 1)

The linear projection of a data vector xi on the projected space is given by
the scalar :

uT1 xi
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Principal Component Analysis (PCA) III

⇒ The variance of the projected data is therefore given by the scalar :

v(u1) =
1

n

n∑
i=1

(uT1 xi − uT1 x̄)(uT1 xi − uT1 x̄)T = uT1 Su1 · (11)

The principal axe (the direction vector) is then given by :

u1 = arg max
u1∈Rd

uT1 Su1 subject to uT1 u1 = 1· (12)

The normalisation condition is namely to prevent ||u1|| → ∞

This is a constrained maximization problem ⇒ Use a Lagrange multiplier
to solve it
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Principal Component Analysis (PCA) IV

The unconstrained maximization is therefore given by

u = arg max
u1∈Rd

uT1 Su1 + λ1(1− uT1 u1)· (13)

∂uT1 Su1 + λ(1− uT1 u1)

∂u1
= 0

∂uT
1 Su1
∂u1

=(S+ST )u
⇔ 2Su1 − 2λ1u1 = 0

⇔ Su1 = λ1u1 (14)

⇒ u1 must be an eigenvector of the data covariance matrix S, with
eigenvalue λ1

The variance (11) in the projected space is then given by

uT1 Su1 = uTλ1u1

= λ1 ( since uT1 u1 = 1) (15)
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Principal Component Analysis (PCA) V

⇒ The variance will be maximum if we set u1 equal to the eigenvector
having the largest eigenvalue λ1.

⇒ The eigenvector u1 is known as the first principal component or the
first principal axe.

We can define additional principal components in an incremental way :

The new direction to be chosen is that which maximizes the projected
variance amongst all possible directions orthogonal to those already
considered.
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Principal Component Analysis (PCA) VI
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Principal Component Analysis (PCA) VII

General case :

Consider the general case of a projection space of dimension M (M
principal components).

The optimal linear projection for which the projected variance is
maximized is defined by M eigenvectors u1, . . . ,uM of the data
covariance matrix S corresponding to the largest eigenvalues λ1, . . . , λM

The result was shown for one principal components (M = 1).

Now suppose that the result holds for M principal components and we aim
to show that it holds for M + 1 (by induction)

For uM+1, the projected variance in the direction uM+1 is given by

uTM+1SuM+1
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Principal Component Analysis (PCA) VIII

We therefore maximize the variance uTM+1SuM+1 by taking into account

the normalization constraint and the orthogonality constraints :

normalization constraint : uTM+1 is normalized to unit length, that is :

uTM+1uM+1 = 1

orthogonal constraint : uM+1 orthogonal to the existing vectors

u1, . . . ,uM , that is : uTM+1uk = 0 for k 6= M + 1

⇒ Use a Lagrange multiplier λM+1 and Lagrange multipliers
ηk, k = 1, . . . ,M to enforce these constraints.
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Principal Component Analysis (PCA) IX

⇒ Thus we solve the following unconstrained maximization problem

uM+1 = arg max
uM+1

uTM+1SuM+1 + λM+1(1− uTM+1uM+1)+

m∑
k=1

ηku
T
M+1uk

= arg max
uM+1

v ({uk, ηk}mk=1, λM+1,uM+1) (16)

∂v ({uk, ηk}mk=1, λM+1,uM+1)

∂uM+1
= 0 ⇔2SuM+1−2λM+1uM+1+

m∑
k=1

ηkuk = 0

⇔uTj SuM+1︸ ︷︷ ︸
0

−λM+1 uTj uM+1︸ ︷︷ ︸
0

+

m∑
k=1

ηku
T
j uk︸ ︷︷ ︸

ηjuT
j uj=ηj

= 0

⇔ ηj = 0 for j = 1, . . . ,m (17)

We therefore obtain : SuM+1 = λM+1uM+1
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Principal Component Analysis (PCA) X
⇒ uM+1 must be an eigenvector of S with eigenvalue λM+1 .

The projected variance in direction uM+1 is therefore given by

uTM+1SuM+1 = uTM+1λM+1uM+1

= λM+1 (18)
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Principal Component Analysis (PCA) XI

⇒ The variance will be maximum if we set uM+1 equal to the eigenvector
having the largest eigenvalue λM+1 amongst those not previously selected.

Thus the result holds also for projection spaces of dimensionality M + 1,
which completes the inductive step.

Since we have already shown this result explicitly for M = 1, if follows
that the result must hold for any M ≤ d.
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Principal Component Analysis (PCA) XII

Second view : minimization of the reconstruction error PCA
minimizes the reconstruction error, that is the squared error between a
data point xi and its approximation x̃i, averaged over all the data points :
J = 1

n

∑n
i=1 ||xi − x̃i||2

Consider one direction u in the projection space

Here we will show minimizing this error w.r.t u is equivalent to maximizing
the projected variance (11) on the direction u

Let us assume that all the original vectors xi have been centered :

xci = xi − x̄i

By using the fact that the projection of a data vector x onto the direction
u is given by the scalar uTx ; x is then represented by (uTx)u in the
projected space,
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Principal Component Analysis (PCA) XIII

The reconstruction error for the centred data is then given by :

J(u) =
1

n

n∑
i=1

||xc
i − x̃

c
i ||

2 1

n

n∑
i=1

||(xi − x̄i)− [u
T

(xi − x̄i)u]||2

=
1

n

( n∑
i=1

||xi − x̄i||
2 − 2

n∑
i=1

[u
T

(xi − x̄i)][u
T

(xi − x̄i)] +
n∑

i=1

[u
T

(xi − x̄i)]
2||u||2

)

=
1

n

n∑
i=1

||xi − x̄i||
2 −

2

n

n∑
i=1

[u
T

(xi − x̄i)]
2

+
1

n

n∑
i=1

[u
T

(xi − x̄i)]
2

=
1

n

n∑
i=1

||xi − x̄i||
2 −

1

n

n∑
i=1

[u
T

(xi − x̄i)]
2

=
1

n

n∑
i=1

||xi − x̄i||
2 −

1

n

n∑
i=1

u
T

(xi − x̄i)(xi − x̄i)u

=
1

n

n∑
i=1

||xi − x̄i||
2 − u

T
Su

(19)

The first term does not depend on u. Thus the vector u that minimizes
J(u) is the same one that maximizes the projected variance uTSu (11).

F. Chamroukhi T3A: Machine Learning 33/50



Principal Component Analysis (PCA) XIV

Summary :

PCA reduces the dimensionality of the data while retaining as much as
possible of the variation present in the original dataset

X : [n× d ]
Linear Proj. onto U=[u1,...,uM ]−−−−−−−−−−−−−−−−−−−→ X̃ = XcU : [n×M ];M ≤ d

To perform PCA on a data set X

1 calculate the mean data vector x̄

2 calculate the data covariance matrix S

3 calculate the eigenvectors and the corresponding eigenvalues of S

(e.g., by using the eig function in Matlab)
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Principal Component Analysis (PCA) XV
4 the eigenvalues λ1, . . . , λd are sorted in decreasing order ; the

eigenvectors u1, . . . ,ud are placed according to the resulting order

5 the projection space (the space of principal axes) is then obtained by

taking the M first eigenvectors U = [u1, . . . ,uM ];M ≤ d
6 the projected data are given by X̃ = XcU where Xc is the centered

data matrix

How to choose M ? for example one way is to choose the first M
components that capture a specified percentage e.g., 90%, 95%, or 99%,

of the cumulative percentage of variance. cpv(M) = 100
(∑M

m=1 λm∑d
m=1 λm

)
%

Disadvantage : One disadvantage of both these definitions of PCA is the
absence of a probability density model and associated likelihood measure.
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Principal Component Analysis (PCA) XVI
Deriving PCA from the perspective of density estimation would offer a

number of important advantages, including the following :

The likelihood measure would permit comparison with other density

models

We can derive EM for PCA and hence deal with missing values in the

data set

Possibility to perform Bayesian inference (e.g. for model selection)

Possibility of computing the the posterior class probabilities if PCA is

used to model the class-conditional densities in a classification

problem,

The value of the probability density function would give a measure of

the novelty of a new data point.

PCA model could be extended to a mixture framework.

⇒ Use Probabilistic Principal Component Analysis (PPCA)
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Probabilistic Principal Component Analysis (PPCA) I

PCA can be formulated into a probabilistic framework : the Probabilistic
Principal Component Analysis (PPCA) [Tipping and Bishop, 1997, 1999,
Roweis, 1998]

The PC can be expressed as the maximum likelihood solution of a latent
continuous variable model and the model parameter are optimized using
EM [Tipping and Bishop, 1997, 1999, Roweis, 1998]

⇒ Generative formulation : the latent variable model for PPCA :

xi = Wzi + µ + εi Observed data = linear transf. of z + additive Gaussian noise

zi ∼ N (0, σ2I) latent variables of the principal component subspace

ε ∼ N (0, I) zero-mean Gaussian noise

xi|zi ∼ N (Wzi + µ, σ2I) conditional density for the observed data

xi ∼ N (µ,WWT + σ2I) marginal density for the observed data

(20)
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Probabilistic Principal Component Analysis (PPCA) II
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Maximum Likelihood for PPCA I

Model parameters : (W,µ, σ2) where W a [d×M ] matrix whose columns

represent the principal subspace, µ a d-dimensional vector

Assume we have an i.i.d sample X = (x1, . . . ,xn).

The observed-data log-likelihood is given by :

L(W,µ, σ2) = log

n∏
i=1

p(xi; W,µ, σ2) = log

n∏
i=1

N (µ,WWT + σ2I︸ ︷︷ ︸
C

)

= −nd
2

log 2π − n

2
log |C| − 1

2

n∑
i=1

(xi − µ)T C−1 (xi − µ)

= −n
2

(
d log 2π +

1

2
log |C|+ trace

{
C−1 1

n

n∑
i=1

(xi − µ)T (xi − µ)

})

= −n
2

(
d log 2π +

1

2
log |C|+ trace

{
C−1S

})
(21)
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Maximum Likelihood for PPCA II
⇒ Analytical solutions
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Maximum Likelihood for PPCA III
ML estimates [Tipping and Bishop, 1999] :

µ̂ =
1

n

n∑
i=1

xi = x̄ (22)

σ̂2 =
1

d−M

d∑
m=M+1

λm (23)

Ŵ = UM (LM − σ̂2I)1/2R, (24)

where UM is a [d×M ] matrix whose columns are the first M
eigenvectors [u1, . . . ,uM ] of the data covariance-matrix S corresponding
to the the first M largest eigenvalues [λ1, . . . , λM ]

LM is an [M ×M ] matrix whose diagonal elements are the corresponding
eigenvalues [λ1, . . . , λM ]

R is an [M ×M ] arbitrary orthogonal matrix (RRT = I)
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EM for PPCA I

The PPCA is expressed as a latent data model : so we can use EM to find
the ML estimates for PPCA

While we have exact solutions ; using EM, as it is iterative, may have an
advantage in spaces of high dimensionality compared to when working with
the sample data covariance matrix S (for the eignvalues and eigenvalues)

The EM procedure can also be extended to Factor Analysis for which there
is no analytical solutions

The log-likelihood of the PPCA model parameters (W,µ, σ2) for the
complete-data (X,Z) = (x1, z1, . . . ,xn, zn) :

Lc(W,µ, σ2; X,Z) = log

n∏
i=1

p(xi, zi; W,µ, σ2) =

n∑
i=1

[log p(xi|zi)+log p(zi)]

F. Chamroukhi T3A: Machine Learning 42/50



EM for PPCA II

Complete-data log-likelihood :

Lc(W,µ, σ2) =

n∑
i=1

[log p(xi|zi) + log p(zi)]

=
n∑

i=1

[logN (x;Wzi + µ, σ2I) + logN (zi; 0, σ
2I)]

= −
n∑

i=1

{d
2

log(2πσ2) +
1

2
trace(ziz

T
i ) +

1

2σ2
||xi − µ||2

− 1

σ2
zT
i WT (xi − µ) +

1

2σ2
trace(ziz

T
i WWT

}
(25)

Expected complete-data log-likelihood (the Q-function) :

E[Lc(W,µ, σ2)|X, {W,µ, σ2}old] = −
n∑

i=1

{d
2

log(2πσ2) +
1

2
trace(E[ziz

T
i ]) +

1

2σ2
||xi − µ||2

− 1

σ2
E[zi]

TWT (xi − µ) +
1

2σ2
trace(E[ziz

T
i ]WWT

}
(26)
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EM for PPCA III
NB : for µ, we get its closed form solution : µ̂ = x̄

Only W and σ2 are computed in an iterative way by EM

1 E-step : By using the old parameters values, compute

E[zi] = (WTW + σ2I)−1WT (xi − x̄) (27)

E[ziz
T
i ] = σ2(WTW + σ2I)−1 + E[zi]E[zi]

T (28)

2 M-step

Wnew =

[
n∑

i=1

(xi − x̄)E[zi]
T

][
n∑

i=1

E[ziz
T
i ]

]−1

(29)

σ2
new =

1

nd

n∑
i=1

{
||xi − x̄||2 − 2E[zi]

TWT
new(xi − x̄) + trace(E[ziz

T
i ]WnewWT

new

}
(30)

NB. Here E[.] is actually E[.|X, {W,µ, σ2}old]
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Factor Analysis (FA) I

Factor Analysis (FA) [Spearman, 1904, Thurstone, 1947]

FA is closely related to PPCA

The only difference is

xi|zi ∼ N (Wzi + µ,Ψ) conditional density for the observed data

Ψ is a d× d digonal matrix ; rather than

xi|zi ∼ N (Wzi + µ, σ2I) conditional density for the observed data

(isotropic covariance matrix).
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Factor Analysis (FA) II

Generative model

xi = Wzi + µ + εi Observed data = linear transf. of z + additive Gaussian noise

zi ∼ N (0,Ψ) latent variables of the principal component subspace

ε ∼ N (0, I) zero-mean Gaussian noise

xi|zi ∼ N (Wzi + µ,Ψ) conditional density for the observed data

xi ∼ N (µ,WWT + Ψ) marginal density for the observed data
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Factor Analysis (FA) III

EM

1 E-step

E[zi] = (I + WTΨ−1W)−1WT (Ψ−1xi − x̄) (31)

E[ziz
T
i ] = (I + WTΨ−1W)−1 + E[zi]E[zi]

T (32)

2 M-step

Wnew =

[
n∑

i=1

(xi − x̄)E[zi]
T

][
n∑

i=1

E[ziz
T
i ]

]−1

(33)

Ψnew = diag

{
S−Wnew

1

n

n∑
i=1

E[zi](xi − x̄)T
}

(34)

NB. Here E[.] is actually E[.|X, {W,µ,Ψ}old]
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Illustration on PCA (Face Recognition) seen in classroom
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tSNE : course materials and pdf available on

https://chamroukhi.com/Teaching/ML-MscAI-DS/tSNE-en.pdf

https://chamroukhi.com/Teaching/ML-MscAI-DS/tSNE-fr.pdf
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