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Newton’s method I

Origin of its construction :

The Newton method is widely known as a technique for finding a root of a

function of one variable. Let f(x) : R→ R. Consider the equation :

f(x) = 0.

The Newton method is based on linear approximation.

Taylor Approximation for f : R→ R : If f is differentiable, then for any

x, x0 ∈ R, Provided that ‖x− x0‖ is small (i.e., x is close to x0), by Taylor’s

theorem we have

f(x) = f(x0) + f ′(x0)(x− x0) +R2(x)

where R2(x) = o(‖x− x0‖2) is the remainder which vanishes as x→ x0.

Assume that we get some x0 close enough to x.

Therefore, the equation f(x) = 0 can be approximated by the linear equation :

f(x0) + f ′(x0)(x− x0) = 0.
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Newton’s method II

We then have :

x = x0 −
f(x0)

f ′(x0)
.

Converting this idea in an algorithmic form, we get the process :

xk+1 = xk −
f(xk)

f ′(xk)
.

In optimization, we are finding the roots of f ′(x), i.e. solving

f ′(x) = 0.

Hence, the Newton method for optimization problems appears to be in the form

xk+1 = xk − [f ′′(xk)]
−1f ′(xk).

assuming f is twice-differentiable.
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Newton’s Method

Construction as a quadratic approximation

We can obtain the previous process using the idea of quadratic approximation.

Consider the quadratic approximation of f(x), centered at the point xk :

f(x) = f(xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2 + o(‖x− xk‖2)

Assume that f ′′(xk) > 0. Then we choose xk+1 as the point that minimizes the

quadratic approximation f(x).

This means we solve

f ′(x) =
d

dx
{f(xk) + f ′(xk)(x− xk) +

1

2
f ′′(xk)(x− xk)2} = 0

which gives

f ′(xk) = f ′(xk) + f ′′(xk)(x− xk) = 0

Solving this gives us the Newton process

xk+1 = xk − [f ′′(xk)]
−1f ′(xk)
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in Rn (Construction as a quadratic approximation) I

Taylor : If f is continuously twice differentiable, then for any x, x0 ∈ Rn, provided

that ‖x− x0‖ is small (i.e., x is close to x0), we can approximate f(x) by :

(second-order approximation).

f(x) = f(x0) +∇f(x0)T (x− x0) +
1

2
(x− x0)T∇2f(x0)(x− x0) + o‖x− x0‖3

To derive the Newton update form from the quadratic approximation, consider

again the quadratic approximation of f(x) at the current point xk :

f(x) = f(xk) +∇f(xk)T (x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk) + o‖x− xk‖3

The quadratic approximation, f(x), captures the behavior of f(x) locally around

xk :

The quadratic term incorporates the Hessian, which captures the curvature of f .
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in Rn (Construction as a quadratic approximation) II

Assume that ∇2f(xk) � 0. Then we can choose xk+1 as a point of minimum of

the quadratic function f(x).

Minimizing f(x) involves taking its gradient w.r.t x and setting it to zero :

∇f(x) = ∇f(xk) +∇2f(xk)(x− xk) = 0

This leads to :

∇2f(xk)(xk+1 − xk) = −∇f(xk)

xk+1 = xk − [∇2f(xk)]
−1∇f(xk)

Step Size Adjustment :

- The term −[∇2f(xk)]
−1∇f(xk) uses both gradient and curvature information

to determine the optimal direction and step size.

- This approach avoids issues in gradient descent, such as slow convergence in

areas of different curvatures.
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in Rn (Construction as a quadratic approximation) III

This iterative process is applied until convergence.

Each iteration involves recalculating the quadratic approximation at the new

point xk+1, then minimizing this approximation to determine the next point :

xk+1 = xk − [∇2f(xk)]
−1∇f(xk)

- The gradient, as usual, tells us the direction of steepest ascent (the

anti-gradient determines the steepest descent)

- The Hessian allows the method to adapt the step size depending on the

curvature.

- In regions of high curvature, the inverse Hessian shrinks the step size,

preventing overshooting.

- In flat regions, it permits larger steps, speeding up convergence.

- The Newton method can converge faster than standard gradient descent,

especially near well-behaved minima, due to its use of second-order information.
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Quasi-Newton Methods

Efficient second-order approximation without explicitly computing the
Hessian.
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Secant Method

Approximates derivatives using prior information, avoiding full
differentiation.
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Issue : Lack of Positive Definiteness

The matrix ∇2f(x) may not be positive definite. As a result :

The problem might lack solutions.

The descent direction −[∇2f(x)]−1∇f(x) may not always be effective.

Solution : Add Diagonal Matrix E

To resolve this, we add a diagonal matrix E such that ∇2f(x) +E becomes

positive definite.

Example : Let E = γIn, with −γ chosen to be smaller than all non-positive

eigenvalues of ∇2f(x).

This modification shifts the original eigenvalues by γ > 0.

The required value of γ is found when solving the ”Newton equation” :

∇2f(x)p = −∇f(x)

This approach is known as the Levenberg-Marquardt modification.

Note : As γ becomes larger, p increasingly resembles the steepest descent

direction.
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Quasi-Newton Methods / Secant Method I

Issue : Lack of Enough Differentiability The function f may not belong to C2,

or computing the second derivatives (∇2f) might be too costly.

Solution : Use Quasi-Newton Methods

In quasi-Newton methods, we approximate the Newton equation by replacing the

Hessian ∇2f(xk) with a more computationally efficient matrix Bk.

Bk is computed using gradient values at the current and previous points.

Using a first-order Taylor expansion for ∇f(xk) :

∇f(xk) ≈ ∇f(xk−1) +∇2f(xk)(xk − xk−1)

then

∇2f(xk)(xk − xk−1) ≈ ∇f(xk)−∇f(xk−1)
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Quasi-Newton Methods / Secant Method II

Updating the Approximation

The matrix Bk is chosen to satisfy the following system :

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1)

Secant Method : Special Case for n = 1

For n = 1, this process reduces to the secant method, which approximates the

second derivative as :

f ′′(xk) ≈
f ′(xk)− f ′(xk−1)

xk − xk−1

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 13/18



Quasi-Newton Methods : BFGS Update

Matrix Bk Properties

The matrix Bk has n2 elements, which makes it under-determined by the n

equations available. Additional requirements, such as making sure that Bk is

symmetric and positive definite, result in specific quasi-Newton methods.

Initialization and Update of Bk. Typically :

Start with B0 = In.

Update Bk to Bk+1 using a rank-one or rank-two matrix update .

allows efficient updating of the factorization of Bk, utilizing linear algebra

BFGS Update Rule : There are many ways to update Bk, but the

Broyden-Fletcher-Goldfarb-Shanno method is among the most effective :

Bk+1 = Bk − (Bksk)(Bksk)
>

s>k Bksk
+

yky
>
k

y>
k sk

where :

sk = xk+1 − xk

yk = ∇f(xk+1)−∇f(xk)

Remark If f is quadratic, Bk will converge to the Hessian after n steps.
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IRLS
Iteratively Reweighted Least Squares

Newto descent for Logistic Regression
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Optimizing the Logistic Regression function

Problem : Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, Let

pi(θ) =
exp(xT

i θ)

1+exp(xT
i θ)

be the logistic function.

In logistic regression we minimize the negative log-likelihood : minθ f(θ)

f(θ) =
1

n

n∑
i=1

[
−yixTi θ + log

(
1 + exp(xTi θ)

)]
.

Newton algorithm : θ(k+1) = θ(k) −
[
∇2f(θ(k))

]−1∇f(θ(k))
Gradient vector and Hessian Matrix : (details in the next slide)

Gradient vector ∇f(θ) = ∂L(θ)
∂θ = −

∑n
i=1 xi(yi − pi(θ))·

Hessian Matrix ∇2f(θ) =
∑n
i=1 xix

>
i pi(θ)(1− pi(θ))

The Newton iterative update of θ has therefore the following expression :

θ(k+1) = θ(k)+
[ n∑
i=1

xix
>
i pi(xi; θ

(k))(1−pi(xi; θ(k)))
]−1 n∑

i=1

xi(yi−pi(xi; θ(k)))
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gradient and hessian for the logistic regression’s objective

Gradient vector

∇f(θ) = ∂f(θ)

∂θ
=

n∑
i=1

[ ∂
∂θ
− yix>i θ +

∂

∂θ
log(1 + exp(x>i θ))

]
=

n∑
i=1

−yixi + xipi(θ)pi(θ)

= −
n∑

i=1

xi(yi − pi(θ)) ·

Hessian matrix :

∇2f(θ) =
∂2f(θ)

∂θ∂θ>
=

n∑
i=1

xi
∂

∂θ>
{ exp(x>i θ)

1 + exp(x>i θ)
}

=
n∑

i=1

xi
x>i exp(x>i θ)(
1 + exp(x>i θ)

)2
=

n∑
i=1

xix
>
i pi(θ)(1− pi(θ))
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Iteratively Reweighted Least Squares (IRLS)
Let’s write the previous quantities in a matrix form (also very useful for coding) : Let

X = (x1, . . . , xn)
> matrix whose rows are the input vectors xi

y = (y1, . . . , yn)
> the vector on binary labels yi

p = (p1(θ), . . . , pn(θ))
> the vector of logistic probabilities

W = diag(p� (1n − p)) diagonal matrix with (W )ii = pi(θ) (1− pi(θ))
z = Xθ(k) + (W (k))−1(y − p(k)) the current approximate response Then we can

write the vectorized forms of the gradient and the hesssian :

↪→ ∇f(θ) = −
∑n

i=1 xi(yi − pi(xi; θ
(k))) = −X>(y − p(k))

↪→ ∇2f(θ) =
∑n

i=1 xix
>
i pi(xi; θ

(k))(1− pi(xi; θ(k))) = X>WX

Then we get the vectorized form of the Newton iteration :

θ(k+1) = θ(k) +
[ n∑

i=1

xix
>
i pi(xi; θ

(k))(1− pi(xi; θ(k)))
]−1

n∑
i=1

xi(yi − pi(xi; θ(k)))

= θ(k) +
(
X>WX

)−1

X>(y − p(k))

= (X>W (k)X)−1X>W (k)z (1)

The NR update has the form of Least Squares, with weights W , and this is calculated

iteratively ↪→ we call it iteratively re-weighted least squares (IRLS).
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