(In Progress)

TC2: Optimization for Machine Learning

Master of Science in Al and Master of Science in Data Science
@ UPSaclay
2024/2025.

FAaicEL. CHAMROUKHI

]
universite qutéfp)(
PARIS-SACLAY

@chamroukhi .com


https://chamroukhi.com

université
PARIS-SACLAY

week 5 : November 28, 2024. mid-term exam.

Continuous optimization
(second order methods : Newton methods including Quasi-Newton, secant,
IRLS)

F. CHAMROUKHI TC2: Optimization for Machine Learning:(



Newton’s method | université

PARIS-SACLAY

Origin of its construction :
The Newton method is widely known as a technique for finding a root of a
function of one variable. Let f(z) : R — R. Consider the equation :

f(z)=0.

The Newton method is based on linear approximation.

Taylor Approximation for f : R — R : If f is differentiable, then for any
x,x9 € R, Provided that ||z — x¢l| is small (i.e., x is close to ), by Taylor's
theorem we have

f(@) = f(zo) + f'(w0)(x — 20) + Ra(x)

where Ry(x) = o(||z — 20||?) is the remainder which vanishes as z — .
Assume that we get some xy close enough to x.
Therefore, the equation f(z) = 0 can be approximated by the linear equation :

f(@o) + f'(xo) (2 — m0) = 0.
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We then have :

Converting this idea in an algorithmic form, we get the process :

~ f(a)
f'(@k)

In optimization, we are finding the roots of f’(z), i.e. solving

Tk+1 = Tk

F(@) = 0.
Hence, the Newton method for optimization problems appears to be in the form

Thpr = ok — [ (xr)] 7 f ().

assuming f is twice-differentiable.
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Construction as a quadratic approximation
We can obtain the previous process using the idea of quadratic approximation.
Consider the quadratic approximation of f(x), centered at the point zy :

f(@) = fla) + £ (@)@ — 2x) + %f”(wk)(l’ =)’ + o([le — a]?)

Assume that f”(z1) > 0. Then we choose xj1 as the point that minimizes the
quadratic approximation f(x).
This means we solve

/(@) = {7 )+ @)@ — ) + 5 ) — 20)?) = 0

which gives
far) = f(zr) + [ (z1)(z — ) =0

Solving this gives us the Newton process

Thyr =z — [ (2n)] 7 (k)
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Taylor : If f is continuously twice differentiable, then for any =, ¢y € R", provided
that ||z — zo]| is small (i.e.,  is close to x), we can approximate f(x) by :
(second-order approximation).

£(&) = $(wo) + V(o) (@ = o) + 5 (& — 20) "V wo)(w — 20) + ollz — o]

To derive the Newton update form from the quadratic approximation, consider
again the quadratic approximation of f(x) at the current point xy, :

7(2) = Fox) + VF) @~ o0) + 50— o) V) ) +olle — ol

The quadratic approximation, f(z), captures the behavior of f(x) locally around
T -
The quadratic term incorporates the Hessian, which captures the curvature of f.
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Assume that V2 f(z) = 0. Then we can choose ;11 as a point of minimum of
the quadratic function f(x).
Minimizing f(z) involves taking its gradient w.r.t = and setting it to zero :

Vi(x) = Vf(xy)+ V2f(xr)(x —x1) =0

This leads to :

V2 f(an) (@psr — x1) = =V f (1)
T = 2 — [V2f(20)] 'V f(2r)

Step Size Adjustment :

- The term —[V2f(zx)] 'V f(x1) uses both gradient and curvature information
to determine the optimal direction and step size.

- This approach avoids issues in gradient descent, such as slow convergence in
areas of different curvatures.
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This iterative process is applied until convergence.
Each iteration involves recalculating the quadratic approximation at the new
point xx41, then minimizing this approximation to determine the next point :

T = xk — [V2f ()] 'V f(2k)

- The gradient, as usual, tells us the direction of steepest ascent (the
anti-gradient determines the steepest descent)

- The Hessian allows the method to adapt the step size depending on the
curvature.

- In regions of high curvature, the inverse Hessian shrinks the step size,
preventing overshooting.

- In flat regions, it permits larger steps, speeding up convergence.

- The Newton method can converge faster than standard gradient descent,
especially near well-behaved minima, due to its use of second-order information.
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Quasi-Newton Methods

Efficient second-order approximation without explicitly computing the
Hessian.
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Secant Method

Approximates derivatives using prior information, avoiding full
differentiation.
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Issue : Lack of Positive Definiteness
The matrix V2 f(x) may not be positive definite. As a result :

m The problem might lack solutions.
m The descent direction —[V?f(z)]71V f(z) may not always be effective.

Solution : Add Diagonal Matrix E
To resolve this, we add a diagonal matrix E such that V2 f(z) + E becomes
positive definite.

m Example : Let E = 1™, with —v chosen to be smaller than all non-positive
eigenvalues of V2 f(z).

m This modification shifts the original eigenvalues by v > 0.
The required value of v is found when solving the " Newton equation” :
V2 f(z)p = -V f(z)
This approach is known as the Levenberg-Marquardt modification.

Note : As v becomes larger, p increasingly resembles the steepest descent
direction.
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Issue : Lack of Enough Differentiability The function f may not belong to C?,
or computing the second derivatives (V2 f) might be too costly.

Solution : Use Quasi-Newton Methods

In quasi-Newton methods, we approximate the Newton equation by replacing the
Hessian V2 f(z) with a more computationally efficient matrix By.

m By is computed using gradient values at the current and previous points.

m Using a first-order Taylor expansion for V f(zy) :

Vf(xr) = Vf(zr_1) + V2 f(xr) (@r — zx-1)

then
V2 f (@) (@) — 2p—1) = Vf(zr) = VF(2e_1)
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Updating the Approximation
The matrix By is chosen to satisfy the following system :

By (o — wp—1) = Vf(zg) — Vf(zk-1)

Secant Method : Special Case for n =1
For n =1, this process reduces to the secant method, which approximates the

second derivative as :
f'(@r) = f'(wp—1)

T — Tk—1

f”(xk) ~
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Matrix B;, Properties

The matrix By, has n? elements, which makes it under-determined by the n
equations available. Additional requirements, such as making sure that By, is
symmetric and positive definite, result in specific quasi-Newton methods.
Initialization and Update of Bj. Typically :

m Start with By = I™.
m Update By to By1 using a rank-one or rank-two matrix update .
m allows efficient updating of the factorization of By, utilizing linear algebra

BFGS Update Rule : There are many ways to update By, but the
Broyden-Fletcher-Goldfarb-Shanno method is among the most effective :

Bysk)(Bisk) | | YrYA }
B,., = B, — Bk E where
k+1 k sy Bisg + Vi sk

B S, = Tyl — Tk
my, = Vf(zre1) — V()

Remark If f is quadratic, By will converge to the Hessian after n steps.
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IRLS
Iteratively Reweighted Least Squares
Newto descent for Logistic Regression
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m Problem : Given (z;,y;) € RP x {0,1},7i=1,...,n, Let

To . .
pi(0) = % be the logistic function.

In logistic regression we minimize the negative log-likelihood : ming f(6)
1 n
0) =— —y;xl 0+ log (1 To)l.
£(6) = 3" [~9:aT0 + log (1 + exp(aT0))]

i=1
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Optimizing the Logistic Regression function universite

m Problem : Given (z;,y;) € RP x {0,1},7i=1,...,n, Let
T
pi(0) = % be the logistic function.
In logistic regression we minimize the negative log-likelihood : ming f(6)
1 n
0) =— —y;xl 0+ log (1 To)l.
F0) = £ 3 (a4 g (1 + expa0))]

i=1

m Newton algorithm : 9:+1) = (k) _ [VQf(O(k))]_l V(9%
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m Problem : Given (z;,y;) € RP x {0,1},7i=1,...,n, Let
T
pi(0) = % be the logistic function.
In logistic regression we minimize the negative log-likelihood : ming f(6)

1 n
0)=— —y;xl 0+ log (1 To)l.
)= 3= [l 0+ 1og 1+ (0
m Newton algorithm : 9:+1) = (k) _ [VQf(O(k))]_l V(9%
Gradient vector and Hessian Matrix : (details in the next slide)
m Gradient vector Vf(6) = BL 6) = =" wi(yi — pi(0))-
m Hessian Matrix V2 f(0) = Z?:l zix] pi(0)(1 — pi(0))
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m Problem : Given (z;,y;) € RP x {0,1},7i=1,...,n, Let
T
pi(0) = % be the logistic function.
In logistic regression we minimize the negative log-likelihood : ming f(6)

IRS T T
—— —yi2? o)) .
)= 33 [0 o 1+ exp(aT)
Newton algorithm : 91 = g(k) _ [VQf(Q(k))]_l V(9%
Gradient vector and Hessian Matrix : (details in the next slide)
Gradient vector V f(0) = BL 9) = =" wi(yi — pi(0))-
m Hessian Matrix V2f(0) = Z?:l zix] pi(0)(1 — pi(0))

m The Newton iterative update of 6 has therefore the following expression :

0D = 001 [N " i pi(ai; 0F)) (1—pi (i3 6™M)))] o > ai(yi—pi(ai 00))
i=1 i=1
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m Gradient vector

w(a):%(f) = Z[dae yix; 0 dilog(Hexp(uvl 9))]

Il
'M:\

Yii + Tipi (e)pl( )

1=

— Zl'i(yi —pi(0)) -

m Hessian matrix :

sy - PO exp(z, )
VO0) = 257 = Z‘“deT{lJrcxp(u )}

- ZIM
p ' (1+ exp(z; 9))2

= Z.LZ.L,T[)z(G)(l *Pi(e))
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Let’s write thye previougs quantities in aqmatrix orm (a?so very useful for coding)PA%tAHAY

m X = (21,...,2,)  matrix whose rows are the input vectors ;
®y=(y1,...,Yn) the vector on binary labels y;
mp=(p1(8),...,pa())" the vector of logistic probabilities

m W =diag(p ® (1, — p)) diagonal matrix with (W);; = p;(0) (1 — p:(0))
mz=X0® + (WHE)"1(y — p*)) the current approximate response
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Iteratively Reweighted Least Squares (IRLS université
Let’s write tfye previougs quantities in aqmatrix orm (a?so very useful for coding)PA%tAHAY

m X = (21,...,2,)  matrix whose rows are the input vectors ;
®y=(y1,...,Yn) the vector on binary labels y;

mp=(p1(8),...,pa())" the vector of logistic probabilities

m W =diag(p ® (1, — p)) diagonal matrix with (W);; = p;(0) (1 — p:(0))
mz=X0" + (WHE)~L(y — p*)) the current approximate response Then we can

write the vectorized forms of the gradient and the hesssian :
< VIO) = -2, zi(y — pi(e;;0%)) = =X T (y — p™)
> V2F(0) =30 wiw] pi(wi; 00 (1 = pi(2i;0%)) = X TWX
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Iteratively Reweighted Least Squares (IRLS université
Let's write tfye previougs quantities in aqmatrix orm (a?so very useful for coding)™ et

m X = (21,...,2,)  matrix whose rows are the input vectors ;
®y=(y1,...,Yn) the vector on binary labels y;

mp=(p1(8),...,pa())" the vector of logistic probabilities

m W =diag(p ® (1, — p)) diagonal matrix with (W);; = p;(0) (1 — p:(0))
mz=X0" + (WHE)~L(y — p*)) the current approximate response Then we can

write the vectorized forms of the gradient and the hesssian :
= V(0) = =i, @iy — pili80)) = =X T (y —p)
— VEF(0) = X0, wiw) pil@i; 0) (1 - pi(s; 6M))) = X TWX
Then we get the vectorized form of the Newton iteration :
0D = 0® L [3 wia pi(wi; 04) (1 = pi(wi; 09)] 7D wilys — pilai; 64))
i=1 i=1
-1
o+ (xTwx) X (y-p")
xXTwRx) xTwh (1)
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Let's write tfye previougs quantities in aqmatrix orm (a?so very useful for coding)™ et

m X = (21,...,2,)  matrix whose rows are the input vectors ;
my=(Yy1,...,yn)  the vector on binary labels y;
mp=(p1(8),...,pa())" the vector of logistic probabilities

m W =diag(p ® (1, — p)) diagonal matrix with (W);; = p;(0) (1 — p:(0))

mz=X0" + (WHE)~L(y — p*)) the current approximate response Then we can
write the vectorized forms of the gradient and the hesssian :

< VIO) = -2, zi(y — pi(e;;0%)) = =X T (y — p™)
— VEF(0) = X0, wiw) pil@i; 0) (1 - pi(s; 6M))) = X TWX
Then we get the vectorized form of the Newton iteration :
0D = 0® L [3 wia pi(wi; 04) (1 = pi(wi; 09)] 7D wilys — pilai; 64))
i=1 i=1
-1
o0+ (XTWX) X (y—p®)
(XTwmx)T xTwk (1)

The NR update has the form of Least Squares, with weights W, and this is calculated
iteratively < we call it iteratively re-weighted least squares (IRLS).
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