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Stochastic Optimization universite

m Stochastic optimization refers to optimization techniques that incorporate
randomness to handle uncertainty in :

v

Data (e.g., large-scale datasets).
Models (e.g., probabilistic or latent variable models).
The optimization process itself.

v

v

m > Data Sampling : Operates on random subsets of data (e.g.,
Stochastic Gradient Descent).

Data Distribution : Estimating the distribution of the data
(potentially unobserved variables , e.g., Expectation-Maximization).

v

m Unlike deterministic methods, stochastic optimization uses probabilistic
techniques to find optimal solutions
Eg. :
m Gradient Descent : Handles large datasets by using sampled gradients.

m EM Algorithm : Handles naturally and explicitly latent variables :
Alternates between estimating latent variables and optimizing parameters.

F. CHAMROUKHI TC2: Optimization for Machine Learning



Stochastic Optimization université
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m Stochastic Gradient Descent
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Stochastic Gradient Descent université
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m Consider minimizing an average of functions :

1 m
min- ; fi(z)
m Gradient Descent Update :
e N (O B S Vi)
m
i=1
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Stochastic Gradient Descent université
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m Consider minimizing an average of functions :
T
min- ; fi(z)
m Gradient Descent Update :
g+ = k) _ ZVf (k)

m Stochastic (or Incremental) Gradient Descent (SGD) Update :
AGRR I v A C )

m i3 is chosen at each iteration, using :
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Stochastic Gradient Descent université
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m Consider minimizing an average of functions :
T
Hgn m ; fi(z)
m Gradient Descent Update :
g+ = k) _ ZVf (k)

m Stochastic (or Incremental) Gradient Descent (SGD) Update :
AGRR I v A C )

m i3 is chosen at each iteration, using :

» Randomized Rule : Choose i) uniformly at random.
» Cyclic Rule : Iterate over iy, = 1,2,...,m cyclically.
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Choosing the index i; in SGD université
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Two rules for choosing i, at iteration £ :
m Randomized Rule : Choose ij € {1,...,m} uniformly at random.
m Cyclic Rule : Choose i, =1,2,...,m,1,2,...,m,....

The Randomized Rule is more common in practice.
For the randomized rule :

E[V fi, ()] = Vf(z),

meaning SGD uses an unbiased estimate of the gradient at each step.

(see next slide)
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Choosing the index i; in SGD université

PARIS-SACLAY

Two rules for choosing i, at iteration £ :
m Randomized Rule : Choose iy, € {1,...,m} uniformly at random.
m Cyclic Rule : Choose i, =1,2,...,m,1,2,...,m,....

The Randomized Rule is more common in practice.
For the randomized rule :

E[V fi, ()] = Vf(z),

meaning SGD uses an unbiased estimate of the gradient at each step.

(see next slide)

Main appeal of SGD :
m Iteration cost is independent of m (number of functions).
m Saves memory by processing one sample (or function) at a time.
Avoids storing the entire dataset in memory.
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SGD with randomized choice EI.‘:'.‘!EK%'LE?

m SGD Objective and gradient :
fl@) = 5 X0 fila)s V(@) = 5 X0, Vfi(a).

m Randomized rule, i.e choosing i) uniformly, i.e. i ~U([1,2,...,m]) :
P(ir, = i) = =,Vi€ {1,2,...,m}.
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SGD with randomized choice université
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m SGD Objective and gradient :
fl@) = X0, file); V(2) = 5 350, Vfilw).

m Randomized rule, i.e choosing i) uniformly, i.e. i ~ U([1
P(ir, = i) = =,Vi€ {1,2,...,m}.

m Expected value of the Stochastic Gradient

,2,...,m])

» The stochastic gradient V f;, () is a random variable because iy, is
selected randomly.

> Its expectation : E[V f;, (z)] = Y it P(ix, = 9)V fi(z).

> Substituting P(i, = 1) = 1, we have

E[Vfi ()] = &= X, sz< ) = V().
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SGD with randomized choice E{.‘J.‘s’.‘ifé'&?

m SGD Objective and gradient :
flx) = % ity filx); Vf(z) = % ity Vii(z).
m Randomized rule, i.e choosing i) uniformly, i.e. i ~U([1,2,...,m]) :
P(ir, = i) = =,Vi€ {1,2,...,m}.
m Expected value of the Stochastic Gradient
» The stochastic gradient V f;, () is a random variable because iy, is
selected randomly.
> Its expectation : E[V f;, (z)] = Y it P(ix, = 9)V fi(z).
> Substituting P(i, = i) = -, we have :

E[Vfi.(2)] = 5 3% Vi@) = V().
m Hence Vf;, () is an unbiased estimator of the full gradient V f(x).

— (but the variance ...!)

m < Instead of calculating the full gradient V f(x), SGD approximates it
using a single component gradient V f;, (z), where i; is chosen randomly at
each iteration k.
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example with n = 10, p = 2 dimensions, to show the behaviour for batch
versus stochastic gradient
Stochastic methods generally :
m perform well far from the optimum : fast progress with noisy but
informative gradients.
m perform poorly near the optimum : high variance in gradients causes
oscillations and slower convergence.
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Example : SGD for Logistic Regression universite

Problem : Given (z;,y;) € R? x {0,1}, i =1,...,n, logistic reg. objective :

1
min — Z [—yiz] 0 +log (1 + exp(z] 0))] .

=1 ~
1i(0)
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Example : SGD for Logistic Regression universite

Problem : Given (z;,y;) € R? x {0,1}, i =1,...,n, logistic reg. objective :

1
min — ; [—yiz] 0 +log (1 + exp(z] 0))] .
B fi(0)

Gradient computation :
n xp(zl 6
= VF(0) = & 0, (9 — pil6)) @i, where pi(6) = {2,
m Feasible when n (number of data points) is moderate.

m Computationally expensive when n is very large.
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Example : SGD for Logistic Regression université
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Problem : Given (z;,y;) € R? x {0,1}, i =1,...,n, logistic reg. objective :

1
min — ; [—yiz] 0 +log (1 + exp(z] 0))] .
B fi(0)

Gradient computation :
m VF(0) = L0 (i — pi(6)) @i, where p;(0) = (22D
m Feasible when n (number of data points) is moderate.
m Computationally expensive when n is very large.
Cost Comparison :
m Full gradient (batch update) : O(np).
m Stochastic gradient update : O(p).

m Eg., Computing much more Stochastic steps is significantly more affordable
than computing the full gradient for each update.

m But slower convergence rate (ie. stochastic noise)
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Step Sizes in SGD

high variance in SGD leads to :
- Noisy updates
- The need for decreasing step sizes or variance-reduction methods
Step size (o) :
m Step size (ay) controls the magnitude of each update in stochastic
gradient descent (SGD).

m Standard practice : Use diminishing step sizes : Common forms :
o = % o = ﬁ or oy = 92 with (o) to be tuned

m Diminishing step sizes :
» Gradually reduce the impact of noisy gradients.
» Ensure that the difference between stochastic and full gradient steps

vanishes over time.

TC2: Optimization for Machine Learning
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Convergence Rates of SGD université
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m For convex f(z), SGD with diminishing step sizes satisfies :

Elf(z™)] - f*=0 (%) (sublinear rate for convex SGD)

m When f is pu-strongly convex and has L-Lipschitz gradients :

1
E[f(z*)] - f* =0 (E) (faster sublinear rate for strongly convex SGD)

m Due to gradient noise, SGD achieves only sublinear convergence (unlike
deterministic methods).

m Comparison with Gradient Descent (GD) :

» GD (with fixed step size) under strong convexity achieves linear
convergence :

f(x(k))_f* :O(pk)v p€(071)
» SGD lacks this linear rate due to noisy updates.

m — Noisy gradient estimates introduce variance and slow down convergence
near the optimum.
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Strategies to Improve SGD :

m for example Mini-Batching : Reduces variance by using a small
batch of data points.
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Mini-Batches in SGD université
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In Mini-batch stochastic gradient descent, we choose a random subset
I, € {1,...,m}, with #I;; = b < m, and update :
m Updating rule : 2(FtD) = (k) — ¢ . %Ziejkai(x(k))
m Benefits :

» Reduces gradient variance by a factor of %.
» Enables parallel computation (e.g., GPUs).

m Trade-off :

» Mini-batches are b-times more expensive per iteration.
» But reduce variance and stabilize convergence.

m Convergence rate :

E[f(zP)] - f* =0 (\/%)

(Sublinear rate; faster than standard SGD by a factor of v/b)

In the strongly convex and smooth case, the rate improves to O (&)
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Summary université

m SGD is efficient for large-scale optimization.
m Convergence rates are slower than full gradient methods.

m Mini-batches and (other techniques eg. early stopping) are practical
techniques for improving SGD.

SGD is widely used in machine learning for its simplicity and scalability.
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Stochastic Optimization université
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m The EM algorithm
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The EM Algorithm universite

Purpose :

m Solve maximum likelihood estimation (MLE) problems for latent
variable models : probabilistic models with parameters 6, observed
variables X, latent variables Z
Goal :

0 = arg meaxlogp(X | ),

where logp(X | ) is the observed data log-likelihood.
m [teratively optimize the likelihood function log p(X | 0).
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The EM Algorithm universite

Purpose :

m Solve maximum likelihood estimation (MLE) problems for latent
variable models : probabilistic models with parameters 6, observed
variables X, latent variables Z
Goal :

0 = arg meaxlogp(X | ),

where log p(X | 0) is the observed data log-likelihood.
m [teratively optimize the likelihood function log p(X | 0).
Key lIdea : Exploit the observed data X and latent (unobserved) data Z
in the construction of the optimization process :

m Alternately estimate :

Compute an expectation of the log-likelihood assuming the latent
variables Z are available
Maximize the resulting expectation w.r.t the model parameters 6.
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The EM Algorithm université
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The EM Algorithm
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Steps in the EM Algorithm université
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1. Initialize : Start with an initial estimate 6(%).
2. Repeat until Convergence :

m E-Step : Compute the expected complete-data log-likelihood :
Q0 | a(k)) = ]EZNp(Z|X,9(k>)[10gP(Xa Z|9)].
m M-Step : Maximize Q(6 | 8%%)) to update 6 :

9+ = arg max Q(0 | o).
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Convergence Properties of EM université
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m The EM algorithm ensures that the observed data log-likelihood
logp(X | 0) increases at every iteration.

m EM converges to a stationary point of the log-likelihood (not
necessarily a global maximum).
Advantages :
m Handles missing or latent data efficiently.

m Straightforward to implement for many problems.
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Advantages and Limitations of EM université

Advantages :
m Handles latent variables naturally.
m Straightforward implementation for many probabilistic models.
m Widely used in probabilistic machine learning
Limitations :
m Generally used for non-convex problems

m Converges but may converge to a local optimum instead of the global
optimum.

m Slow convergence near the optimum.

m Sensitive to initialization of parameters.

F. CHAMROUKHI TC2: Optimization for Machine Learning



Example : The EM algorithm for Mixtures universite

fla;0) =320 mj fi(2;0;) with w5 > 0 Vj and 3770 7

Optimization for Machine Learning



Example : The EM algorithm for Mixtures universite

fla;0) =375 m fi(2;0;) with m; > 0 Vj and 3000, m; = 1.

6 € arg maxg log L(6)
log-likelihood : log L(0) = 377 log > 7% | 7; fi(x550;).
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Example : The EM algorithm for Mixtures universite

fla;0) =375 m fi(2;0;) with m; > 0 Vj and 3000, m; = 1.

6 € arg maxg log L(6)
log-likelihood : log L(0) = 377 log > 7% | 7; fi(x550;).

new old
" e argrgleaé(E[loch(GﬂD,O ]

completed-data log-likelihood : log L.(0) = 377, 37" Zijlog [ f;(i;60;)]
where Z;; is such that Z;; = 1 if Z; = j and Z;; = 0 otherwise.
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Gaussian mixture models (GMMs) université
The finite Gaussian mixture density is defined as :

F@s0) = mN (s 1y, %)
j=1

with N (i; 11, 3%5) = prag i ©XP (—% (@i — )" 25 (s — Mj)) :
T > 0Vj and Z;ﬁzlﬂj =1

x1




EM for Gaussian mixture models

E-Step : calculates the posterior component memberships :

N (s, =)

k) _ il 9y —
Ti‘ _P(Zz—.ﬂxwe )_
! 2721 w/\/(xi;uﬁk), E§’“))

that z; originates from the kth component density.

L]
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EM for Gaussian mixture models
E-Step : calculates the posterior component memberships :
E E
N (s, =)
2721 TN (4 Mék)v E§’“’)

) = P(Z; = jla;, 0®) =

that z; originates from the kth component density.

M-Step : parameter updates :

n k k
(k+1)  _ Zi:lﬁ(])zng)
J n n’
Gy _ L
Hj = W ZTU Li
n; =1
k1 I & k1 k1
B = g 2o g =T
ji=1

Proofs : as an exercice
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The EM algorithm
new old
0" € arg réleaé(E[log L.(0)|D, 0]

completed-data log-likelihood :

log Le(0) = 3210 22751 Zijlog [m; f(wi; 6;)]
where Z;; is such that Z;; = 1 if Z; = j and Z;; = 0 otherwise.

completed-data log-likelihood :
n m k k
log L.(0) =>"71 ijl Zijlog [Wj./\/((l)i; ,ug» ), E;. ))] =

k k
ST S Zijlogmy + Y1y Yy Ziglog N (a S, B
So

m E-Step : Compute the expected complete-data log-likelihood :
Q0| a(k)) = ]EZNp(Z|X,9(k))[10gP(Xa Z | 9)].

=Y Y ElZiy | i, 6] log 7
+ 30 S Bl Zi | i, 00 log N (i il 21)
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M-Step université
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m M-Step : Maximize Q(6 | #%*)) to update 6 :
9+ = arg max QO | 6.

The M-step maximizes the expected complete-data log-likelihood, which is
often easier than directly maximizing the marginal log-likelihood.
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Proofs left as an exercice université
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E-Step (Expectation)
M-Step (parameter update :)

m For the mixture proportions 7;'s : a constrained optimization problem
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Proofs left as an exercice université
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E-Step (Expectation)
M-Step (parameter update :)

m For the mixture proportions 7;'s : a constrained optimization problem

m for the mean and the covariance matrix : a weighted estimation of the
standard multivariate gaussian

Hints :

For the mixture proportions 7;'s, use Lagrange multipliers
For the means p;'s, use the fact that ‘%T% =(A+ ATz

For the covariance matrices XJ;'s, use standard results

dlog|A| _ 4-1
> —oa = A
» 27 Ax = trace (27 Ax)
» trace(r? Ax) = trace(raT A)
> Btracz(BA) - BT

F. CHAMROUKHI TC2: Optimization for Machine Learning



université
PARIS-SACLAY

Thank you for your attention !
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