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TC2: Optimization for Machine Learning

Objective: Study the mathematical and computational constructions and properties of key optimization algorithms
in different situations with use case illustrations in machine learning.

Programme

= weekl: Introductions and background (convexity, differentiability, optimality conditions, convergence rates ...)

* week2: Continuous optimization formulation and basic concepts; Optimization concepts over multivariate
continuous spaces; Convexity and Differentiability; Gradient and Hessian concepts;

= week3: continuous optimizaiton (Gradient descent methods) : Mathetamatical construction of descent methods,
Gradient Descent, Descent Directions, Convergence, rates; Step-size tuning and Line Search; Accelerations

= week4:
* Intermediate exam (contréle continu) (Written, during 45, accounts for 40% of the final grade)
* Continuous optimization (Second order methods : Newton methods including Quasi-Newton, secant, IRLS)
= week5: constrained optimizaiton: Equality and Inequality constraints, Duality/Lagrangian, KKT optimality conditions;
= week®6: Stochastic, Non-convex optimization (Stochastic Gradient, The EM Algorithm, SEM)
* Week7: Final exam (Written, during 90’, accounts for 60% of the final grade)
Schedule
= When & where: Thursday afternoon (1pm—5/7pm), from November 06 till December 18, in PUIO Building
= Details on : https://sites.google.com/view/mastersagenda/ai

= All sessions should beattendedinperson Inless you're informed otherwise abo ytional online se

* Llittle coding sessions might be organized during the courses for illustrat

5, d Priori o
!

Contact : Inquires about the course to be sent to <faicel DOT chamroukhi AT universite-paris- saclay DOT fr>
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Outline universite

General Information
Introduction
Optimization and Machine Learning

Introduction to Optimization Concepts
m Convexity
m Diffrentiability
m Differentiability and Gradient Concepts
m Optimality Conditions
m Convergence Rates
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Optimization yniversite

m Optimization is the science of selecting the best element from a set
of available alternatives by optimizing (maximizing or minimizing)
and objective function, while satisfying any given constraints.
constraints.

m It is foundational to many fields including operational research,
economics, engineering, and machine learning.

m Some monographs about Optimization :

Convex Optimization

Kenneth Lange

Numerical
Optimization

0. Giller
Foundations
of Optimization

&) Springer
4 springer
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Application of Optimization in Transportation

université
PARIS-SACLAY

m Problem : Minimize transportation costs by optimizing routes and

loads across a network of suppliers and customers.

m Objective : Minimize total distance or cost while ensuring demand

and supply constraints are met.
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FIGURE — Example of a transportation optimization
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Application of Optimization in Economics  unyersité

m Problem : Portfolio Optimization : Allocate assets in a portfolio to
maximize expected return while minimizing risk.

m Objective : Find the optimal weights for different assets to balance
risk and return.
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FIGURE — Example of Portfolio Optimization showing optimal risk-return trade-offs

Figure : G Mainik et al. Journal of Empirical Finance, Volume 32, June 2015, Pages 115-134
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Application of Optimization in Engineering universite

m Problem : Design structures (e.g., bridges, mechanic, aircraft
components) to minimize weight while maintaining strength and
stability.

m Objective : Reduce material usage and cost while ensuring the
structure can withstand specified loads. eg. by Finite Element
Analysis (FEA) and topology optimization.

Analytical Optimization Topology Optimization  Parameter Optimization
Baseline. Zavos et al. 2013 Hayes etal 2017
NREL 2017

TP Parameter
Optimization
Hayes et al. 2021

Topology Optimization Topology Optimization
Sola et al. 2020 Sola et al. 2021

FIGURE — Topology optimization of a mechanical component
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Application of Optimization in Machine Learning universite

m Problem : Hyperparameter Optimization : Tune hyperparameters
(e.g., learning rate, number of layers) to improve model performance.

m Objective : Maximize model accuracy or minimize loss by selecting
optimal hyperparameters. by Grid / random search, or Bayesian
optimization.
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FIGURE — Example of hyperparameter (in regression) tuning in ML with Bayesian Optimization

F. CHAMROUKHI TC2: Optimization for Machine Learning



Optimization in Engineering/Industry 4.0 universite

PPTX Slide on Optim for real-world applications in Engineering / Industry

Related to the design and supervision of complex (physical) systems
* Covering various fields in physics (mechanics, fluid dvnamics, aerodynamics, electromagnetism ...)
* In a wide variety of Applications in industry, in particular in numerical simulation

Fluid Flows/Dynamics

Electricity (power grids) Aerodynamics Solid Mechanics pneumatics

Picture from Marot, A, et al. (2018). Picture form Merino-Martinez et al. CEAS Aeronautical Journal (2019). From HSA - SystemX E. Menier (PhD, LSIN/SystemX, 2024)
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Optimization université

PARIS-SACLAY

Key components of an optimization problem include :
m Objective Function : The function f(x) we aim to maximize or
minimize, e.g., a prediction error in machine learning.
m Constraints : Conditions that solutions must satisfy, such as :
» Inequality constraints : g(z) <0
» Equality constraints : h(xz) =0
m Feasible Set : The set of all possible solutions that satisfy the
constraints S = {z € Domf | g;(z) < 0Vi, hj(z) =0V}
m Optimal Solution : The solution z* that maximizes or minimizes the
objective function within the feasible set.

min  f(x)

T€R™
subject to

hi(z) =0, Vj=1,....¢
gi(z) <0, Vi=1,...,q.
x* = arg mingegn f(x)
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Optimization in Machine Learning université
m x represents the parameters in a model.
m Constraints impose requirements on model parameters (e.g.,
nonnegativity, Sparsity, Boundedness, Sum-to-One..).
m The objective f(x) is often expressed as a sum of two terms :
eg. Minimization of the penalized empirical risk, given A > 0
min L(z) 4+ A\Q(x)
f(z)
f(z) is a composite function comprising a loss term L(x) and a
regularization A\Q(x) :
» L(x) : A prediction error (or loss) on some observed data.
» Q(x) : A regularization term that penalizes model complexity
» )\ : the regularization parameter / coefficient (an hyperparameter) that

controls the strength of the regularization term Q(z) relative to the
loss term L(x) in the optimization objective.

Discussion on Likelihood/posterior vs Loss/cost function

F. CHAMROUKHI TC2: Optimization for Machine Learning




Some challenging points in Optimization université

PARIS-SACLAY

x* = arg mingern f()
with hj(z*) =0,Vj =1,...,¢
and g;(z*) <0,Vi=1,...,q.

m Well-posedness of the problem (existence, uniqueness (solvability
and determinacy), and stability to perturbations)

m Optimality conditions (characterization of the solution z*, eg. KKT
or Lagrange multipliers for constrained problems)

m Computation of z* (algorithmic and numerical considerations)

Two fundamental properties :
m Convexity : ensures global optimality.

m Differentiability : enables use of eg. gradient-based methods.
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Optimization Issues université
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m Global vs. Local Optima : A global optimum is the absolute best solution,
whereas a local optimum is only the best within a specified neighborhood of
the domain of f. Many algorithms may get trapped in local optima,
especially in non-convex problems.

m Uniqueness : A unique solution is ideal, but non-convex problems often
have multiple optima, requiring extra consideration for solution selection.

m Multimodality : Functions with multiple peaks and valleys (multimodal)
pose challenges, as algorithms like gradient descent might converge to a
local rather than a global optimum.

m Convexity : Convex functions ensure that any local minimum is also the
global minimum, simplifying optimization. Non-convex functions lack this
property and are more complex to optimize.

m Differentiability : A differentiable function is one with a smooth, continuous
slope, making it suitable for gradient-based optimization. Points where a
function is not differentiable like sharp corners or sudden changes, require
alternatives, such as subgradient techniques, to handle these irregularities.
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Optimization Issues université

Graphic illustrations/explanations TBD on the board :
global vs local optima

uniqueness

multimodality

convexity

differentiability

etc
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Optlmlzatlon issues | EArnllu\slgf\%ES
m curse of Dimensionality : When the number of variables is large, the complexity
of the problem increases significantly, making it harder to visualize and solve.

m Non-separability : There are dependencies between the optimization variables,
so that they cannot be optimized independently, complicating the optimization.

m lll-posedness : An ill-posed problem is one where the solution does not depend
continuously on the data, meaning small changes in input can lead to large
variations in the output, or the solution might not even exist or be unique.
lll-posedness can lead to instability in optimization, especially in numerical
methods.

m lll-conditioning : The function may have a poorly scaled gradient, meaning small
changes in certain directions lead to disproportionately large changes in others.
This imbalance can cause slow or unstable convergence during optimization, as it
makes it difficult for gradient-based methods to find a stable path to the optimum.

m Ruggedness : The function may be non-smooth, discontinuous, multimodal,
and/or noisy. Such characteristics introduce multiple local minima and
irregularities, making it challenging for optimization algorithms to find the global
minimum or to converge.

F. CHAMROUKHI TC2: Optimization for Machine Learning
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n
f(z) = An + Z (27 — Acos(2ma;)), withA = 10;n = 2
i=1

global minimum in closed form (0,0), but can be tricky for an algorithm

Rastrigin Function

EEEES g

TC2: Optimization for Machine Learning
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Types of Optimization Problems université

m Types of Optimization Problems
» Linear vs. Non-linear

Convex vs. Non-convex

Constrained vs. Unconstrained

Discrete vs. Continuous

Deterministic vs Stochastic

vV vV v vy
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Optimization in Machine Learning université

PARIS-SACLAY

x* = argmingern f()
with hj(z) =0,Vj=1,...,¢
and gi(x) <0,Vi=1,...,q.
m x represents the parameters in a model.
m Constraints impose requirements on model parameters (e.g.,
nonnegativity, Sparsity, Boundedness, Sum-to-One..).
m The objective f(x) is often expressed as a sum of two terms :
mingegrn L(z) + AQ(x)
» A prediction error (or loss) on some observed data.
> A regularization term that penalizes model complexity.

» NB Optimization is crucial in ML for core tasks like efficient model
parameter training, regularization, and hyperparamter tuning.

[Likelihood/posterior vs Loss/cost function]
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Examples of Optimization for Machine Learning universite

m OLS : given X, Y,
min || Xw — Y|?
WERE e ——

fw)
m LASSO : given X, Y, and A >0

min || Xw — Y|> + Mw|
weRP ~~
f(w)
m Minimization of the penalized empirical risk, given A > 0

min L(w) + AQ(w)
WERT N e’
f(w)

where L is the empirical risk (data loss) and 2 is the penalization.
m Optimization without constraints

min, f(w)

where f : R% — R.
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Optim in ML example université
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m Example : Minimizing the Mean Squared Error (MSE) in linear
regression :

1 n
min — i — Xi 2
| n;(y B)

m This is a continuous, unconstrained, convex optimization problem
with a closed-form solution.

(proofs later as exercices)
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o
Machine Learning as an Optimization Problem | universite

Examples of optimization problems in machine learning :

m Linear Programming (LP)

» Formulation : Optimizes a linear objective subject to linear constraints.
g T
min{c' z | Az < b}
x

» Application Examples :
» Least Absolute Deviations (LAD) regression, which minimizes the
absolute deviations between predicted and observed values, |Ax — b|.

» Linear soft margin SVM : minimize )" &; subject to the linear
constraints y;(wlx; +b) > 1 — & and & > 0 for all 4, where &; are the
slack variables allowing for some misclassifications to balance margin
maximization and error minimization.
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o
Machine Learning as an Optimization Problem Il universite

Examples of optimization problems in machine learning :
m Quadratic Programming (QP)

» Formulation : Optimizes a quadratic objective function subject to
linear constraints.

1
min {ixTQx +clz | Az < b}

» Application Examples :

> LASSO regression minimizing 1| Xw — y||? subject to the constraint
|lwl|l1 <t, where t is a parameter controlling the sparsity of the
solution.

» Hard-margin SVM : minimize %wTw subject to the constraint
yi(wTx; +b) > 1 for all i, which ensures correct classification with
maximum margin.
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Machine Learning as an Optimization Problem (1) université

Examples of optimization problems in machine learning :

m Linear Programming (LP)

» Formulation : Minimize a linear objective subject to linear inequality
constraints :

min ¢'z subjectto Az <b
zERY

» Application Examples :

LAD Regression : Minimizes the £1-norm of the residuals :
min ||Az — bl

Soft-margin SVM : Minimizes total slack :

min Z& s.t. yi(wT:L'i +b)>1-6&,&>0
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Machine Learning as an Optimization Problem (Il) université

Examples of optimization problems in machine learning :

m Quadratic Programming (QP)

» Formulation : Minimize a quadratic objective with linear inequality
constraints :

1 .
min —2'Qz+c'z subjectto Az <b
zERd 2

» Application Examples :
LASSO (constrained form) :

1
min S| Xw—ylz st fuwl <t
Hard-margin SVM :

1
min §||w||§ st yi(w @ 4+b) > 1
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Introduction to Optimization Concepts université
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m An Optimization Problem aims to minimize f(x) (objective
function) with variables z € R™.

m Example : Minimize f(z) = (z — 3)? + 4.
— Solution : f'(z) = 2(x — 3) — z = 3 (minimum)

Quadratic Function Minimization

20+ — f(x) = (x-3)"2+4
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Introduction to Optimization Concepts

Two fundamental properties :
Convexity

Differentiability

[Done On the board why these properties matter]
m Convexity simplifies finding global optima.

m Differentiability is crucial for gradient-based methods.
- in ML point of view

- in Optim point of view
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Convexity : Sets and Functions université

PARIS-SACLAY

Convex Sets and Functions :
m Aset S CR"is convex if, for any z,y € S and X € [0, 1],
A+ (1-Nyes.
— This means that the line segment between any two points in the set lies
entirely within the set.

m A function f is convex if for any z,y and X € [0,1],
fOz+ 1 =Ny) <Af(2)+ (1 =N f(y).

< This implies that the line segment connecting any two points on the
graph of the function lies above the graph.

m A twice-differentiable [We'll see differentiability] function of a single variable
is convex if and only if its second derivative is nonnegative on its entire
domain

m Importance of Convexity

» Guarantees that any local minimum is a global minimum.
» Simplifies optimization.
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CO"VEXity université
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Example of a Convex Set Example of a Convex Function

7
w

w z
y
Example of a Non-Convex Set Example of a Non-Convex Function
w
z
y
y w
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Convexity : Examples université

Example :
m f(z) = 22 is convex because f”(z) =2 > 0.

m f(z) = sin(3x) is non-convex since it has regions of positive and
negative curvature. [Exercice : )]
Proof : For f(z) = 22, f'(z) =2z, f"(z)=2>0.

Convex and Non-Convex Functions

—— Convex: x*?

Non-Convex: sin(3x)

fix)

-1

20 -15 -lo -05 00 05 10 15 20
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Examples of Convex Functions université

PARIS-SACLAY

m Quadratic functions : f(z) = ax? + bx + ¢ (for a > 0)

m Exponential functions : f(z) = e”

m Norms : f(z) = ||z||2 (common in ML regularization)
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Properties université

PARIS-SACLAY

m Operations that Preserve Convexity

» Non-negative weighted sum : If f; and f5 are convex, then af; + 6f2
(with «, 8 > 0) is convex.

» Composition rules : If f is convex and increasing, and g is convex, then
f(g(x)) is also convex.

m Jensen’s Inequality
» If fis a convex function and X is a random variable, then
FEX]) <E[f(X)].
m Implications for Optimization

» Convexity ensures any local minimum is also a global minimum.
» Makes it easier to design algorithms with guaranteed convergence.
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Differentiability in R (n=1) université

Definition : Let f : R — R. We say f is differentiable at z € R if

lim flzth) - fz) exists, h € R.
h—0 h
Notation :
o) = i LD I

The derivative corresponds to the slope of the tangent at .

cf. the graph in a future slide
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Derivative as the slope of the tangent | université

PARIS-SACLAY

The derivative of a function f(z) at a point = a represents the slope of
the tangent to the function at that point.

m For a function f(x) = 22, the derivative is f'(z) = 2.
m At a specific point x =1 :
» The function value is f(1) =12 = 1.

» The derivative at this point is f’(1) = 2, which is the slope of the
tangent line at x = 1.

m Tangent line : The tangent line at x = 1 can be written as :

Tangentatx =1: y=f'(1)-(z—1)+ f(1)

F. CHAMROUKHI TC2: Optimization for Machine Learning
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Derivative as the slope of the tangent Il université

ion of the Tangent Line and Derivative at a Point

-4
— ) =x?
Tangent at x = 1 with slope 2

m Visualization :

» The curve f(x) = 22 is plotted in blue.

» The tangent line at x = 1, shown in orange, has a slope equal to the
derivative at that point, f/(1) = 2.

» This tangent line touches the curve only at z = 1, showing that the
derivative represents the rate of change of the function at that point.
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Differentiability université

m Differentiable Functions

» A function is differentiable if it has a derivative at each point.

» Gradient and Hessian provide first- and second-order information.
m Importance in Optimization

» Gradient descent relies on gradients to locate minima or maxima.
» Hessian provides curvature information for Newton's method.
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Differentiability and Gradient Conceptst université
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m For a differentiable function f(z), the gradient V f(x) provides the
direction of steepest ascent.

m Moving in the direction of —V f(z) minimizes the function.

Example : f(z) = (z —3)2 +4
Vf(x)=2(z—3).

Gradient Descent Update : x;; = 2, — aV f(xy).
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Optimality Conditions université
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m First-Order Necessary Conditions
» For unconstrained problems, if f is differentiable and z* is a local
minimum, then :
Vf(*)=0
» Example : Solving V f(z) = 0 to find stationary points in a quadratic
function : f(x) = ax? + bz + ¢
m Second-Order Necessary and Sufficient Conditions
» If 2* is a local minimum and f is twice differentiable, the second
derivative is nonnegative, or for vector functions, the Hessian H (z*) is
positive semidefinite (H (z*) > 0, i.e all eigenvalues > 0). (necessary).
> If the Hessian is positive definite (all eigenvalues > 0), then z* is a
strict local minimum (sufficient for strict minimum).

Optimality conditions for constrained problems (KKT) to be studied later

m Karush-Kuhn-Tucker (KKT) Conditions : For a constrained optimization
problem, the KKT conditions provide necessary conditions for optimality,
combining Lagrange multipliers to handle constraints.
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Convergence Rates université
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m Definition and Importance
» Convergence rate describes how quickly an optimization algorithm
approaches the optimal solution.
» Important for comparing algorithms : faster convergence means fewer
iterations and faster solutions.
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Linear Convergence université
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m Linear convergence means that the error decreases by a constant
fraction with each iteration.

m Formally :
2D — 2| < efa® — 27|
m The constant c represents the rate at which the error decreases; a
smaller ¢ results in faster convergence.
m For linear convergence, ¢ must satisfy 0 < ¢ < 1.

m Example : Gradient descent on strongly convex functions exhibits
linear convergence, where each step moves steadily but not as rapidly
as quadratic convergence.
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Quadratic Convergence université
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m Quadratic convergence means that the error decreases by the
square of the previous error in each iteration, resulting in very rapid
convergence near the solution.

m Formally :
2D — 2| < f|a® — 2|2

m For quadratic convergence, ¢ must be a positive constant, ¢ > 0.

m This condition ensures that as k increases, the error ||z(*) — ||
reduces very quickly if the iterates are sufficiently close to the solution

T*.

m Example : Algorithms like Newton's method achieve quadratic
convergence near the solution under conditions of sufficient
smoothness and proximity , ie. when the iterates are close to the
solution.
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Convergence rates université
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Sublinear Convergence : The error decreases more slowly than linear
convergence, approaching zero at a diminishing rate.

m Often observed in non-smooth or non-convex problems where faster
rates are difficult to achieve.

m Common rates include 1/k or 1/v/k, where k is the iteration number.

m Common in Subgradient methods

F. CHAMROUKHI TC2: Optimization for Machine Learning
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Convergence rates université

m Factors Affecting Convergence Rates

» Properties of the function : smoothness, convexity, and Lipschitz
continuity.

» Choice of algorithm : Different algorithms like gradient descent or
Newton's method have inherent convergence rates.

m Trade-offs in Convergence Rates

» Faster-converging algorithms (e.g., Newton's method) may require
more computation per iteration.

» Balancing iteration cost with speed of convergence is essential in
practical applications.
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Convergence Rates université

PARIS-SACLAY

Types of Convergence :
m Linear Convergence : Error decreases proportionally per iteration.

m Quadratic Convergence : Error decreases quadratically, eg. in
Newton's method.

Example : Gradient Descent on f(x) = (z — 3)?

Gradient Descent Optimization

204 — ) = (x-3)"2 + 4
—8— Gradient Descent Path
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Example : Linear vs. Quadratic Convergence universite

[Practical work : will be seen also in Python]
Objective : To demonstrate the difference in convergence rates between
two optimization methods :

m Gradient Descent : Exhibits linear convergence.
m Newton's Method : Exhibits quadratic convergence.
Problem Setup :
m We consider the function f(x) = 22, which has a minimum at z = 0.

m Both methods start from x = 10 and perform 10 iterations, with a
learning rate o = 0.1.

Goals :
m Compare the convergence paths of each method.

m Plot the error convergence rates to visualize the difference between
linear and quadratic convergence.
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Gradient Descent and Newton’s Method université

[Practical work : will be seen also in Python]
Example : minimize f(z) = 22
Function and Derivatives :
m f(x) = 22 : The function to minimize.
m f/(x) = 2z : The first derivative, used in both methods.
m f”(x) =2 : The second derivative, required for Newtons method.

Gradient Descent (Linear Convergence) :

m Update rule : z441 = o — af'(24) = 24 — 20y

m We start from zg = 10 and take 10 steps with a learning rate o = 0.1.

Newton’s Method (Quadratic Convergence) :

m Update rule : 2441 = 2 — % =1 — %gjt_

m We use the same starting point and number of steps for comparison.
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o
Convergence Paths examples of Gradient vs Newton universite

[Practical work]
Convergence Path Plot :
m For each method, we plot the function f(x) = 2% and overlay the
path taken by each optimization algorithm.
m This shows how each method approaches the minimum at z = 0.

Gradient Descent Convergence Path (Linear) Newton's Method Convergence Path (Quadratic)

240 — fix) =x"2

140 — flx}=x"2
Gradient Descent Path —m- Newton's Method Path
120 120
100

100

FIGURE — Convergence paths for Gradient Descent (left) and Newton's Method (right).

Any remark here for this visualisation :) ?
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Convergence Paths examples of Gradient vs Newton universite

[Practical work]
Convergence Path Plot :
m For each method, we plot the function f(x) = 2% and overlay the
path taken by each optimization algorithm.
m This shows how each method approaches the minimum at z = 0.

Gradient Descent Convergence Path (Linear) Newton's Method Convergence Path (Quadratic)

— fx) =x"2 — fixh=x"2
10 Gradient Descent Path 10 —m- Newton's Method Path
120 120
100

100

FIGURE — Convergence paths for Gradient Descent (left) and Newton's Method (right).

Any remark here for this visualisation :) ? [No convergece for GD after 10 iterations, ...]
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Error convergence rates université

[Practical work]

m We calculate the error (distance to the minimum) at each iteration
for both methods.

m Errors are plotted on a log scale to clearly demonstrate the difference
in convergence rates (linear vs. quadratic).

Comparison of Convergence Rates: Linear vs. Quadratic

ot (Linear)
= Newton's Method (Quadratic)

Ermor (log scale)

FIGURE — Error convergence rates for Gradient Descent and Newton's Method for f(x) = z2.
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Error Convergence Rates université

PARIS-SACLAY

[Practical work]

Comparison of Convergence Rates: Linear vs. Quadratic

10t —o— Gradient Descent (Linear)
= Newton's Method (Quadratic)

Error (1og scale)

FIGURE — Error convergence rates for Gradient Descent and Newton's Method for f(x) = z2.

m Gradient Descent (Linear Convergence) : Appears as a straight line with
a moderate slope on the log scale, representing a steady reduction in error
per iteration.

m Newtons Method (Quadratic Convergence) : Shows a sharp drop-off,
indicating rapid error reduction and demonstrating quadratic convergence.

m Newton's method's quadratic convergence highlights its efficiency for
well-behaved functions, but it requires second derivatives and is more
computationally expensive.
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Exercises [Practical Work] université

PARIS-SACLAY

Exercise 1 : Identify Convexity
m f(z) =€ is convex since f(x) =" > 0.
m f(x) = —2? is non-convex since f”(z) = —2 < 0.
Exercise 2 : Gradient Computations
w For f(r,y) =2 + 2, Vf(z,) = (20,2).
Exercise 3 : Optimality Conditions
m For f(z) = 23 — 3z, solve f/(z) = 322> —3 =0 to get z = £1.
m Check f”(z) = 6z to classify critical points.
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Summary université

m Convexity simplifies finding global optima.
m Differentiability is crucial for gradient-based methods.
m Optimality conditions guide validity of solutions.

m Convergence rates impact algorithm efficiency.
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