

TC2: Optimization for Machine Learning

Master of Science in AI and Master of Science in Data Science @ UPSaclay 2024/2025.

FAÏCEL CHAMROUKHI

week 5 : December 05, 2024.

Constrained optimization (Equality and Inequality constraints, Duality/Lagrangian, KKT optimality conditions)

Constrained Optimization Problem

- **Objective :** Minimize or maximize a function $f(x)$ subject to constraints.
- General Form:

$$
\min_{x \in \mathbb{R}^n} f(x)
$$

s.t. $g_i(x) \le 0, \quad i = 1, ..., m$
 $h_j(x) = 0, \quad j = 1, ..., p$

- \blacktriangleright $f(x)$: Objective function.
- \blacktriangleright $q_i(x)$: Inequality constraints.
- \blacktriangleright $h_i(x)$: Equality constraints.
- Budget limits in economics.
- **Physical constraints in engineering.**
- sparcity or regularity constraints in machine learning
- ∎ etc

Feasible Sets and Feasible Solutions I

- 1. Feasible Set :
	- The feasible set (or feasible region) is the set of all points that satisfy the constraints of an optimization problem.
	- Formally, for a problem with constraints $g_i(x) \leq 0$ and $h_i(x) = 0$, the feasible set S is :

$$
S = \{ x \in \mathbb{R}^n \mid g_i(x) \le 0, \ h_j(x) = 0, \ \forall i, j \}
$$

- Only points within this set can be considered as potential solutions to the optimization problem.
- **E** Constraints narrow down the feasible region to search for the optimum.

2. Feasible Solution :

- A feasible solution is any point $x \in S$ that satisfies all problem constraints.
- An optimal solution, if it exists, is a feasible solution that minimizes (or maximizes) the objective function within the feasible set.

example

Example of feasible region for a set of linear inequality constraints.

■ Constraints for the feasible region :

 $x + y \leq 4$ $x > 0$ $y > 0$ $y \leq 3$

Plots of each constraint line :

- \blacktriangleright $y = 4 x$: Boundary for $x + y \le 4$.
- \triangleright $x = 0$: Vertical line for $x > 0$.
- \blacktriangleright $y = 3$: Horizontal line representing $y \le 3$.

Example

- The feasible region is the intersection of the regions defined by each constraint.
- **The feasible region, represented by the shaded area, satisfies all specified** constraints. Only points within this shaded area are feasible solutions

Figure – Feasible region for a set of linear inequalities : the constraints limit the solution space.

Mathematical tools help us handle constraints effectively.

Optimization with Equality Constraints

Consider the problem (will be referred to as the primal problem)

$$
\min_{x \in \mathbb{R}^n} f(x)
$$

s.t. $h_j(x) = 0, \quad j = 1, ..., p$

Lagrange Multipliers Method :

 \blacksquare The Lagrangian function is defined as :

$$
\mathcal{L}(x,\lambda) = f(x) + \sum_{j=1}^{p} \lambda_j h_j(x),
$$

where λ_i are the Lagrange multipliers.

Dual problem : minimize w.r.t x and λ_i 's the lagrangian $\mathcal{L}(x,\lambda)$ ■ Optimality conditions :

$$
\nabla \mathcal{L}(x,\lambda) = 0, \quad h_j(x) = 0 \text{ for all } j.
$$

Theorem : First-Order Optimality Conditions I

Theorem : Let x^* be a local minimum of $f(x)$ subject to equality constraints $h_j(x) = 0$ for $j = 1, \ldots, p$. If x^* is a *regular point* (the gradients $\nabla h_1(x^*),\ldots,\nabla h_p(x^*)$ are linearly independent), there exist Lagrange multipliers $\lambda_1, \lambda_2, \ldots, \lambda_p$ such that :

$$
\nabla f(x^*) + \sum_{j=1}^p \lambda_j \nabla h_j(x^*) = 0, \quad h_j(x^*) = 0, \quad j = 1, ..., p.
$$

- The condition $\nabla f(x^*) + \sum_{j=1}^p \lambda_j \nabla h_j(x^*) = 0$ ensures that the gradients of $f(x)$ and the constraints $h_i(x)$ align to define a critical point of the Lagrangian function.
- The equality constraints $h_j(x^*) = 0$ ensure feasibility of the solution x^* .
- A regular point implies the linear independence of the gradients of the constraints, which ensures that x^* is not on a "degenerate" surface.

Optimization with Equality Constraints I

Example :

$$
\min_{x \in \mathbb{R}^2} f(x_1, x_2) = x_1^2 + x_2^2
$$

s.t. $h(x_1, x_2) = x_1 + x_2 - 1 = 0$.

Using Lagrange Multipliers :

 \blacksquare The Lagrangian function is :

$$
\mathcal{L}(x_1, x_2, \lambda) = x_1^2 + x_2^2 + \lambda(x_1 + x_2 - 1),
$$

where λ is the Lagrange multiplier.

■ Optimality conditions : ∇ $\mathcal{L}(x_1, x_2, \lambda) = 0$. Compute partial derivatives :

$$
\frac{\partial \mathcal{L}}{\partial x_1} = 2x_1 + \lambda = 0,
$$

$$
\frac{\partial \mathcal{L}}{\partial x_2} = 2x_2 + \lambda = 0,
$$

Optimization with Equality Constraints II

From
$$
\frac{\partial \mathcal{L}}{\partial x_1} = 0
$$
 and $\frac{\partial \mathcal{L}}{\partial x_2} = 0$, we have :

$$
2x_1 + \lambda = 0 \implies \lambda = -2x_1,
$$

$$
2x_2 + \lambda = 0 \implies \lambda = -2x_2.
$$

Equating the two expressions for λ :

$$
-2x_1 = -2x_2 \quad \Longrightarrow \quad x_1 = x_2.
$$

2 From the constraint : $h(x_1, x_2) = x_1 + x_2 - 1 = 0$: Substitute $x_1 = x_2$ into the constraint $x_1 + x_2 - 1 = 0$:

$$
x_1 + x_1 = 1 \implies x_1 = x_2 = \frac{1}{2}.
$$

 $\overline{\mathbf{3}}$ The solution is :

$$
x_1^* = \frac{1}{2}
$$
, $x_2^* = \frac{1}{2}$, $\lambda^* = -1$.

Remarks :

- If the regularity condition (linear independence of $\nabla h_j(x^{\ast}))$ is not satisfied, additional tools such as the Karush-Kuhn-Tucker (KKT) conditions are required to analyze the problem.
- Karush-Kuhn-Tucker (KKT) extend the method of Lagrange multipliers to handle inequality constraints.

Consider the optimization problem (primal form) :

 $\min_{x \in \mathbb{R}^n} f(x)$ s.t. $g_i(x) \leq 0, \quad i = 1, \ldots, m$ $h_i(x) = 0, \quad j = 1, \ldots, p$

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) Conditions are necessary conditions to check optimality in problems involving both equality and inequality constraints. They extend the method of Lagrange multipliers to handle inequality constraints.

the Lagrangian :
$$
\mathcal{L}(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)
$$
.

Stationarity : The gradient of the Lagrangian w.r.t solution x must be zero :

$$
\nabla \mathcal{L}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{\ell} \mu_j \nabla h_j(x) = 0.
$$

Primal feasibility : The solution x must satisfy all the constraints :

$$
g_i(x) \le 0, \quad h_j(x) = 0.
$$

- **Dual feasibility** : The Lagrange multipliers $\lambda_i > 0$ for inequality constraints.
- **Complementary slackness :** For each i, either $\lambda_i = 0$ or $g_i(x) = 0$:

$$
\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.
$$

Stationarity Condition

Stationarity :

$$
\nabla \mathcal{L}(x,\lambda,\mu) = \nabla f(x) + \sum_{i=1}^{m} \lambda_i \nabla g_i(x) + \sum_{j=1}^{p} \mu_j \nabla h_j(x) = 0.
$$

- At the optimal solution x^* , the gradient of the objective function $f(x)$ is balanced by the gradients of the active constraints $g_i(x)$ and $h_i(x)$.
- **This condition ensures no further improvement in** $f(x)$ is possible while satisfying the constraints.

Primal Feasibility

Primal Feasibility :

$$
g_i(x) \le 0, \quad h_j(x) = 0.
$$

- The solution x^* must satisfy :
	- All inequality constraints $(q_i(x) \leq 0)$,
	- All equality constraints $(h_i(x) = 0)$.
- **Philter** Primal feasibility ensures the solution lies in the feasible region of the optimization problem.

Dual Feasibility

Dual Feasibility :

$$
\lambda_i \geq 0, \quad \forall i = 1, \dots, m.
$$

- **The Lagrange multipliers** λ_i **associated with the inequality constraints** must be non-negative.
- If $\lambda_i > 0$ this indicates the corresponding constraint $q_i(x)$ is active $(g_i(x) = 0)$.
- If $\lambda_i = 0$, the corresponding inequality constraint $g_i(x)$ is inactive $(q_i(x) < 0).$

Complementary Slackness

Complementary Slackness :

$$
\lambda_i \cdot g_i(x) = 0, \quad \forall i = 1, \dots, m.
$$

- If $\lambda_i > 0$, then $g_i(x) = 0$, meaning the constraint is **active** and binding at the solution.
- If $g_i(x) < 0$, then $\lambda_i = 0$, meaning the constraint is **inactive** and does not affect the optimality condition.
- Complementary slackness ensures that inactive constraints do not influence the solution.

Summary

Summary of KKT Conditions :

- **Exercise 1** Stationarity : Ensures that the gradient of the objective function is aligned with the gradients of the active constraints.
- **Primal Feasibility : Guarantees the solution lies within the feasible** region.
- Dual Feasibility : Ensures the Lagrange multipliers λ_i are meaningful (non-negative).
- Complementary Slackness : Eliminates the influence of inactive constraints on the solution.

Optimality Check :

■ Together, these conditions provide a framework to verify whether a candidate solution x^* is optimal in constrained optimization problems.

Summary

- Inequality constraints become **active** when $g_i(x^*) = 0$, contributing to the optimality conditions through $\lambda_i > 0$.
- Inactive constraints $(g_i(x^*) < 0)$ have $\lambda_i = 0$, meaning they do not influence the solution.
- Complementary slackness ensures that inactive constraints (those with $g_i(x^*) < 0$) do not contribute to the optimality condition.
- Equality constraints $(h_j(x^\ast)=0)$ are always active and satisfied exactly.
- The gradient of the resulting objective function is a linear combination of the gradients of the active constraints : The gradients of $f(x)$, $g_i(x)$, and $h_j(x)$ at x^* reflecting a balance between optimizing the objective function and respecting the constraints.

Theorem : Let $f(x)$, $g_i(x)$, and $h_j(x)$ be continuously differentiable. If x^* is a local minimum and satisfies certain regularity conditions, then there exist $\lambda_i \geq 0$ and μ_i such that the KKT conditions hold.

Duality

Definition :

The dual function, $g(\lambda, \mu)$, is obtained by minimizing the Lagrangian with respect to the primal variable x :

$$
g(\lambda, \mu) = \inf_{x} \mathcal{L}(x, \lambda, \mu).
$$

- **The dual function** $g(\lambda, \mu)$ provides a lower bound to the primal problem for any $\lambda \geq 0$ and any μ .
- The dual function is always concave (the inf of an affine transformation is a concave function, and L is a linear combination of λ and μ , so produces a function that is concave in λ and μ , regardless of whether $\mathcal L$ is convex or not in x .

Dual function importance

- **Duality Gap** : The difference between the primal optimal value $f(x^*)$ and the dual optimal value $g(\lambda^*,\mu^*)$, known as the **duality gap**, quantifies how close the solution of the dual problem is to the solution of the primal problem.
- If the duality gap is zero, the dual solution exactly matches the primal solution, indicating perfect alignment between the two.

Duality and Lagrangian Function

Dual Problem :

The dual problem is derived by minimizing the Lagrangian over x :

$$
g(\lambda^*, \mu^*) = \inf_x \mathcal{L}(x, \lambda, \mu).
$$

The dual problem is (recall the dual function is concave in λ **and** μ **):**

$$
\max_{\lambda \ge 0,\mu} g(\lambda^*, \mu^*).
$$

■ Weak Duality :

 $f(x^*) \geq g(\lambda^*, \mu^*).$

Strong Duality : If strong duality holds :

$$
g(\lambda^*, \mu^*) = f(x^*),
$$

where x^* is the optimal solution of the primal problem, and (λ^*, μ^*) are the optimal dual variables.

Strong Duality

Strong Duality :

If strong duality holds, $f(x^*) = g(\lambda^*, \mu^*)$.

Theorem : (Slater's Condition) For a convex optimization problem, if there exists a strictly feasible point x (one that satisfies $q_i(x) < 0, h_i(x) = 0$, then strong duality holds.

- **Strong duality ensures that solving the dual problem gives the exact** same result as solving the primal problem :
	- ighthrow primal problem (minimizing the original objective function, i.e. f s.t. the constraints),
	- \blacktriangleright dual problem (maximizing the dual function, ie. the Lagrangian \mathcal{L}).

Exercices : in TD today