
(In Progress)

TC2: Optimization for Machine Learning

Master of Science in AI and Master of Science in Data Science

@ UPSaclay

2024/2025.

Fäıcel Chamroukhi

chamroukhi.com

https://chamroukhi.com

week 3 : November 21, 2024.

Continuous Optimization ; Gradient Descent

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 2/45

Maths concepts for the descent methods

Continuing the ingredients of (gradient) descent methods

A tour of the following aspects :

Intuition behind descent methods

Gradient and link to minimization

Descent Directions

Descent and Gradient

Steepest/Fastest Descent

Convergence aspects

Convergence rates

Line Search

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 4/45

Taylor’s Theorem (Lagrange Form)

Motivation of Taylor Expansion

How to minimize a function f if we don’t know much about its

structure ?

Assuming the function can be approximated by its derivatives around

a point, which simplifies the problem.

The trick is to approximate it by polynomials by using Taylor’s

approximation, which allows us to locally approximate the function.

Taylor’s Theorem :

Let k be a natural number, x0 2 R, and f a function that is k-times

continuously di↵erentiable on an interval [x0, x]

Then there exists some ⇠ between x0 and x such that :

f(x) = f(x0)+f
0(x0)(x�x0)+

f
00(x0)

2!
(x�x0)

2+· · ·+f
(k)(⇠)

k!
(x�x0)

k
.

Implication : Taylor’s theorem allows us to approximate f(x) around x0

with increasingly accurate terms based on the derivatives at x0.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 5/45

Taylor’s Theorem (Lagrange Form)

Motivation of Taylor Expansion

How to minimize a function f if we don’t know much about its

structure ?

Assuming the function can be approximated by its derivatives around

a point, which simplifies the problem.

The trick is to approximate it by polynomials by using Taylor’s

approximation, which allows us to locally approximate the function.

Taylor’s Theorem :

Let k be a natural number, x0 2 R, and f a function that is k-times

continuously di↵erentiable on an interval [x0, x]

Then there exists some ⇠ between x0 and x such that :

f(x) = f(x0)+f
0(x0)(x�x0)+

f
00(x0)

2!
(x�x0)

2+· · ·+f
(k)(⇠)

k!
(x�x0)

k
.

Implication : Taylor’s theorem allows us to approximate f(x) around x0

with increasingly accurate terms based on the derivatives at x0.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 5/45

Taylor Expansion for Functions on Rn

Taylor Approximation for f : Rn ! R :

If f is continuously twice di↵erentiable, then for any x, x0 2 Rn, we

have :

f(x) = f(x0)+rf(x0)
T (x�x0)+

1

2
(x�x0)

Tr2
f(x0)(x�x0)+R3(x),

where R3(x) is the remainder term :

R3(x) = O(kx� x0k3) which vanishes as x ! x0.

Explicitly, if f is three-times di↵erentiable, R3(x) can be expressed

as : R3(x) =
1
6(x� x0)Tr3

f(⇠)[x� x0, x� x0], where r3
f(⇠) is the

third-order tensor of partial derivatives evaluated at some ⇠ between x

and x0.

r3
f(⇠)[x� x0, x� x0] : Multilinear application of the 3d-order

derivative tensor.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 6/45

Taylor Expansion for Functions on Rn

Taylor Approximation for f : Rn ! R :

If f is continuously twice di↵erentiable, then for any x, x0 2 Rn, we

have :

f(x) = f(x0)+rf(x0)
T (x�x0)+

1

2
(x�x0)

Tr2
f(x0)(x�x0)+R3(x),

where R3(x) is the remainder term :

R3(x) = O(kx� x0k3) which vanishes as x ! x0.

Explicitly, if f is three-times di↵erentiable, R3(x) can be expressed

as : R3(x) =
1
6(x� x0)Tr3

f(⇠)[x� x0, x� x0], where r3
f(⇠) is the

third-order tensor of partial derivatives evaluated at some ⇠ between x

and x0.

r3
f(⇠)[x� x0, x� x0] : Multilinear application of the 3d-order

derivative tensor.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 6/45

Using Taylor Expansion for Approximation

Taylor Approximation for f : Rn ! R :

If f is continuously twice di↵erentiable, then for any x, x0 2 Rn,
Provided that kx� x0k is small (i.e., x is close to x0), we can approximate
f(x) by :

f(x) ⇡ f(x0) +rf(x0)
T (x� x0) (first-order approximation)

or

f(x) ⇡ f(x0)+rf(x0)
T (x�x0)+

1

2
(x�x0)

Tr2
f(x0)(x�x0) (second-order approximation).

Here, rf(x0) is the gradient of f at x0, and r2
f(⇠) is the Hessian matrix

Comparison : The second-order approximation is more accurate but also
more computationally expensive (includes the Hessian), requiring f to be
twice di↵erentiable.

Both approximations are valid if kx� x0k is small.

Higher-Order Approximation : If f is continuously thrice di↵erentiable, an
additional error term can be expressed as O(kx� x0k3).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/45

Using Taylor Expansion for Approximation

Taylor Approximation for f : Rn ! R :

If f is continuously twice di↵erentiable, then for any x, x0 2 Rn,
Provided that kx� x0k is small (i.e., x is close to x0), we can approximate
f(x) by :

f(x) ⇡ f(x0) +rf(x0)
T (x� x0) (first-order approximation)

or

f(x) ⇡ f(x0)+rf(x0)
T (x�x0)+

1

2
(x�x0)

Tr2
f(x0)(x�x0) (second-order approximation).

Here, rf(x0) is the gradient of f at x0, and r2
f(⇠) is the Hessian matrix

Comparison : The second-order approximation is more accurate but also
more computationally expensive (includes the Hessian), requiring f to be
twice di↵erentiable.

Both approximations are valid if kx� x0k is small.

Higher-Order Approximation : If f is continuously thrice di↵erentiable, an
additional error term can be expressed as O(kx� x0k3).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/45

Example of First-Order Taylor Approximation

Example : What is the of first-order Taylor approximation of
f(x) = x

2 + 3x around x0 = 1.

Compute f(1), f 0(1), and apply the first-order Taylor approximation.

f(1) = 12 + 3⇥ 1 = 4.

f
0(x) = 2x+ 3, so f

0(1) = 2⇥ 1 + 3 = 5.

First-order Taylor approximation around x0 = 1 :

f(x) ⇡ f(1) + f
0(1) · (x� 1) = 4 + 5(x� 1).

This linear approximation provides a close estimate of f(x) near

x = 1, which we can use to analyze the behavior of f(x).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 8/45

Example of First-Order Taylor Approximation

Example : What is the of first-order Taylor approximation of
f(x) = x

2 + 3x around x0 = 1.

Compute f(1), f 0(1), and apply the first-order Taylor approximation.

f(1) = 12 + 3⇥ 1 = 4.

f
0(x) = 2x+ 3, so f

0(1) = 2⇥ 1 + 3 = 5.

First-order Taylor approximation around x0 = 1 :

f(x) ⇡ f(1) + f
0(1) · (x� 1) = 4 + 5(x� 1).

This linear approximation provides a close estimate of f(x) near

x = 1, which we can use to analyze the behavior of f(x).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 8/45

Descent Directions

Continuing the preparation of the ingredients of the gradient descent
algorithm

Definition (Descent Direction) :

The concept of descent direction allows us to identify directions d in

which the function f decreases locally.

Let x be a point in the domain of f such that rf(x) 6= 0, meaning x

is not a critical point of f .

A descent direction for f at x is a nonzero vector d 2 Rn such that

there exists ↵̄ > 0 with the property :

f(x+ ↵d) < f(x) for all ↵, 0 < ↵ < ↵̄.

Means f strictly decreases along the half-line {x+ ↵d : ↵ > 0} for

su�ciently small step sizes ↵ > 0.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 9/45

Descent Directions

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 10/45

Conditions for a Descent Direction
Lemma : Let x be a noncritical point of f (ie.rf(x) 6= 0), and d 2 Rn a
nonzero vector. If rf(x)T d < 0, then d is a descent direction for f at x.

Interpretation : rf(x)T d  0 means d forms an obtuse angle with the
gradient rf(x)), =) A vector d that forms an obtuse angle with the
gradient rf(x) ensures f decreases along d.

Conversely, if d is a descent direction for f at x, then rf(x)T d  0.

Implication of Descent Directions : choosing d in a direction opposite to
rf(x) guarantees descent. (proof for the opposite case to lead to the
steepest descent will be proved later)

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 11/45

Conditions for a Descent Direction
Lemma : Let x be a noncritical point of f (ie.rf(x) 6= 0), and d 2 Rn a
nonzero vector. If rf(x)T d < 0, then d is a descent direction for f at x.

Interpretation : rf(x)T d  0 means d forms an obtuse angle with the
gradient rf(x)), =) A vector d that forms an obtuse angle with the
gradient rf(x) ensures f decreases along d.

Conversely, if d is a descent direction for f at x, then rf(x)T d  0.

Implication of Descent Directions : choosing d in a direction opposite to
rf(x) guarantees descent. (proof for the opposite case to lead to the
steepest descent will be proved later)

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 11/45

graphic illustration of descent directions

Interpretation : rf(x)Td  0 : A vector d that forms an obtuse

angle with the gradient rf(x) ensures f decreases along d.

Implication of Descent Directions : choosing d in a direction

opposite to rf(x) guarantees descent. (proof for the opposite case to

lead to the steepest descent will be proved later)

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 12/45

proof

Proof of the lemma :

Since f is di↵erentiable, then by first-order Taylor expansion’s

theorem we can approximate f(x+ ↵d) for small ↵ > 0 as :

f(↵d+ x) = f(x) + ↵rf(x)Td+ o(↵),

where o(↵) represents higher-order terms that vanish as ↵ ! 0.

If rf(x)Td < 0, then for small ↵ > 0, the term ↵rf(x)Td is

negative, implying f(x+ ↵d) < f(x).

Therefore, d is a descent direction for f at x.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 13/45

The Steepest-Descent Direction
what is the best (fastest) descent we can achieve ? ,! We saw that :

by first-order Taylor approximation we have :

f(↵d+ x) = f(x) + ↵rf(x)T d+ o(↵),

f(x+ ↵d) ⇡ f(x) + ↵rf(x)T d for small ↵ > 0,

if d 6= 0 is such that rf(x)T d  0, then it is a descent direction for f at x

,! to achieve the maximum decrease in f(x) for a small ↵ > 0, we should
minimize rf(x)T d over all directions d 2 Rn with kdk = 1.

Derivation :

rf(x)T d = krf(x)kkdk cos(✓), where ✓ is the angle between rf(x) and d

The minimum occurs when cos(✓) = �1. This indicates that the two vectors
rf(x) and d are pointing in exactly opposite directions.

Thus, we choose rf(x)T d = �krf(x)kkdk, which leads to d = �rf(x)
krf(x)kkdk .

The (unnormalized) direction d = �rf(x) (anti-gradient) is called the
steepest-descent direction of f at x, as it yields the greatest decrease in f

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 14/45

The Steepest-Descent Direction
what is the best (fastest) descent we can achieve ? ,! We saw that :

by first-order Taylor approximation we have :

f(↵d+ x) = f(x) + ↵rf(x)T d+ o(↵),

f(x+ ↵d) ⇡ f(x) + ↵rf(x)T d for small ↵ > 0,

if d 6= 0 is such that rf(x)T d  0, then it is a descent direction for f at x

,! to achieve the maximum decrease in f(x) for a small ↵ > 0, we should
minimize rf(x)T d over all directions d 2 Rn with kdk = 1.

Derivation :

rf(x)T d = krf(x)kkdk cos(✓), where ✓ is the angle between rf(x) and d

The minimum occurs when cos(✓) = �1. This indicates that the two vectors
rf(x) and d are pointing in exactly opposite directions.

Thus, we choose rf(x)T d = �krf(x)kkdk, which leads to d = �rf(x)
krf(x)kkdk .

The (unnormalized) direction d = �rf(x) (anti-gradient) is called the
steepest-descent direction of f at x, as it yields the greatest decrease in f

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 14/45

rf(x)T d = �krf(x)kkdk
rf(x)T d krf(x)kkdk = �krf(x)kkdk krf(x)kkdk
rf(x)T d krf(x)kkdk = �krf(x)k2kdk2

rf(x)T d krf(x)kkdk = �rf(x)Trf(x)kdk2

d krf(x)kkdk = �rf(x)kdk2

d = � rf(x)

krf(x)kkdk

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 15/45

Descent Methods in Optim

Key Idea :

Thes ingredients form the basis idea of descent methods in optimization :
take iterative steps in descent directions to reduce the value of f and
guide the search towards a minimum.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 16/45

Descent Methods in Optimization

To minimize a di↵erentiable function f , The Gradient Descent algorithm

operates the folliwng sequence of iterates :

Initialization : Start with an initial point x(0).

Iteration : For k = 1, 2, . . . :

x
(k+1) = x

(k) + ↵
(k)

d
(k)

,

I d
(k) = �rf(x(k)) : the descent direction (negative gradient).

I ↵
(k) : the step size (learning rate).

until a stopping criterion is reached.

Why it works : By moving in the direction opposite to the gradient, the
algorithm ensures f decreases at each step for a properly chosen step size
↵
(k).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 17/45

Convergence of Descent Methods

Does this converge ?
Theorem : Convergence to a Critical Point

Let f satisfy smoothness and convexity conditions (detailed later)

Let dk satisfy the condition of a descent direction (i.e., the angle between
the gradient rf(xk) and and dk is an obtuse angle (between 90 and 180
degrees, or equivalently, the angle ✓k between the anti-gradient �rf(xk)
and dk is positive and less than 90 degrees), so that we ensure we are indeed
moving in a decreasing direction.

Let {xk}1k=0 be the sequence of vectors generated by a descent method :

xk+1 = xk + ↵kdk,

where the step size ↵k is properly chosen (a critical question !) (eg., by line
search, like the Armijo rule its parameters s (initial step size), � (reduction
factor), and � (su�cient decrease condition)). [Will be seen later]

If the sequence {xk}1k=0 has a limit point x⇤ = limi!1 xki , then x
⇤ is a

critical point of f , i.e., rf(x⇤) = 0.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 18/45

Proof of Convergence to a Critical Point

Assumptions :

x
⇤ = limi!1 xki is a limit point of the sequence {xk}1k=0.

By definition of a limit point, the subsequence {xki} converges to x
⇤, i.e.,

xki ! x
⇤ as i ! 1.

Since :

dk is a descent direction, ensuring f(xk) decreases at each step unless
rf(xk) = 0.

This implies that near a limit point x⇤, gradient rf(xk) must approach 0.

By continuity of the gradient rf(x), as xk ! x
⇤, the gradient satisfies :

rf(x⇤) = lim
k!1

rf(xk) = 0.

Then :

The sequence {xk} converges to x
⇤, and at x⇤, we have rf(x⇤) = 0.

Therefore, x⇤ is a critical point of f , as required.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 19/45

Convergence Rates

Essentials (convexity, Smoothness, ..) for analyzing convergence rates of
optimization algorithms.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 20/45

Definition of a Convex Function

Definition (Convex Function) :

A di↵erentiable function f : Rd ! R is said to be convex i↵ 8x, ✓ 2 Rd,

f(x) � f(✓) +rf(✓)>(x� ✓).

The inequality implies that f is always above its linear approximation at ✓.

Consequence : This implies : f(✓)� f(x)  rf(✓)>(✓ � x), 8x, ✓ 2 Rd.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 21/45

Consequences of Convexity

Consequence for Optimization :

A key property we will use frequently in the analysis of GD and SGD is :

f(x⇤) � f(✓) +rf(✓)>(x⇤ � ✓),

which implies :
f(✓)� f(x⇤)  rf(✓)>(✓ � x

⇤),

for all ✓ 2 Rd, where x
⇤ is the minimizer of f .

! an upper bound for the function value gap at any point

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 22/45

Definition of Strong Convexity

Definition (Strong Convexity) :

A di↵erentiable function f : Rd ! R is said to be µ-strongly convex if
there exists a constant µ > 0 such that for all x, ✓ 2 Rd,

f(x) � f(✓) +rf(✓)>(x� ✓) +
µ

2
kx� ✓k2.

Strong convexity ensures that f(x) is ”curved” everywhere, and µ quantifies
the lower bound on this curvature.

Consequence in Optimization : At a critical point, (by taking ✓ = x
⇤),

Strong convexity implies :

f(x)� f(x⇤) � µ

2
kx� x

⇤k2. NB

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 23/45

Smoothness

Definition (L-Smoothness) :

A di↵erentiable function f : Rd ! R is said to be L-smooth (L > 0) if and only

if :

f(x)  f(✓) +r(✓)T (x� ✓)|+ L
2
k✓ � xk2, 8✓, x 2 Rd.

(f(x)� f(✓)�r(✓)T (x� ✓))  L
2
k✓ � xk2, 8✓, x 2 Rd.

This is equivalent to Smoothness (Lipschitz Continuity of Gradient) :

I A function f is L-smooth if its gradient is L-Lipschitz continuous, i.e.,
krf(x)�rf(y)k  Lkx� yk for all x, y 2 Rd.

,! This means the gradient of f(x) cannot change arbitrarily fast, and L represents

the upper bound on this rate of change.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 24/45

Smoothness

Definition (L-Smoothness) :

A di↵erentiable function f : Rd ! R is said to be L-smooth (L > 0) if and only

if :

f(x)  f(✓) +r(✓)T (x� ✓)|+ L
2
k✓ � xk2, 8✓, x 2 Rd.

(f(x)� f(✓)�r(✓)T (x� ✓))  L
2
k✓ � xk2, 8✓, x 2 Rd.

This is equivalent to Smoothness (Lipschitz Continuity of Gradient) :

I A function f is L-smooth if its gradient is L-Lipschitz continuous, i.e.,
krf(x)�rf(y)k  Lkx� yk for all x, y 2 Rd.

,! This means the gradient of f(x) cannot change arbitrarily fast, and L represents

the upper bound on this rate of change.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 24/45

Equivalent Conditions for Twice Di↵erentiable Functions

For a twice di↵erentiable function f : Rd ! R, convexity, strong convexity and

smoothness can be expressed in terms of the Hessian matrix r2f(x)

Equivalent Condition for Convexity : convexity is equivalent to requiring :

r2f(x) ⌫ 0, 8x 2 Rd.

all the eigenvalues of the Hessian of f positive

Eq. Condition for Strong Convexity : f is µ-strongly convex i↵ :

r2f(x) ⌫ µI, 8x 2 Rd.

all the eigenvalues of the Hessian of f are larger than µ

Equivalent Condition for Smoothness : L-smoothness is equivalent to :

�LI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are at most equal to L

Equivalent Condition for Strong Convexity and Smoothness : f is µ-strongly

convex and L-smooth is equivalent to :

µI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are larger than µ and are at most equal to L

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 25/45

Equivalent Conditions for Twice Di↵erentiable Functions

For a twice di↵erentiable function f : Rd ! R, convexity, strong convexity and

smoothness can be expressed in terms of the Hessian matrix r2f(x)

Equivalent Condition for Convexity : convexity is equivalent to requiring :

r2f(x) ⌫ 0, 8x 2 Rd.

all the eigenvalues of the Hessian of f positive

Eq. Condition for Strong Convexity : f is µ-strongly convex i↵ :

r2f(x) ⌫ µI, 8x 2 Rd.

all the eigenvalues of the Hessian of f are larger than µ

Equivalent Condition for Smoothness : L-smoothness is equivalent to :

�LI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are at most equal to L

Equivalent Condition for Strong Convexity and Smoothness : f is µ-strongly

convex and L-smooth is equivalent to :

µI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are larger than µ and are at most equal to L

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 25/45

Equivalent Conditions for Twice Di↵erentiable Functions

For a twice di↵erentiable function f : Rd ! R, convexity, strong convexity and

smoothness can be expressed in terms of the Hessian matrix r2f(x)

Equivalent Condition for Convexity : convexity is equivalent to requiring :

r2f(x) ⌫ 0, 8x 2 Rd.

all the eigenvalues of the Hessian of f positive

Eq. Condition for Strong Convexity : f is µ-strongly convex i↵ :

r2f(x) ⌫ µI, 8x 2 Rd.

all the eigenvalues of the Hessian of f are larger than µ

Equivalent Condition for Smoothness : L-smoothness is equivalent to :

�LI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are at most equal to L

Equivalent Condition for Strong Convexity and Smoothness : f is µ-strongly

convex and L-smooth is equivalent to :

µI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are larger than µ and are at most equal to L

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 25/45

Equivalent Conditions for Twice Di↵erentiable Functions

For a twice di↵erentiable function f : Rd ! R, convexity, strong convexity and

smoothness can be expressed in terms of the Hessian matrix r2f(x)

Equivalent Condition for Convexity : convexity is equivalent to requiring :

r2f(x) ⌫ 0, 8x 2 Rd.

all the eigenvalues of the Hessian of f positive

Eq. Condition for Strong Convexity : f is µ-strongly convex i↵ :

r2f(x) ⌫ µI, 8x 2 Rd.

all the eigenvalues of the Hessian of f are larger than µ

Equivalent Condition for Smoothness : L-smoothness is equivalent to :

�LI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are at most equal to L

Equivalent Condition for Strong Convexity and Smoothness : f is µ-strongly

convex and L-smooth is equivalent to :

µI � r2f(x) � LI, 8x 2 Rd.

all the eigenvalues of the Hessian off are larger than µ and are at most equal to L

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 25/45

Condition Number for Smooth and Strongly Convex Functions

The condition Number  measures how ”well-conditioned” the optimization pblm is :

When a function f : Rn ! R is both L-smooth and µ-strongly convex, we define

its condition number  as :

 =
L
µ
� 1,

where L is the smoothness constant and µ is the strong convexity constant.

µ : Describes the minimum curvature (strong convexity of f(x)).

µ : Ensures f(x) is not too ”flat” (su�cient curvature everywhere).

L : Describes the maximum curvature (smoothness of f(x)).

L : Prevents f(x) from being too ”steep” (gradient does not grow arbitrarily fast).

Since µ is the sharpest lower bound on curvature and L is the broadest upper

bound, then L � µ =)  = L
µ � 1.

The ratio L
µ measures the disparity between the ”steepest” and ”flattest”

directions

Perfect Case : When L = µ : The function is perfectly conditioned ( = 1, e.g.,

quadratic with spherical level sets).

When L� µ : � 1, indicating worse conditioning.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 26/45

Condition Number for Smooth and Strongly Convex Functions

The condition Number  measures how ”well-conditioned” the optimization pblm is :

When a function f : Rn ! R is both L-smooth and µ-strongly convex, we define

its condition number  as :

 =
L
µ
� 1,

where L is the smoothness constant and µ is the strong convexity constant.

µ : Describes the minimum curvature (strong convexity of f(x)).

µ : Ensures f(x) is not too ”flat” (su�cient curvature everywhere).

L : Describes the maximum curvature (smoothness of f(x)).

L : Prevents f(x) from being too ”steep” (gradient does not grow arbitrarily fast).

Since µ is the sharpest lower bound on curvature and L is the broadest upper

bound, then L � µ =)  = L
µ � 1.

The ratio L
µ measures the disparity between the ”steepest” and ”flattest”

directions

Perfect Case : When L = µ : The function is perfectly conditioned ( = 1, e.g.,

quadratic with spherical level sets).

When L� µ : � 1, indicating worse conditioning.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 26/45

Figure – Level sets (Contours) : small  vs large 

Level Set Definition : Given a function f : Rn ! R, the level set of f
corresponding to a scalar c 2 R is the set of all points x 2 Rn such that :
Lc = {x 2 Rn | f(x) = c}.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 27/45

Impact of  on Gradient Descent Performance

Condition Number  and Gradient Descent :

The performance of gradient descent is influenced by the condition

number  = L
µ .

A small condition number  ⇡ 1 (function with level sets that are

nearly circular), results in fast convergence.

A large condition number  � 1 leads to slow convergence and

oscillations (zigzag).

Figure – small  : fast convergence, vs large  oscillations

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 28/45

Convergence Rates

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 29/45

Gradient Descent for µ-Strongly Convex and L-Smooth Functions

Theorem (Convergence Rate of Gradient Descent for µ-Strongly Convex and
L-Smooth Functions) :

Assume f is L-smooth and µ-strongly convex.

For gradient descent with a fixed step size ↵k = 1
L , the iterates

(xk)k�0 satisfy :

f(xt)� f(x⇤)  exp

✓
�kµ

L

◆
(f(x0)� f(x⇤)) ,

where :
I x

⇤ is the minimizer of f ,
I µ

L determines the rate of convergence and depends on the condition
number  = L

µ .

Gradient descent therefore achieves exponential (linear in log-scale)

convergence rate for strongly convex functions.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 30/45

Proof I

1 Gradient Descent Update Rule : xk+1 = xk � ↵krf(xk).

2 Substituting ↵k = 1
L : xk+1 = xk � 1

Lrf(xk).

3 Strong Convexity Inequality : For µ-strongly convex f , we have :

f(x) � f(y) +rf(y)T (x� y) +
µ
2
kx� yk2.

Substituting y = x⇤, where rf(x⇤) = 0, gives :

f(xk)� f(x⇤)  �rf(xk)
T (xk � x⇤)� µ

2
kxk � x⇤k2.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 31/45

Proof II

4 Smoothness Inequality : For L-smooth f :

f(xk+1)  f(xk) +rf(xk)
T (xk+1 � xk) +

L
2
kxk+1 � xkk2,

Using xk+1 � xk = � 1
L
rf(xk), gives

f(xk+1)  f(xk)�
1
L
krf(xk)k2 +

1
2L
krf(xk)k2 = f(xk)�

1
2L
krf(xk)k2

f(xk+1)  f(xk)�
1
2L
krf(xk)k2. NB

5 Combining Inequalities : From strong convexity (see proof separataley) :

krf(xk)k2 � 2µ (f(xk)� f(x⇤)) . NB

Substituting into the smoothness inequality :

f(xk+1)� f(x⇤)  (f(xk)� f(x⇤))� 1
2L

2µ (f(xk)� f(x⇤)) .

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 32/45

Proof III

Simplifying :

f(xk+1)� f(x⇤) 
⇣
1� µ

L

⌘
(f(xk)� f(x⇤)) .

6 Exponential Convergence : By induction (simple) :

f(xk)� f(x⇤) 
⇣
1� µ

L

⌘k
(f(x0)� f(x⇤)) .

Using 1� x  e�x :

f(xk)� f(x⇤)  exp

✓
�kµ

L

◆
(f(x0)� f(x⇤)) .

CQFD

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 33/45

Proof : Gradient Lower Bound in Strongly Convex Functions

Goal : Derive the inequality : krf(xk)k2 � 2µ (f(xk)� f(x⇤)) .

1 Strong Convexity : f(y) � f(x) +rf(x)T (y � x) + µ
2 ky � xk2, 8x, y.

Substitute y = x⇤ : f(x⇤) � f(xk) +rf(xk)
T (x⇤ � xk) +

µ
2 kx

⇤ � xkk2.
Rearrange : f(xk)� f(x⇤)  �rf(xk)

T (x⇤ � xk)� µ
2 kx

⇤ � xkk2.

2 Cauchy-Schwarz Inequality : Using
�rf(xk)

T (x⇤ � xk)  krf(xk)k · kx⇤ � xkk :

f(xk)� f(x⇤)  krf(xk)k · kx⇤ � xkk �
µ
2
kx⇤ � xkk2.

3 Minimize the r.h.s w.r.t kx⇤ � xkk leads to kx⇤ � xkk = krf(xk)k
µ .

Note : We minimize the r.h.s. to express the inequality solely in terms of the

gradient norm krf(xk)k and the function value gap f(xk)� f(x⇤). This also

ensures the sharpest possible lower bound (worst case) on krf(xk)k2

Substitute : f(xk)� f(x⇤)  krf(xk)k2
2µ .

Rearrange : krf(xk)k2 � 2µ (f(xk)� f(x⇤)) .

Rk : This inequality relates the gradient norm krf(xk)k to the function value gap

(f(xk)� f(x⇤)) and provides a lower bound

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 34/45

Convergence for Smooth and Convex Functions

Convergence of Gradient Descent for Smooth and Convex Functions

Theorem : For a convex and L-smooth function f , gradient descent with

a step size ↵ = 1
L satisfies :

f(xk)� f(x⇤) = O

✓
1

k

◆
,

where x
⇤ is the minimizer of f .

Proof detailed as an exercice in the TD

If f is only assumed to be smooth and convex, gradient descent with a
constant step size ↵ = 1

L still converges, but at a slower rate (sublinear
rate).

Rather than O

⇣
e
� kµ

L

⌘
for µ-strong convex and L-smooth functions

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 35/45

Convergence for Smooth, Convex Functions

Proof :

1 Smoothness Inequality : We saw f(xk+1)  f(xk)� 1
2Lkrf(xk)k2(relating

function decrease togradient norm).

2 Convexity Inequality : From convexity, f(xk)� f(x⇤)  krf(xk)k · kxk � x⇤k,
bounding the gap.

3 Combining both : Substituting convexity bound into smoothness inequality :

f(xk+1)� f(x⇤)
| {z }

function gap at iteration k+1

 f(xk)� f(x⇤)
| {z }

function gap at iteration k

� 1
2L

(f(xk)� f(x⇤))2

kxk � x⇤k2 .

NB This shows that the function value gap f(xk)� f(x⇤) decreases iteratively,

but the amount of decrease depends on the current gap squared (f(xk)� f(x⇤))2,

scaled by kxk � x⇤k2 the distance to the minimizer x⇤.

4 Gradient Descent Reduction : Gradient descent reduces f(xk)� f(x⇤)

iteratively. By iteratively applying the inequality, it can be shown that :

f(xk)� f(x⇤)  C
k
, (Proof detailed as an exercice in the TD)

where C > 0 is a constant depending on the initial paramters gap kx0)� x⇤k and
the smoothness parameter L.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 36/45

Line Search

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 37/45

Armijo Rule for Step Size Selection

Purpose of the Armijo Rule :

The Armijo rule is used to select a step size ↵k in descent methods, ensuring that

each step decreases the objective function f(x) by a su�cient amount.

It prevents steps that are too small (which slow down convergence) or too large

(which may cause divergence).

Armijo Condition :

For a given descent direction dk at xk, the Armijo rule requires that ↵k satisfies :

f(xk + ↵kdk)  f(xk) + �↵krf(xk)
T dk,

where 0 < � < 1 is a parameter that controls the ”su�cient decrease” in f(x).

as by convexity f(✓)� f(xk)  f 0(✓)>(✓ � xk), 8xk, ✓ 2 Rd, by taking

✓ = xk + ↵kdk

Procedure :

Start with an initial step size s (often s = 1).

If the Armijo condition is not met, reduce ↵k by multiplying it with a factor �

(with 0 < � < 1), and repeat until the condition holds.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 38/45

Armijo Rule for Step Size Selection

Purpose of the Armijo Rule :

The Armijo rule is used to select a step size ↵k in descent methods, ensuring that

each step decreases the objective function f(x) by a su�cient amount.

It prevents steps that are too small (which slow down convergence) or too large

(which may cause divergence).

Armijo Condition :

For a given descent direction dk at xk, the Armijo rule requires that ↵k satisfies :

f(xk + ↵kdk)  f(xk) + �↵krf(xk)
T dk,

where 0 < � < 1 is a parameter that controls the ”su�cient decrease” in f(x).

as by convexity f(✓)� f(xk)  f 0(✓)>(✓ � xk), 8xk, ✓ 2 Rd, by taking

✓ = xk + ↵kdk

Procedure :

Start with an initial step size s (often s = 1).

If the Armijo condition is not met, reduce ↵k by multiplying it with a factor �

(with 0 < � < 1), and repeat until the condition holds.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 38/45

Armijo Rule for Step Size Selection

Purpose of the Armijo Rule :

The Armijo rule is used to select a step size ↵k in descent methods, ensuring that

each step decreases the objective function f(x) by a su�cient amount.

It prevents steps that are too small (which slow down convergence) or too large

(which may cause divergence).

Armijo Condition :

For a given descent direction dk at xk, the Armijo rule requires that ↵k satisfies :

f(xk + ↵kdk)  f(xk) + �↵krf(xk)
T dk,

where 0 < � < 1 is a parameter that controls the ”su�cient decrease” in f(x).

as by convexity f(✓)� f(xk)  f 0(✓)>(✓ � xk), 8xk, ✓ 2 Rd, by taking

✓ = xk + ↵kdk

Procedure :

Start with an initial step size s (often s = 1).

If the Armijo condition is not met, reduce ↵k by multiplying it with a factor �

(with 0 < � < 1), and repeat until the condition holds.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 38/45

Pseudo Code for GD with linear search.

Algorithm 1 Pseudo Code for GD with linear search (Armijo’s condition).

(S0) Choose x0 2 Rn, �,� 2 (0, 1), and put k := 0.

(S1) If a convergence criterion is reached. STOP.

(S2) Put dk := �rf(xk).

(S3) Determine ↵k > 0 by

↵k := max
l2N0

�(l) s.t. f(xk + �(l)dk)  f(xk) + �(l)�rf(xk)T dk.

(S4) Update xk+1 := xk + ↵kd
k

(S4) k k + 1 and go to (S1).

comments

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 39/45

week 4 : November 28, 2024.

Mid-term exam

Gradient descent acceleration methods,
Second order methods

(Newton methods including Quasi-Newton, secant, IRLS)

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 40/45

Classical Momentum Method

Momentum is used to accelerate convergence by adding an inertia e↵ect,
keeping the model from being too influenced by noisy gradients.

emphasizes the directions that persistently reduce f across iterations :

vk+1 = µvk � ↵rf(xk) (1)

xk+1 = xk + vk+1 (2)

where :
I vk : velocity vector at iteration k : acts as a memory that accumulates

the directions of reduction that were chosen in the previous k steps
I µ : momentum coe�cient 2 [0, 1] : controlling the influence of memory

Notice that if µ = 0 we recover GD.

The velocity helps accumulate gradients from previous iterations, leading to
faster convergence especially in regions of smooth descent.

By memorizing, through the velocity vector, the direction where the gradient
has been consistent over the iterations, CM helps. This is also the direction
where the gradient changes slowly or, equivalently, where the curvature is low

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 41/45

Classical Momentum (continued)

Convergence rate of CM :

Typically, for convex and smooth functions (not necessarily strongly convex),
Classical Momentum (CM) can achieve a convergence rate of :

O

✓
1

k

◆

This is the same rate as basic Gradient Descent (GD) for general convex
functions.

The di↵erence is that CM can reach this rate more stably and smoothly by
leveraging the momentum term to avoid oscillations and accelerate through
flat regions.

CM helps to ”accumulate” the velocity vector from previous gradients,
making the overall movement smoother. This can help in some practical
scenarios, but theoretically, it doesn’t necessarily improve the convergence
rate beyond O(1/k).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 42/45

Nesterov’s Accelerated Gradient (NAG)

Nesterov’s Accelerated Gradient (NAG), introduced in 1983.

The update equations of NAG are :

vk+1 = µvk � ↵rf(xk + µvk) (1*)

xk+1 = xk + vk+1 (2*)

Equations (1), (2) are identical to equations (1*), (1*) except for a
single, seemingly benign, di↵erence :

I While the classical momentum (CM) method updates the velocity
vector by inspecting the gradient at the current iterate xk,

I NAG updates it by inspecting the gradient at xk + µvk.

NAG uses a momentum-like approach to “look ahead” in the

direction suggested by the velocity vector.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 43/45

Nesterov’s Accelerated Gradient

(continued)

To make an analogy :

I While CM faithfully trusts the gradient at the current iterate, NAG
puts less faith into it and looks ahead in the direction suggested by the
velocity vector.

I It then moves in the direction of the gradient at the look-ahead point.

If rf(xk + µvk) ⇡ rf(xk), then the two updates are similar.

But if not, this is an indication of curvature and the NAG update has,
correctly, put less faith in the gradient.

This small di↵erence, compounded over the iterations, gives the two
methods distinct properties, allowing NAG to adapt faster and in a more
stable way than CM in many settings, particularly for higher values of µ.

As a result, NAG also enjoys provably faster convergence in certain settings.

Concretely, for any convex, smooth function, i.e., not necessarily strongly
convex, optimally tuned NAG converges at an O(1/k2) rate, while GD
converges at a rate of O(1/k).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 44/45

Convergence Rate of NAG vs GD :

Gradient Descent (GD) : For convex and smooth functions, GD has

a convergence rate of O(1/k).

I This means that the error (in terms of how close you are to the optimal
value) decreases in proportion to 1/k as the number of iterations k
increases.

Nesterov’s Accelerated Gradient (NAG) : NAG is an accelerated

method that, when optimally tuned, has a faster convergence rate of

O(1/k2) for convex and smooth functions.

I This rate is significantly better than that of GD, implying that NAG
reduces the error much faster as the number of iterations increases.

I The absence of strong convexity implies that we are considering general
convex functions, which do not have a strict lower bound on their
curvature.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 45/45

	Continuous Optim concepts - Descent Methods

