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m Examples in Machine Learning
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m Example : Convexity of the Least Squares
m Differentiability and Gradient Concepts in R"
m Convexity and the Hessian
m Least Squares Convexity (Exercise)

F. CHAMROUKHI TC2: Optimization for Machine Learning



Continuous Optimization université

Problem Formulation :

m Consider unconstrained optimization (minimization) problems, where we
seek to minimize a function f(x) defined over a domain D = dom f, without

any explicit constraints on x :

min f(x)

m Then for uncosntrained problems, the feasible set is D the domf.

m If there are restrictions on x (e.g., © must satisfy g;(x) < 0 for certain
constraint functions g;(z)), the problem is said to be constrained.

Continuous Optimization Definition :

m Continuous optimization refers to optimization problems where the objective
function f(x) is defined over a continuous domain D C R™.

m In these problems, the feasible set is typically uncountably infinite since x
can take any real values within D.
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Continuous vs. Discrete Optimization université

m In continuous optimization, the variables x can take any value within the
continuous domain D C R™.

m In discrete optimization, the variables are restricted to discrete sets (e.g.,
integers or binary values).

m Continuous optimization is often more analytically tractable and can be
solved using numerical methods (e.g., gradient descent), while discrete
optimization often requires combinatorial approaches.

m Many problems in machine learning are naturally formulated as continuous
optimization problems (eg. training models using gradient-based methods).
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o
Advantages in Continuous Optimization universite

m Use of numerical methods : The ability to compute gradients (and
Hessians) when the function is (twice) differentiable facilitates the
application of numerical methods, such as :

» Gradient Descent : Uses first-order derivative information (Gradient)
to move in the direction of steepest descent.

» Newton’s method : Utilizes second-order derivative information
(Hessian) to refine the search direction, potentially leading to faster
convergence.
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o
Advantages in Continuous Optimization universite

m Use of numerical methods : The ability to compute gradients (and
Hessians) when the function is (twice) differentiable facilitates the
application of numerical methods, such as :

» Gradient Descent : Uses first-order derivative information (Gradient)
to move in the direction of steepest descent.

» Newton’s method : Utilizes second-order derivative information
(Hessian) to refine the search direction, potentially leading to faster
convergence.

m Comparison to Discrete Optimization : Unlike continuous
optimization, discrete optimization problems have feasible sets that
are finite or countably infinite, making them less amenable to smooth
methods. It often requires combinatorial or exhaustive search
techniques, which are typically more computationally intensive.

m Many problems in machine learning are naturally formulated as
continuous optimization problems (such as training models using
gradient-based methods).
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Examples of Continuous Optimization in Machine Learning ygy,gg;gfg%'
m Linear Regression :
» Objective Function : the mean squared error between predicted and
actual values.

> ur)rel%lgb flw) = §||y — Xwl||?, where y € R™ is the target variable,

X € R"™*" is the design matrix, and w € R™ is the continuous vector
of parameters we aim to optimize.
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o
Examples of Continuous Optimization in Machine Learning universite

m Linear Regression :
» Objective Function : the mean squared error between predicted and
actual values.

> ugrel}Rnw flw) = §||y — Xwl||?, where y € R™ is the target variable,

X € R"™*" is the design matrix, and w € R™ is the continuous vector
of parameters we aim to optimize.
m Logistic Regression :

» Objective Function : (log)-likelihood of observations in maximization,
or by equivalence the “negative” log-likelihood, in minimization

> mingern f(w) ==Y 1 (yilog(o(Xiw)) + (1 — ) log(1 — o(X;w))),
where y; € {0, 1} represents binary labels, X; is the i-th row of the
design matrix X, and o is the sigmoid function. The vector of
continuous variables w € R™ represents model parameters.
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o
Examples of Continuous Optimization in Machine Learning universite

m Linear Regression :
» Objective Function : the mean squared error between predicted and
actual values.

> min f(w) = 3lly - Xwl||?, where y € R™ is the target variable,

X € R"™*" is the design matrix, and w € R™ is the continuous vector
of parameters we aim to optimize.
m Logistic Regression :
» Objective Function : (log)-likelihood of observations in maximization,
or by equivalence the “negative” log-likelihood, in minimization
> mingern f(w) ==Y 1 (yilog(o(Xiw)) + (1 — ) log(1 — o(X;w))),
where y; € {0,1} represents binary labels, X; is the i-th row of the
design matrix X, and o is the sigmoid function. The vector of
continuous variables w € R™ represents model parameters.
m Neural Network Training : Objective Function : Minimize a loss function, such
as cross- entropy or MSE, over the network parameters w (the weights).

min f(w ZL (ys, 9s(w)), where L is the loss function, y; are the true
weRM

outputs, 7;(w the predictions, and w € R™ represents all network parameters.
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Optimization Concepts in R” université

PARIS-SACLAY

In multivariate optimization, we consider functions f : R®™ — R with variables
T
X = (T1,%2,...,%n) .

Problem Formulation :
m Objective : Minimize a function f(x) over x € R™.

m Common form :

min f(x) subject to constraints
xeR”?

m Applications in machine learning, such as least squares regression and
logistic regression, often use unconstrained multivariate optimization.
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Optimization Concepts in R” université

PARIS-SACLAY

In multivariate optimization, we consider functions f : R®™ — R with variables
T
X = (T1,%2,...,%n) .

Problem Formulation :
m Objective : Minimize a function f(x) over x € R™.

m Common form :

min f(x) subject to constraints
xeR”?

m Applications in machine learning, such as least squares regression and
logistic regression, often use unconstrained multivariate optimization.
Example : Least Squares

m Given a design matrix X € R™*™ and a target vector y € R™, least squares
seeks to find w € R™ that minimizes :
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CO"VEXity in R" université

PARIS-SACLAY

A set S C R™ is convex if, for any x,y € S and A € [0, 1],
x+(1-NyesS

Convex Functions : A function f : R" — R is convex iff, for all x,y € R™ and
A€ 0,1],
fOx+ (1 =Ny) < Af(x)+ (L =N f(y)
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CO"VGXity in R" université

PARIS-SACLAY

A set S C R™ is convex if, for any x,y € S and A € [0, 1],
x+(1-NyesS

Convex Functions : A function f : R" — R is convex iff, for all x,y € R™ and
A€ 0,1],
fOx+ (1 =Ny) < Af(x)+ 1= Nf(y)

Example : Least Squares Convexity
Show the least squares function :

Flw) = lly — Xul?

where y € R™, X € R™*" and w € R™, is convex.
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Example : Convexity of the Least Squares Function universite

Let f(w) = |ly — Xw|?, where y € R™, X € R™*", and w € R".

To prove f(w) is convex, we show :

FOwr 4+ (1= Nw2) < Af(wn) + (1— N)f(ws), Vwr,ws € R”, A€ [0,1].
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Example : Convexity of the Least Squares Function universite

Let f(w) = |ly — Xw|?, where y € R™, X € R™*", and w € R".

To prove f(w) is convex, we show :
fOwr + (1= Nw2) S Af(wr) + (1= A)f(w2), Vwi, w2 € R", A€ 0,1].

Proof :
We have : f(Awr + (1 — Nwz) = 3[ly — X Qw1 + (1 — Nwa)||?

= %H)\(y — Xwi1) 4+ (1 = A)(y — Xws)||* (by linearity of X)

Using the property of the squared norm : Hu —+ ’U||2 = Hu||2 + H’UH2 —+ Q’U/T’U7
1 /.
= 5 (Wlly = Xwil + (1 = X[ly = Xl + 221 = Ny — Xwn)" (y - Xw2)).

Compared with : Af(w1) + (1 = A) f(w2) = 5 (Ally — Xw1|]® + (1 = A)[ly — Xw2|?) .
The difference is (after some simple calculations and factoring out A(1 — \)) :
Al =X
PO+ (1= Nuwz) = () + (1= X)faez)) = ~ 2L g
Since || Xwi — Xw2||* > 0 and A(1 — ) > 0 for A € [0, 1], the difference is negative.
Hence :

HXIU] — Xw2|

FOwr + (1= Nuwa) < Af(wr) + (1= N) f(ws).
CQFD.
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Differentiability and Gradient Concepts in R" université

PARIS-SACLAY

Gradient in the Multivariate Case :

m The gradient V f(x) of a function f : R” — R is the vector of partial
derivatives :

Q"
<

Q)
5

Q|
=B
N

Vfx) =
of
Oxp

m The gradient vector serves as a fundamental tool in optimization, providing
both the direction of steepest descent and the magnitude of change needed
to iteratively adjust w for minimizing the objective function.
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Differentiability and Gradient Concepts in R" université

PARIS-SACLAY

Gradient in the Multivariate Case :

m The gradient V f(x) of a function f : R™ — R is the vector of partial
derivatives :

Q"
<

Q)
5

Q|
=B
N

Vfx) =
of
Oxp

m The gradient vector serves as a fundamental tool in optimization, providing
both the direction of steepest descent and the magnitude of change needed
to iteratively adjust w for minimizing the objective function.

Example : Gradient of Least Squares :

m For a least squares function f(w) = 3|ly — Xw||?, the gradient with respect
to w is [proof left as an Exercise] :

Viw) =-X"(y - Xw)
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Hessian Matrix Concepts in R" université

PARIS-SACLAY

Hessian Matrix in the Multivariate Case :

m The Hessian matrix Hy(x) of a twice-differentiable function f : R™ — R is the
matrix of second-order partial derivatives :

o2y oy ... _9%
dz? Ox10xwy Ox10x
2 Oz20x1 Bz% x0Ty,
Hy(x) =V f(x) =
x0T Oz, 0xo ox2

m The Hessian matrix provides information about the curvature of f at x and is
essential in analyzing convexity and optimizing the function more effectively.

m The Hessian matrix also enables second-order optimization methods, such as
Newton's method, to achieve faster convergence by incorporating information
about how the gradient changes.
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Hessian Matrix Concepts in R universite

Hessian of Least Squares : [Proof left as an Exercice]

m For the least squares function f(w) = 1|ly — Xw]||?, the Hessian with respect to

w s :
Hy(w)=X'X
m This Hessian captures the curvature of the least squares objective and is constant,
as f is a quadratic function in w.
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o
Convexity and the Hessian | universite

Convexity Condition for Twice-Differentiable Functions :

m A twice-differentiable function f(x) is convex iff its Hessian V2 f(x) is
positive semi-definite for all x € R", i.e.,, V2f(x) = 0,Vx € R",
where V2 f(x) = 0 indicates that for any vector z € R",

z' Vif(x)z > 0.
m This condition indicates that that all eigenvalues of V2 f(x) are
non-negative.
Interpretation :

m The positive semi-definiteness of V2 f(x) means that the Hessian matrix
does not have any negative eigenvalues, ensuring non-negative curvature of
the function f in all directions
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Theorem : A is positive definite if and only if x " Ax > 0 for all x # 0.
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L]
universite
PARIS-SACLAY

Theorem : A is positive definite if and only if x " Ax > 0 for all x # 0.
Proof : Assume, for contradiction, that there exists x # 0 such that xTAx <0
and A is positive definite.

Since A is symmetric and positive definite, there exists an orthogonal matrix @
(where QTQ = I) such that A = QT AQ, where A is a diagonal matrix with
entries A;; = \; > 0 (the eigenvalues of A).

Now, let y # 0 be such that x = QTy.

Then,

0>x"Ax=y"QAQ y =y QQTAQQ y =y Ay =) Ay} > 0.
i=1

This is a contradiction, as the right side is strictly positive (since A\; > 0 and

y # 0). Therefore, if A is positive definite, it must hold that x " Ax > 0 for all
x # 0.

Conversely, if x" Ax > 0 for all x # 0, this implies that all eigenvalues of A are
positive, making A positive definite.

F. CHAMROUKHI TC2: Optimization for Machine Learning



Ex : Least Squares Convexity (Exercise) université
PARIS-SACLAY
m Show that the least squares objective function in linear regression is convex

iff X T X is positive semi-definite.
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Ex : Least Squares Convexity (Exercise) université
PARIS-SACLAY

m Show that the least squares objective function in linear regression is convex
iff X T X is positive semi-definite.

m The objective function is : f(w) = 1[ly — Xw|? = 3(y — Xw) T (y — Xw).
m The gradient is : Vf(w) = —X " (y — Xw).
m The Hessian is : V2 f(w) = X T X, which is :
» Positive semi-definite because for any vector v € R :
v (X T X)v = (Xv)T(Xv) = || Xv|? > 0.

» Positive definite (and the least squares function strictly convex) if
X TX has full column rank, ensuring || Xv||? > 0 for all v # 0.
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Ex :

Least Squares Convexity (Exercise) université
PARIS-SACLAY

Show that the least squares objective function in linear regression is convex
iff X T X is positive semi-definite.
The objective function is : f(w) = ||y — Xw|* = 3(y — Xw) T (y — Xw).
The gradient is : Vf(w) = X" (y — Xw).
The Hessian is : V2 f(w) = X " X, which is :

» Positive semi-definite because for any vector v € R :

v (X T X)v = (Xv)T(Xv) = || Xv|? > 0.
» Positive definite (and the least squares function strictly convex) if

X TX has full column rank, ensuring || Xv||? > 0 for all v # 0.

Conclusion : f(w) is convex because X " X is positive semi-definite.
Moreover, f(w) is strictly convex iff X T X is positive definite (has full
column rank).

Full column rank implies Xv = 0 only when v = 0, ensuring || Xv||> > 0 for v # 0.
A matrix X € R™*" is said to have full column rank if its columns are linearly
independent. Equivalently, Xv = 0 implies v = 0 for all v € R™.
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