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Continuous Optimization

Problem Formulation :

Consider unconstrained optimization (minimization) problems, where we

seek to minimize a function f(x) defined over a domain D = dom f , without

any explicit constraints on x :

min
x∈D

f(x)

Then for uncosntrained problems, the feasible set is D the domf .

If there are restrictions on x (e.g., x must satisfy gi(x) ≤ 0 for certain

constraint functions gi(x)), the problem is said to be constrained.

Continuous Optimization Definition :

Continuous optimization refers to optimization problems where the objective

function f(x) is defined over a continuous domain D ⊆ Rn.

In these problems, the feasible set is typically uncountably infinite since x

can take any real values within D.
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Continuous vs. Discrete Optimization

In continuous optimization, the variables x can take any value within the

continuous domain D ⊆ Rn.

In discrete optimization, the variables are restricted to discrete sets (e.g.,

integers or binary values).
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Advantages in Continuous Optimization

Use of numerical Methods : The ability to compute gradients and
Hessians (when the function is differentiable) facilitates the
application of numerical methods, such as :

I Gradient Descent : Uses first-order derivative information (Gradient)

to move in the direction of steepest descent.
I Newton’s Method : Utilizes second-order derivative information

(Hessian) to refine the search direction, potentially leading to faster

convergence.

Comparison to Discrete Optimization : Unlike continuous

optimization, discrete optimization problems have feasible sets that

are finite or countably infinite, making them less amenable to smooth

methods. It often requires combinatorial or exhaustive search

techniques, which are typically more computationally intensive.

Many problems in machine learning (such as training models using

gradient-based methods) are naturally formulated as continuous

optimization problems.
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Examples of Continuous Optimization in Machine Learning

Linear Regression :

I Objective Function : the mean squared error between predicted and

actual values.

I min
w∈Rn

f(w) =
1

2
‖y −Xw‖2, where y ∈ Rm is the target variable,

X ∈ Rm×n is the design matrix, and w ∈ Rn is the continuous vector

of parameters we aim to optimize.

Logistic Regression :

I Objective Function : (log)-likelihood of observations in maximization,

or by equivalence the “negative” log-likelihood, in minimization
I minw∈Rn f(w) = −

∑m
i=1 (yi log(σ(Xiw)) + (1− yi) log(1− σ(Xiw))) ,

where yi ∈ {0, 1} represents binary labels, Xi is the i-th row of the

design matrix X, and σ is the sigmoid function. The vector of

continuous variables w ∈ Rn represents model parameters.

Neural Network Training : Objective Function : Minimize a loss function, such

as cross-entropy or MSE, over the network parameters w (the weights).

min
w∈Rn

f(w) =

m∑
i=1

L(yi, ŷi(w)), where L is the loss function, yi are the true

outputs, ŷi(w) the predictions, and w ∈ Rn represents all network parameters.

Since neural networks have many parameters, n is typically very large.F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/16
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outputs, ŷi(w) the predictions, and w ∈ Rn represents all network parameters.

Since neural networks have many parameters, n is typically very large.F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/16



Examples of Continuous Optimization in Machine Learning

Linear Regression :

I Objective Function : the mean squared error between predicted and

actual values.

I min
w∈Rn

f(w) =
1

2
‖y −Xw‖2, where y ∈ Rm is the target variable,

X ∈ Rm×n is the design matrix, and w ∈ Rn is the continuous vector

of parameters we aim to optimize.

Logistic Regression :

I Objective Function : (log)-likelihood of observations in maximization,

or by equivalence the “negative” log-likelihood, in minimization
I minw∈Rn f(w) = −

∑m
i=1 (yi log(σ(Xiw)) + (1− yi) log(1− σ(Xiw))) ,

where yi ∈ {0, 1} represents binary labels, Xi is the i-th row of the

design matrix X, and σ is the sigmoid function. The vector of

continuous variables w ∈ Rn represents model parameters.

Neural Network Training : Objective Function : Minimize a loss function, such

as cross-entropy or MSE, over the network parameters w (the weights).

min
w∈Rn

f(w) =
m∑
i=1
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outputs, ŷi(w) the predictions, and w ∈ Rn represents all network parameters.

Since neural networks have many parameters, n is typically very large.F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/16



Optimization Concepts in Rn

In multivariate optimization, we consider functions f : Rn → R with variables

x = (x1, x2, . . . , xn)>.

Problem Formulation :

Objective : Minimize a function f(x) over x ∈ Rn.

Common form :

min
x∈Rn

f(x) subject to constraints

Applications in machine learning, such as least squares regression and

logistic regression, often use unconstrained multivariate optimization.

Example : Least Squares

Given a design matrix X ∈ Rm×n and a target vector y ∈ Rm, least squares

seeks to find w ∈ Rn that minimizes :

f(w) =
1

2

m∑
i=1

(
yi − x>i w

)2

Figure – 3D plot of least squares objective function in R2
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Convexity in Rn

A set S ⊂ Rn is convex if, for any x,y ∈ S and λ ∈ [0, 1],

λx + (1− λ)y ∈ S

Convex Functions : A function f : Rn → R is convex iff, for all x,y ∈ Rn and

λ ∈ [0, 1],

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Example : Least Squares Convexity

Show the least squares function :

f(w) =
1

2
‖y −Xw‖2

where y ∈ Rm, X ∈ Rm×n, and w ∈ Rn, is convex.
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Example : Convexity of the Least Squares Function

Let f(w) = 1
2
‖y −Xw‖2, where y ∈ Rm, X ∈ Rm×n, and w ∈ Rn.

To prove f(w) is convex, we show :

f(λw1 + (1− λ)w2) ≤ λf(w1) + (1− λ)f(w2), ∀w1, w2 ∈ Rn, λ ∈ [0, 1].

Proof :

We have : f(λw1 + (1− λ)w2) =
1
2
‖y −X(λw1 + (1− λ)w2)‖2

=
1

2
‖λ(y −Xw1) + (1− λ)(y −Xw2)‖2 (by linearity of X)

Using the property of the squared norm : ‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2uT v,

=
1

2

(
λ2‖y −Xw1‖2 + (1− λ)2‖y −Xw2‖2 + 2λ(1− λ)(y −Xw1)

T (y −Xw2)
)
.

Compared with : λf(w1) + (1− λ)f(w2) =
1
2

(
λ‖y −Xw1‖2 + (1− λ)‖y −Xw2‖2

)
.

The difference is (after some simple calculations and factoring out λ(1− λ)) :

f(λw1 + (1− λ)w2)− (λf(w1) + (1− λ)f(w2)) = −
λ(1− λ)

2
‖Xw1 −Xw2‖2.

Since ‖Xw1 −Xw2‖2 ≥ 0 and λ(1− λ) ≥ 0 for λ ∈ [0, 1], the difference is negative.

Hence :

f(λw1 + (1− λ)w2) ≤ λf(w1) + (1− λ)f(w2).

CQFD.
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Differentiability and Gradient Concepts in Rn

Gradient in the Multivariate Case :

The gradient ∇f(x) of a function f : Rn → R is the vector of partial

derivatives :

∇f(x) =


∂f
∂x1
∂f
∂x2

...
∂f
∂xn


The gradient vector serves as a fundamental tool in optimization, providing

both the direction of steepest descent and the magnitude of change needed

to iteratively adjust w for minimizing the objective function.

Example : Gradient of Least Squares :

For a least squares function f(w) = 1
2‖y −Xw‖2, the gradient with respect

to w is [Exercise] :

∇f(w) = −X>(y −Xw)
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Hessian Matrix Concepts in Rn

Hessian Matrix in the Multivariate Case :

The Hessian matrix Hf (x) of a twice-differentiable function f : Rn → R is the

matrix of second-order partial derivatives :

Hf (x) = ∇2f(x) =



∂2f

∂x2
1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f

∂x2
2

· · · ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


The Hessian matrix provides information about the curvature of f at x and is

essential in analyzing convexity and optimizing the function more effectively.

The Hessian matrix also enables second-order optimization methods, such as

Newton’s method, to achieve faster convergence by incorporating information

about how the gradient changes.
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Hessian Matrix Concepts in Rn

Hessian of Least Squares : [Exercice]

For the least squares function f(w) = 1
2
‖y −Xw‖2, the Hessian with respect to

w is :

Hf (w) = X>X

This Hessian captures the curvature of the least squares objective and is constant,

as f is a quadratic function in w.
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Convexity and the Hessian I

Convexity Condition for Twice-Differentiable Functions :

A twice-differentiable function f(x) is convex iff its Hessian ∇2f(x) is

positive semi-definite for all x ∈ Rn, i.e., ∇2f(x) � 0,∀x ∈ Rn,

where ∇2f(x) � 0 indicates that for any vector z ∈ Rn,

z>∇2f(x) z ≥ 0.

This condition indicates that that all eigenvalues of ∇2f(x) are

non-negative.

Interpretation :

The positive semi-definiteness of ∇2f(x) means that the Hessian matrix

does not have any negative eigenvalues, ensuring non-negative curvature of

the function f in all directions
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Theorem : A is positive definite if and only if x>Ax > 0 for all x 6= 0.

Proof : Assume, for contradiction, that there exists x 6= 0 such that x>Ax ≤ 0

and A is positive definite.

Since A is symmetric and positive definite, there exists an orthogonal matrix Q

(where Q>Q = I) such that A = Q>ΛQ, where Λ is a diagonal matrix with

entries Λii = λi > 0 (the eigenvalues of A).

Now, let y 6= 0 be such that x = Q>y.

Then,

0 ≥ x>Ax = y>QAQ>y = y>QQ>ΛQQ>y = y>Λy =

n∑
i=1

λiy
2
i > 0.

This is a contradiction, as the right side is strictly positive (since λi > 0 and

y 6= 0). Therefore, if A is positive definite, it must hold that x>Ax > 0 for all

x 6= 0.

Conversely, if x>Ax > 0 for all x 6= 0, this implies that all eigenvalues of A are

positive, making A positive definite.
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Ex : Least Squares Convexity (Exercise)

Show that the least squares objective function in linear regression is convex

iff X>X is positive semi-definite.

The objective function is : f(w) = 1
2‖y −Xw‖

2 = 1
2 (y −Xw)>(y −Xw).

The gradient is : ∇f(w) = −X>(y −Xw).

The Hessian is : ∇2f(w) = X>X, which is :

I Positive semi-definite because for any vector v ∈ Rn :

v>(X>X)v = (Xv)>(Xv) = ‖Xv‖2 ≥ 0.

I Positive definite (and the least squares function strictly convex) if

X>X has full column rank, ensuring ‖Xv‖2 > 0 for all v 6= 0.

Conclusion : f(w) is convex because X>X is positive semi-definite.

Moreover, f(w) is strictly convex iff X>X is positive definite (has full

column rank).

Full column rank implies Xv = 0 only when v = 0, ensuring ‖Xv‖2 > 0 for v 6= 0.

A matrix X ∈ Rm×n is said to have full column rank if its columns are linearly

independent. Equivalently, Xv = 0 implies v = 0 for all v ∈ Rn.
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