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Stochastic Optimization

Stochastic optimization refers to optimization techniques that incorporate

randomness to handle uncertainty in :

I Data (e.g., large-scale datasets).
I Models (e.g., probabilistic or latent variable models).
I The optimization process itself.

I Data Sampling : Operates on random subsets of data (e.g.,

Stochastic Gradient Descent).
I Data Distribution : Estimating the distribution of the data

(potentially unobserved variables , e.g., Expectation-Maximization).

Unlike deterministic methods, stochastic optimization uses probabilistic

techniques to find optimal solutions

Eg. :

Gradient Descent : Handles large datasets by using sampled gradients.

EM Algorithm : Handles naturally and explicitly latent variables :

Alternates between estimating latent variables and optimizing parameters.
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Stochastic Optimization

Stochastic Gradient Descent
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Stochastic Gradient Descent

Consider minimizing an average of functions :

min
x

1

m

m∑
i=1

fi(x)

Gradient Descent Update :

x(k+1) = x(k) − αk ·
1

m

m∑
i=1

∇fi(x(k))

Stochastic (or Incremental) Gradient Descent (SGD) Update :

x(k+1) = x(k) − αk · ∇fik(x(k))

ik is chosen at each iteration, using :
I Randomized Rule : Choose ik uniformly at random.
I Cyclic Rule : Iterate over ik = 1, 2, . . . ,m cyclically.
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Choosing the index ik in SGD

Two rules for choosing ik at iteration k :

Randomized Rule : Choose ik ∈ {1, . . . ,m} uniformly at random.

Cyclic Rule : Choose ik = 1, 2, . . . ,m, 1, 2, . . . ,m, . . ..

The Randomized Rule is more common in practice.

For the randomized rule :

E[∇fik(x)] = ∇f(x),

meaning SGD uses an unbiased estimate of the gradient at each step.

(see next slide)

Main appeal of SGD :

Iteration cost is independent of m (number of functions).

Saves memory by processing one sample (or function) at a time.

Avoids storing the entire dataset in memory.
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SGD with randomized choice

SGD Objective and gradient :

f(x) = 1
m

∑m
i=1 fi(x);∇f(x) = 1

m

∑m
i=1∇fi(x).

Randomized rule, i.e choosing ik uniformly, i.e. ik ∼ U([1, 2, . . . ,m]) :

P(ik = i) = 1
m ,∀i ∈ {1, 2, . . . ,m}.

Expected value of the Stochastic Gradient

I The stochastic gradient ∇fik(x) is a random variable because ik is

selected randomly.
I Its expectation : E[∇fik(x)] =

∑m
i=1 P(ik = i)∇fi(x).

I Substituting P(ik = i) = 1
m , we have :

E[∇fik(x)] = 1
m

∑m
i=1∇fi(x) = ∇f(x).

Hence ∇fik(x) is an unbiased estimator of the full gradient ∇f(x).

↪→ (but the variance ... !)

↪→ Instead of calculating the full gradient ∇f(x), SGD approximates it

using a single component gradient ∇fik(x), where ik is chosen randomly at

each iteration k.
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example with n = 10, p = 2 dimensions, to show the behaviour for batch
versus stochastic gradient

Stochastic methods generally :

perform well far from the optimum : fast progress with noisy but

informative gradients.

perform poorly near the optimum : high variance in gradients causes

oscillations and slower convergence.
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Example : SGD for Logistic Regression

Problem : Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, logistic reg. objective :

min
θ

1

n

n∑
i=1

[
−yixTi θ + log

(
1 + exp(xTi θ)

)]︸ ︷︷ ︸
fi(θ)

.

Gradient computation :

∇f(θ) = 1
n

∑n
i=1 (yi − pi(θ))xi, where pi(θ) =

exp(xT
i θ)

1+exp(xT
i θ)

.

Feasible when n (number of data points) is moderate.

Computationally expensive when n is very large.

Cost Comparison :

Full gradient (batch update) : O(np).

Stochastic gradient update : O(p).

Eg., Computing much more Stochastic steps is significantly more affordable

than computing the full gradient for each update.

But slower convergence rate (ie. stochastic noise)
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Step Sizes in SGD

high variance in SGD leads to :
- Noisy updates
- The need for decreasing step sizes or variance-reduction methods

Step size (αk) :

Step size (αk) controls the magnitude of each update in stochastic

gradient descent (SGD).

Standard practice : Use diminishing step sizes : Common forms :

αk = 1
k , αk = α0

1+λk or αk = α0
k with (α0) to be tuned

Diminishing step sizes :
I Gradually reduce the impact of noisy gradients.
I Ensure that the difference between stochastic and full gradient steps

vanishes over time.
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Convergence Rates of SGD

For convex f(x), SGD with diminishing step sizes satisfies :

E[f(x(k))]− f∗ = O

(
1√
k

)
(sublinear rate for convex SGD)

When f is µ-strongly convex and has L-Lipschitz gradients :

E[f(x(k))]− f∗ = O

(
1

k

)
(faster sublinear rate for strongly convex SGD)

Due to gradient noise, SGD achieves only sublinear convergence (unlike

deterministic methods).

Comparison with Gradient Descent (GD) :

I GD (with fixed step size) under strong convexity achieves linear

convergence :

f(x(k))− f∗ = O(ρk), ρ ∈ (0, 1)

I SGD lacks this linear rate due to noisy updates.

↪→ Noisy gradient estimates introduce variance and slow down convergence

near the optimum.
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Strategies to Improve SGD :

for example Mini-Batching : Reduces variance by using a small

batch of data points.

F. Chamroukhi TC2: Optimization for Machine Learning 12/27



Mini-Batches in SGD

In Mini-batch stochastic gradient descent, we choose a random subset

Ik ⊂ {1, ...,m}, with #Ik = b� m, and update :

Updating rule : x(k+1) = x(k) − αk · 1
b

∑
i∈Ik∇fi(x

(k))

Benefits :

I Reduces gradient variance by a factor of 1
b .

I Enables parallel computation (e.g., GPUs).

Trade-off :

I Mini-batches are b-times more expensive per iteration.
I But reduce variance and stabilize convergence.

Convergence rate :

E[f(x(k))]− f∗ = O

(
1√
bk

)
- (Sublinear rate ; faster than standard SGD by a factor of

√
b)

- In the strongly convex and smooth case, the rate improves to O
(

1
bk

)
.
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Summary

SGD is efficient for large-scale optimization.

Convergence rates are slower than full gradient methods.

Mini-batches and (other techniques eg. early stopping) are practical

techniques for improving SGD.

SGD is widely used in machine learning for its simplicity and scalability.
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Stochastic Optimization

The EM algorithm
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The EM Algorithm

Purpose :

Solve maximum likelihood estimation (MLE) problems for latent

variable models : probabilistic models with parameters θ, observed

variables X, latent variables Z

Goal :

θ̂ = arg max
θ

log p(X | θ),

where log p(X | θ) is the observed data log-likelihood.

Iteratively optimize the likelihood function log p(X | θ).

Key Idea : Exploit the observed data X and latent (unobserved) data Z

in the construction of the optimization process :

Alternately estimate :

1 Compute an expectation of the log-likelihood assuming the latent

variables Z are available

2 Maximize the resulting expectation w.r.t the model parameters θ.

F. Chamroukhi TC2: Optimization for Machine Learning 16/27



The EM Algorithm

Purpose :

Solve maximum likelihood estimation (MLE) problems for latent

variable models : probabilistic models with parameters θ, observed

variables X, latent variables Z

Goal :

θ̂ = arg max
θ

log p(X | θ),

where log p(X | θ) is the observed data log-likelihood.

Iteratively optimize the likelihood function log p(X | θ).

Key Idea : Exploit the observed data X and latent (unobserved) data Z

in the construction of the optimization process :

Alternately estimate :

1 Compute an expectation of the log-likelihood assuming the latent

variables Z are available

2 Maximize the resulting expectation w.r.t the model parameters θ.

F. Chamroukhi TC2: Optimization for Machine Learning 16/27



The EM Algorithm

The EM Algorithm
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Steps in the EM Algorithm

1. Initialize : Start with an initial estimate θ(0).

2. Repeat until Convergence :

E-Step : Compute the expected complete-data log-likelihood :

Q(θ | θ(k)) = EZ∼p(Z|X,θ(k))[log p(X,Z | θ)].

M-Step : Maximize Q(θ | θ(k)) to update θ :

θ(k+1) = arg max
θ
Q(θ | θ(k)).
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Convergence Properties of EM

The EM algorithm ensures that the observed data log-likelihood

log p(X | θ) increases at every iteration.

EM converges to a stationary point of the log-likelihood (not

necessarily a global maximum).

Advantages :

Handles missing or latent data efficiently.

Straightforward to implement for many problems.

F. Chamroukhi TC2: Optimization for Machine Learning 19/27



Advantages and Limitations of EM

Advantages :

Handles latent variables naturally.

Straightforward implementation for many probabilistic models.

Widely used in probabilistic machine learning

Limitations :

Generally used for non-convex problems

Converges but may converge to a local optimum instead of the global

optimum.

Slow convergence near the optimum.

Sensitive to initialization of parameters.
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Example : The EM algorithm for Mixtures

Finite Mixture Models

f(x; θ) =
∑m
j=1 πjfj(x; θj) with πj > 0 ∀j and

∑m
j=1 πj = 1.

Maximum-Likelihood Estimation

θ̂ ∈ arg maxθ logL(θ)

log-likelihood : logL(θ) =
∑n
i=1 log

∑m
j=1 πjfj(xj ; θj).

The EM algorithm

θnew ∈ arg max
θ∈Ω

E[logLc(θ)|D, θold]

completed-data log-likelihood : logLc(θ) =
∑n
i=1

∑m
j=1 Zij log [πjfj(xi; θj)]

where Zij is such that Zij = 1 if Zi = j and Zij = 0 otherwise.
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Gaussian mixture models (GMMs)

The finite Gaussian mixture density is defined as :

f(xi; θ) =
m∑
j=1

πjN (xi;µj ,Σj)

with N (xi;µj ,Σj) = 1

(2π)p/2|Σk|1/2
exp

(
− 1

2
(xi − µj)T Σ−1

j (xi − µj)
)
,

πj > 0 ∀j and
∑m
j=1 πj = 1.
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Figure – An example of a three-component Gaussian mixture density in R2.
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EM for Gaussian mixture models

1 E-Step : calculates the posterior component memberships :

τ
(k)
ij = P(Zi = j|xi, θ(k)) =

πjN (xi;µ
(k)
j ,Σ

(k)
j )∑m

`=1 π`N (xi;µ
(k)
` ,Σ

(k)
` )

that xi originates from the kth component density.

2 M-Step : parameter updates :

π
(k+1)
j =

∑n
i=1 τ

(k)
ij

n
=
n

(k)
j

n
,

µ
(k+1)
j =

1

n
(k)
j

n∑
i=1

τ
(k)
ij xi,

Σ
(k+1)
j =

1

n
(k)
j

n∑
i=1

τ
(k)
ij (xi − µ(k+1)

j )(xi − µ(k+1)
j )T .

Proofs : as an exercice
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The EM algorithm

θnew ∈ arg max
θ∈Ω

E[logLc(θ)|D, θold]

completed-data log-likelihood :

logLc(θ) =
∑n

i=1

∑m
j=1 Zij log [πjfj(xi; θj)]

where Zij is such that Zij = 1 if Zi = j and Zij = 0 otherwise.

completed-data log-likelihood :

logLc(θ) =
∑n

i=1

∑m
j=1 Zij log

[
πjN (xi;µ

(k)
j ,Σ

(k)
j )
]

=∑n
i=1

∑m
j=1 Zij log πj +

∑n
i=1

∑m
j=1 Zij logN (xi;µ

(k)
j ,Σ

(k)
j )

So

E-Step : Compute the expected complete-data log-likelihood :

Q(θ | θ(k)) = EZ∼p(Z|X,θ(k))[log p(X,Z | θ)].

=
∑n

i=1

∑m
j=1 E[Zij | xi, θ(k)] log πj

+
∑n

i=1

∑m
j=1 E[Zij | xi, θ(k)] logN (xi;µ

(k)
j ,Σ

(k)
j )
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M-Step

M-Step : Maximize Q(θ | θ(k)) to update θ :

θ(k+1) = arg max
θ
Q(θ | θ(k)).

The M-step maximizes the expected complete-data log-likelihood, which is
often easier than directly maximizing the marginal log-likelihood.
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Proofs left as an exercice

E-Step (Expectation)

M-Step (parameter update :)

For the mixture proportions πj ’s : a constrained optimization problem

for the mean and the covariance matrix : a weighted estimation of the

standard multivariate gaussian

Hints :

For the mixture proportions πj ’s, use Lagrange multipliers

For the means µj ’s, use the fact that ∂xTAx
x = (A+AT )x

For the covariance matrices Σj ’s, use standard results

I ∂ log |A|
∂A = A−1

I xTAx = trace (xTAx)
I trace(xTAx) = trace(xxTA)
I ∂trace(BA)

A = BT
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Thank you for your attention !
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