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TC2: Optimization for Machine Learning

Programme
▪ week1: Introductions and background (convexity, differentiability, optimality conditions, convergence rates …)

▪ week2: Continuous optimization formulation and basic concepts; Optimization concepts over multivariate 
continuous spaces; Convexity and Differentiability; Gradient and Hessian concepts;

▪ week3: continuous optimizaiton (Gradient descent methods) : Mathetamatical construction of descent methods, 
Gradient Descent, Descent Directions, Convergence, rates; Step-size tuning and Line Search; Accelerations

▪ week4: 

▪ Intermediate exam (contrôle continu) (Written, during 45’, accounts for 40% of the final grade)

▪ Continuous optimization (Second order methods : Newton methods including Quasi-Newton, secant, IRLS)

▪ week5: constrained optimizaiton: Equality and Inequality constraints, Duality/Lagrangian, KKT optimality conditions;

▪ week6: Stochastic, Non-convex optimization (Stochastic Gradient, The EM Algorithm, SEM)

▪ Week7: Final exam (Written, during 90’, accounts for 60% of the final grade)

Contact : Inquires about the course to be sent to <faicel DOT chamroukhi AT universite-paris-saclay DOT fr>

Objective: Study the mathematical and computational constructions and properties of key optimization algorithms 
in different situations with use case illustrations in machine learning. 

Schedule 
▪ When & where: Thursday afternoon (1pm—5/7pm), from November 06 till December 18, in PUIO Building

▪ Details on : https://sites.google.com/view/mastersagenda/ai

▪ All sessions should be attended in person unless you’re informed otherwise about an exceptional online session

▪ Little coding sessions might be organized during the courses for illustrations, a priori on Matlab (or Python)



week 1
November 06. 2025
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Optimization

Optimization is the science of selecting the best element from a set

of available alternatives by optimizing (maximizing or minimizing)

and objective function, while satisfying any given constraints.

constraints.

It is foundational to many fields including operational research,

economics, engineering, and machine learning.

Some monographs about Optimization :
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Application of Optimization in Transportation

Problem : Minimize transportation costs by optimizing routes and

loads across a network of suppliers and customers.

Objective : Minimize total distance or cost while ensuring demand

and supply constraints are met.

Figure – Example of a transportation optimization
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Application of Optimization in Economics

Problem : Portfolio Optimization : Allocate assets in a portfolio to

maximize expected return while minimizing risk.

Objective : Find the optimal weights for different assets to balance

risk and return.

Figure – Example of Portfolio Optimization showing optimal risk-return trade-offs

Figure : G Mainik et al. Journal of Empirical Finance, Volume 32, June 2015, Pages 115-134
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Application of Optimization in Engineering

Problem : Design structures (e.g., bridges, mechanic, aircraft

components) to minimize weight while maintaining strength and

stability.

Objective : Reduce material usage and cost while ensuring the

structure can withstand specified loads. eg. by Finite Element

Analysis (FEA) and topology optimization.

Figure – Topology optimization of a mechanical component

Figure : Topology optimization for structural mass reduction of direct drive electric machines. C. Hayes et al. 2023.
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Application of Optimization in Machine Learning

Problem : Hyperparameter Optimization : Tune hyperparameters

(e.g., learning rate, number of layers) to improve model performance.

Objective : Maximize model accuracy or minimize loss by selecting

optimal hyperparameters. by Grid / random search, or Bayesian

optimization.

Figure – Example of hyperparameter (in regression) tuning in ML with Bayesian Optimization
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Optimization in Engineering/Industry 4.0

PPTX Slide on Optim for real-world applications in Engineering / Industry
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Optimization

Key components of an optimization problem include :

Objective Function : The function f(x) we aim to maximize or

minimize, e.g., a prediction error in machine learning.
Constraints : Conditions that solutions must satisfy, such as :

I Inequality constraints : g(x) ≤ 0
I Equality constraints : h(x) = 0

Feasible Set : The set of all possible solutions that satisfy the

constraints S = {x ∈ Domf | gi(x) ≤ 0 ∀i, hj(x) = 0 ∀j}.
Optimal Solution : The solution x? that maximizes or minimizes the

objective function within the feasible set.

min
x∈Rn

f(x)

subject to
hj(x) = 0, ∀j = 1, . . . , `
gi(x) ≤ 0, ∀i = 1, . . . , q.

x? = arg minx∈Rn f(x)
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Optimization in Machine Learning

x represents the parameters in a model.

Constraints impose requirements on model parameters (e.g.,

nonnegativity, Sparsity, Boundedness, Sum-to-One..).

The objective f(x) is often expressed as a sum of two terms :

eg. Minimization of the penalized empirical risk, given λ > 0

min
x∈Rn

L(x) + λΩ(x)︸ ︷︷ ︸
f(x)

f(x) is a composite function comprising a loss term L(x) and a
regularization λΩ(x) :

I L(x) : A prediction error (or loss) on some observed data.
I Ω(x) : A regularization term that penalizes model complexity
I λ : the regularization parameter / coefficient (an hyperparameter) that

controls the strength of the regularization term Ω(x) relative to the

loss term L(x) in the optimization objective.

[Discussion on Likelihood/posterior vs Loss/cost function]
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Some challenging points in Optimization


x? = arg minx∈Rn f(x)
with hj(x

?) = 0, ∀j = 1, . . . , `
and gi(x

?) ≤ 0, ∀i = 1, . . . , q.

Well-posedness of the problem (existence, uniqueness (solvability

and determinacy), and stability to perturbations)

Optimality conditions (characterization of the solution x?, eg. KKT

or Lagrange multipliers for constrained problems)

Computation of x? (algorithmic and numerical considerations)

Two fundamental properties :

Convexity : ensures global optimality.

Differentiability : enables use of eg. gradient-based methods.
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Optimization Issues

Global vs. Local Optima : A global optimum is the absolute best solution,

whereas a local optimum is only the best within a specified neighborhood of

the domain of f . Many algorithms may get trapped in local optima,

especially in non-convex problems.

Uniqueness : A unique solution is ideal, but non-convex problems often

have multiple optima, requiring extra consideration for solution selection.

Multimodality : Functions with multiple peaks and valleys (multimodal)

pose challenges, as algorithms like gradient descent might converge to a

local rather than a global optimum.

Convexity : Convex functions ensure that any local minimum is also the

global minimum, simplifying optimization. Non-convex functions lack this

property and are more complex to optimize.

Differentiability : A differentiable function is one with a smooth, continuous

slope, making it suitable for gradient-based optimization. Points where a

function is not differentiable like sharp corners or sudden changes, require

alternatives, such as subgradient techniques, to handle these irregularities.
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Optimization Issues

Graphic illustrations/explanations TBD on the board :
global vs local optima
uniqueness
multimodality
convexity
differentiability
etc
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Optimization issues I

curse of Dimensionality : When the number of variables is large, the complexity

of the problem increases significantly, making it harder to visualize and solve.

Non-separability : There are dependencies between the optimization variables,

so that they cannot be optimized independently, complicating the optimization.

Ill-posedness : An ill-posed problem is one where the solution does not depend

continuously on the data, meaning small changes in input can lead to large

variations in the output, or the solution might not even exist or be unique.

Ill-posedness can lead to instability in optimization, especially in numerical

methods.

Ill-conditioning : The function may have a poorly scaled gradient, meaning small

changes in certain directions lead to disproportionately large changes in others.

This imbalance can cause slow or unstable convergence during optimization, as it

makes it difficult for gradient-based methods to find a stable path to the optimum.

Ruggedness : The function may be non-smooth, discontinuous, multimodal,

and/or noisy. Such characteristics introduce multiple local minima and

irregularities, making it challenging for optimization algorithms to find the global

minimum or to converge.
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f(x) = An+

n∑
i=1

(
x2i −A cos(2πxi)

)
, withA = 10;n = 2

global minimum in closed form (0,0), but can be tricky for an algorithm
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Types of Optimization Problems

Types of Optimization Problems
I Linear vs. Non-linear
I Convex vs. Non-convex
I Constrained vs. Unconstrained
I Discrete vs. Continuous
I Deterministic vs Stochastic
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Optimization in Machine Learning


x? = arg minx∈Rn f(x)
with hj(x) = 0, ∀j = 1, . . . , `
and gi(x) ≤ 0, ∀i = 1, . . . , q.

x represents the parameters in a model.

Constraints impose requirements on model parameters (e.g.,

nonnegativity, Sparsity, Boundedness, Sum-to-One..).

The objective f(x) is often expressed as a sum of two terms :

minx∈Rn L(x) + λΩ(x)

I A prediction error (or loss) on some observed data.
I A regularization term that penalizes model complexity.

I NB Optimization is crucial in ML for core tasks like efficient model

parameter training, regularization, and hyperparamter tuning.

[Likelihood/posterior vs Loss/cost function]
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Examples of Optimization for Machine Learning

OLS : given X, Y ,

min
w∈Rd

‖Xw − Y ‖2︸ ︷︷ ︸
f(w)

LASSO : given X, Y , and λ > 0

min
w∈Rp

‖Xw − Y ‖2 + λ‖w‖1︸ ︷︷ ︸
f(w)

Minimization of the penalized empirical risk, given λ > 0

min
w∈Rd

L(w) + λΩ(w)︸ ︷︷ ︸
f(w)

where L is the empirical risk (data loss) and Ω is the penalization.

Optimization without constraints

min
w∈Rd

f(w)

where f : Rd → R.
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Optim in ML example

Example : Minimizing the Mean Squared Error (MSE) in linear

regression :

min
β

1

n

n∑
i=1

(yi −Xiβ)2

This is a continuous, unconstrained, convex optimization problem

with a closed-form solution.

(proofs later as exercices)
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Machine Learning as an Optimization Problem I

Examples of optimization problems in machine learning :

Linear Programming (LP)

I Formulation : Optimizes a linear objective subject to linear constraints.

min
x
{cTx | Ax ≤ b}

I Application Examples :
I Least Absolute Deviations (LAD) regression, which minimizes the

absolute deviations between predicted and observed values, |Ax− b|.

I Linear soft margin SVM : minimize
∑

i ξi subject to the linear

constraints yi(w
Txi + b) ≥ 1− ξi and ξi ≥ 0 for all i, where ξi are the

slack variables allowing for some misclassifications to balance margin

maximization and error minimization.
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Machine Learning as an Optimization Problem II

Examples of optimization problems in machine learning :

Quadratic Programming (QP)

I Formulation : Optimizes a quadratic objective function subject to

linear constraints.

min
x

{
1

2
xTQx+ cTx | Ax ≤ b

}
I Application Examples :
I LASSO regression minimizing 1

2‖Xw − y‖
2 subject to the constraint

‖w‖1 ≤ t, where t is a parameter controlling the sparsity of the

solution.

I Hard-margin SVM : minimize 1
2w

Tw subject to the constraint

yi(w
Txi + b) ≥ 1 for all i, which ensures correct classification with

maximum margin.
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Machine Learning as an Optimization Problem (I)

Examples of optimization problems in machine learning :

Linear Programming (LP)

I Formulation : Minimize a linear objective subject to linear inequality

constraints :

min
x∈Rd

c>x subject to Ax ≤ b

I Application Examples :

LAD Regression : Minimizes the `1-norm of the residuals :

min
x
‖Ax− b‖1

Soft-margin SVM : Minimizes total slack :

min
w,b,ξ

n∑
i=1

ξi s.t. yi(w
>xi + b) ≥ 1− ξi, ξi ≥ 0
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Machine Learning as an Optimization Problem (II)

Examples of optimization problems in machine learning :

Quadratic Programming (QP)

I Formulation : Minimize a quadratic objective with linear inequality

constraints :

min
x∈Rd

1

2
x>Qx+ c>x subject to Ax ≤ b

I Application Examples :

LASSO (constrained form) :

min
w

1

2
‖Xw − y‖22 s.t. ‖w‖1 ≤ t

Hard-margin SVM :

min
w,b

1

2
‖w‖22 s.t. yi(w

>xi + b) ≥ 1
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Introduction to Optimization Concepts

An Optimization Problem aims to minimize f(x) (objective

function) with variables x ∈ Rn.

Example : Minimize f(x) = (x− 3)2 + 4.

↪→ Solution : f ′(x) = 2(x− 3) → x = 3 (minimum)

−1 0 1 2 3 4 5 6 7
x

4
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10

12

14

16

18

20

f(x
)

Quadratic Function Minimization
f(x) = (x - 3)^2 + 4
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Introduction to Optimization Concepts

Two fundamental properties :

Convexity

Differentiability

[Done On the board why these properties matter]

Convexity simplifies finding global optima.

Differentiability is crucial for gradient-based methods.

- in ML point of view

- in Optim point of view
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Convexity : Sets and Functions

Convex Sets and Functions :

A set S ⊂ Rn is convex if, for any x, y ∈ S and λ ∈ [0, 1],

λx+ (1− λ)y ∈ S.

↪→ This means that the line segment between any two points in the set lies

entirely within the set.

A function f is convex if for any x, y and λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

↪→ This implies that the line segment connecting any two points on the

graph of the function lies above the graph.

A twice-differentiable [We’ll see differentiability] function of a single variable

is convex if and only if its second derivative is nonnegative on its entire

domain

Importance of Convexity

I Guarantees that any local minimum is a global minimum.
I Simplifies optimization.
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Convexity

Example of a Convex Set Example of a Convex Function

Example of a Non-Convex Set Example of a Non-Convex Function
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Convexity : Examples

Example :

f(x) = x2 is convex because f ′′(x) = 2 > 0.

f(x) = sin(3x) is non-convex since it has regions of positive and

negative curvature. [Exercice : )]

Proof : For f(x) = x2, f ′(x) = 2x, f ′′(x) = 2 > 0.
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Examples of Convex Functions

Quadratic functions : f(x) = ax2 + bx+ c (for a > 0)

Exponential functions : f(x) = ex

Norms : f(x) = ‖x‖2 (common in ML regularization)
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Properties

Operations that Preserve Convexity
I Non-negative weighted sum : If f1 and f2 are convex, then αf1 + βf2

(with α, β ≥ 0) is convex.
I Composition rules : If f is convex and increasing, and g is convex, then

f(g(x)) is also convex.

Jensen’s Inequality
I If f is a convex function and X is a random variable, then

f(E[X]) ≤ E[f(X)].

Implications for Optimization

I Convexity ensures any local minimum is also a global minimum.
I Makes it easier to design algorithms with guaranteed convergence.
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Differentiability in R (n=1)

Definition : Let f : R→ R. We say f is differentiable at x ∈ R if

lim
h→0

f(x+ h)− f(x)

h
exists, h ∈ R.

Notation :

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

The derivative corresponds to the slope of the tangent at x.

cf. the graph in a future slide
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Derivative as the slope of the tangent I

The derivative of a function f(x) at a point x = a represents the slope of
the tangent to the function at that point.

For a function f(x) = x2, the derivative is f ′(x) = 2x.

At a specific point x = 1 :

I The function value is f(1) = 12 = 1.
I The derivative at this point is f ′(1) = 2, which is the slope of the

tangent line at x = 1.

Tangent line : The tangent line at x = 1 can be written as :

Tangent at x = 1 : y = f ′(1) · (x− 1) + f(1)
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Derivative as the slope of the tangent II

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−4

−2

0

2

4

f(x
)

Illustration of the Tangent Line and Derivative at a Point

f(x) = x2

Tangent at x= 1 with slope 2

Visualization :
I The curve f(x) = x2 is plotted in blue.
I The tangent line at x = 1, shown in orange, has a slope equal to the

derivative at that point, f ′(1) = 2.
I This tangent line touches the curve only at x = 1, showing that the

derivative represents the rate of change of the function at that point.
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Differentiability

Differentiable Functions
I A function is differentiable if it has a derivative at each point.
I Gradient and Hessian provide first- and second-order information.

Importance in Optimization
I Gradient descent relies on gradients to locate minima or maxima.
I Hessian provides curvature information for Newton’s method.
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Differentiability and Gradient Conceptst

For a differentiable function f(x), the gradient ∇f(x) provides the

direction of steepest ascent.

Moving in the direction of −∇f(x) minimizes the function.

Example : f(x) = (x− 3)2 + 4

∇f(x) = 2(x− 3).

Gradient Descent Update : xt+1 = xt − α∇f(xt).
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Optimality Conditions

First-Order Necessary Conditions
I For unconstrained problems, if f is differentiable and x∗ is a local

minimum, then :

∇f(x∗) = 0

I Example : Solving ∇f(x) = 0 to find stationary points in a quadratic

function : f(x) = ax2 + bx+ c

Second-Order Necessary and Sufficient Conditions
I If x∗ is a local minimum and f is twice differentiable, the second

derivative is nonnegative, or for vector functions, the Hessian H(x∗) is

positive semidefinite (H(x?) � 0, i.e all eigenvalues ≥ 0). (necessary).
I If the Hessian is positive definite (all eigenvalues > 0), then x∗ is a

strict local minimum (sufficient for strict minimum).

Optimality conditions for constrained problems (KKT) to be studied later

Karush-Kuhn-Tucker (KKT) Conditions : For a constrained optimization

problem, the KKT conditions provide necessary conditions for optimality,

combining Lagrange multipliers to handle constraints.
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Convergence Rates

Definition and Importance
I Convergence rate describes how quickly an optimization algorithm

approaches the optimal solution.
I Important for comparing algorithms : faster convergence means fewer

iterations and faster solutions.
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Linear Convergence

Linear convergence means that the error decreases by a constant

fraction with each iteration.

Formally :

‖x(k+1) − x∗‖ ≤ c‖x(k) − x∗‖

The constant c represents the rate at which the error decreases ; a

smaller c results in faster convergence.

For linear convergence, c must satisfy 0 < c < 1.

Example : Gradient descent on strongly convex functions exhibits

linear convergence, where each step moves steadily but not as rapidly

as quadratic convergence.
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Quadratic Convergence

Quadratic convergence means that the error decreases by the

square of the previous error in each iteration, resulting in very rapid

convergence near the solution.

Formally :

‖x(k+1) − x∗‖ ≤ c‖x(k) − x∗‖2

For quadratic convergence, c must be a positive constant, c > 0.

This condition ensures that as k increases, the error ‖x(k) − x∗‖
reduces very quickly if the iterates are sufficiently close to the solution

x∗.

Example : Algorithms like Newton’s method achieve quadratic

convergence near the solution under conditions of sufficient

smoothness and proximity , ie. when the iterates are close to the

solution.
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Convergence rates

Sublinear Convergence : The error decreases more slowly than linear

convergence, approaching zero at a diminishing rate.

Often observed in non-smooth or non-convex problems where faster

rates are difficult to achieve.

Common rates include 1/k or 1/
√
k, where k is the iteration number.

Common in Subgradient methods
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Convergence rates

Factors Affecting Convergence Rates
I Properties of the function : smoothness, convexity, and Lipschitz

continuity.
I Choice of algorithm : Different algorithms like gradient descent or

Newton’s method have inherent convergence rates.

Trade-offs in Convergence Rates
I Faster-converging algorithms (e.g., Newton’s method) may require

more computation per iteration.
I Balancing iteration cost with speed of convergence is essential in

practical applications.
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Convergence Rates

Types of Convergence :

Linear Convergence : Error decreases proportionally per iteration.

Quadratic Convergence : Error decreases quadratically, eg. in

Newton’s method.

Example : Gradient Descent on f(x) = (x− 3)2
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Gradient De cent Optimization
f(x) = (x-3)^2 + 4
Gradient De cent Path
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Example : Linear vs. Quadratic Convergence

[Practical work : will be seen also in Python]

Objective : To demonstrate the difference in convergence rates between

two optimization methods :

Gradient Descent : Exhibits linear convergence.

Newton’s Method : Exhibits quadratic convergence.

Problem Setup :

We consider the function f(x) = x2, which has a minimum at x = 0.

Both methods start from x = 10 and perform 10 iterations, with a

learning rate α = 0.1.

Goals :

Compare the convergence paths of each method.

Plot the error convergence rates to visualize the difference between

linear and quadratic convergence.
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Gradient Descent and Newton’s Method

[Practical work : will be seen also in Python]
Example : minimize f(x) = x2

Function and Derivatives :

f(x) = x2 : The function to minimize.

f ′(x) = 2x : The first derivative, used in both methods.

f ′′(x) = 2 : The second derivative, required for Newtons method.

Gradient Descent (Linear Convergence) :

Update rule : xt+1 = xt − αf ′(xt) = xt − 2αxt.

We start from x0 = 10 and take 10 steps with a learning rate α = 0.1.

Newton’s Method (Quadratic Convergence) :

Update rule : xt+1 = xt − f ′(xt)
f ′′(xt)

= xt − 2
2xt.

We use the same starting point and number of steps for comparison.
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Convergence Paths examples of Gradient vs Newton

[Practical work]

Convergence Path Plot :

For each method, we plot the function f(x) = x2 and overlay the

path taken by each optimization algorithm.

This shows how each method approaches the minimum at x = 0.

Figure – Convergence paths for Gradient Descent (left) and Newton’s Method (right).

Any remark here for this visualisation :) ? [No convergece for GD after 10 iterations, ...]
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Convergence Paths examples of Gradient vs Newton

[Practical work]

Convergence Path Plot :

For each method, we plot the function f(x) = x2 and overlay the

path taken by each optimization algorithm.

This shows how each method approaches the minimum at x = 0.

Figure – Convergence paths for Gradient Descent (left) and Newton’s Method (right).

Any remark here for this visualisation :) ? [No convergece for GD after 10 iterations, ...]
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Error convergence rates

[Practical work]

We calculate the error (distance to the minimum) at each iteration

for both methods.

Errors are plotted on a log scale to clearly demonstrate the difference

in convergence rates (linear vs. quadratic).

Figure – Error convergence rates for Gradient Descent and Newton’s Method for f(x) = x2.
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Error Convergence Rates

[Practical work]

Figure – Error convergence rates for Gradient Descent and Newton’s Method for f(x) = x2.

Gradient Descent (Linear Convergence) : Appears as a straight line with

a moderate slope on the log scale, representing a steady reduction in error

per iteration.

Newtons Method (Quadratic Convergence) : Shows a sharp drop-off,

indicating rapid error reduction and demonstrating quadratic convergence.

Newton’s method’s quadratic convergence highlights its efficiency for

well-behaved functions, but it requires second derivatives and is more

computationally expensive.
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Exercises [Practical Work]

Exercise 1 : Identify Convexity

f(x) = ex is convex since f ′′(x) = ex > 0.

f(x) = −x2 is non-convex since f ′′(x) = −2 < 0.

Exercise 2 : Gradient Computations

For f(x, y) = x2 + y2, ∇f(x, y) = (2x, 2y).

Exercise 3 : Optimality Conditions

For f(x) = x3 − 3x, solve f ′(x) = 3x2 − 3 = 0 to get x = ±1.

Check f ′′(x) = 6x to classify critical points.

F. Chamroukhi TC2: Optimization for Machine Learning 50/51



Summary

Convexity simplifies finding global optima.

Differentiability is crucial for gradient-based methods.

Optimality conditions guide validity of solutions.

Convergence rates impact algorithm efficiency.
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