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Constrained Optimization Problem université

m Objective : Minimize or maximize a function f(z) subject to
constraints.
m General Form :

f(x) : Objective function.
gi(x) : Inequality constraints.
hj(x) : Equality constraints.

v v v

m Budget limits in economics.
m Physical constraints in engineering.
m sparcity or regularity constraints in machine learning

m etc
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Feasible Sets and Feasible Solutions | université

1. Feasible Set :

m The feasible set (or feasible region) is the set of all points that satisfy the
constraints of an optimization problem.

m Formally, for a problem with constraints g;(z) < 0 and h;(z) = 0, the
feasible set S'is :

S={zeR"|glz) <0, hj(x) =0, Vi,j}
m Only points within this set can be considered as potential solutions to the
optimization problem.
m Constraints narrow down the feasible region to search for the optimum.
2. Feasible Solution :
m A feasible solution is any point € S that satisfies all problem constraints.

m An optimal solution, if it exists, is a feasible solution that minimizes (or
maximizes) the objective function within the feasible set.
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example université
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Example of feasible region for a set of linear inequality constraints.

m Constraints for the feasible region :

r+y<4
x>0
y=>0
y<3

m Plots of each constraint line :
» y =4 —x : Boundary for z +y < 4.
» £ =0 : Vertical line for z > 0.
» y = 3 : Horizontal line representing y < 3.
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Example université
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m The feasible region is the intersection of the regions defined by each
constraint.

m The feasible region, represented by the shaded area, satisfies all specified
constraints. Only points within this shaded area are feasible solutions

Feasible Region for a Set of Linear Inequalities

— x4y=a
—-- y=3

FIGURE — Feasible region for a set of linear inequalities : the constraints limit the solution space.
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Mathematically universite

Mathematical tools help us handle constraints effectively.
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Optimization with Equality Constraints université

Consider the problem (will be referred to as the primal problem)

min  f(z)
st. hi(z)=0, j=1,...,p

Lagrange Multipliers Method :
m The Lagrangian function is defined as :

Lz, \) = Z)\h

where ); are the Lagrange multipliers.
m Dual problem : minimize w.r.t  and \;'s the lagrangian L(z, \)

m Optimality conditions :

VL(x,A\) =0, hj(x)=0forallj.
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Theorem : First-Order Optimality Conditions | université

Theorem : Let 2* be a local minimum of f(x) subject to equality
constraints hj(z) =0 for j =1,...,p. If * is a regular point (the
gradients Vh(z*),..., Vhy(x*) are linearly independent), there exist
Lagrange multipliers A1, Ag, ..., A, such that :

p
V@) + ) A Vhi(a®) =0, hi(z*)=0, j=1,...,p.
j=1

m The condition V f(z*) + 3°¥_) \jVh;(2*) = 0 ensures that the
gradients of f(x) and the constraints h;(x) align to define a critical

point of the Lagrangian function.
m The equality constraints h;(z*) = 0 ensure feasibility of the solution

xT.

m A regular point implies the linear independence of the gradients of the
constraints, which ensures that x* is not on a "degenerate” surface.
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Optimization with Equality Constraints | universite

Example :
min  f(z1,22) = 23 + 3
z€R?
st. h(zy,22) =21 +22—1=0.
Using Lagrange Multipliers :

m The Lagrangian function is :
L(z1,29,\) = 22 + 22 + N2y + 29 — 1),

where )\ is the Lagrange multiplier.

m Optimality conditions : VL(z1, 22, A) = 0. Compute partial derivatives :

oL

—:2 =
921 1+ A=0,
OL or4a=0,
8:172
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Optimization with Equality Constraints Il université
oL __ oL _ .
From a—m—Oand B—M—O,wehave.

21+ A =0 — A= 2z,

220+ A =0 — A= —2x.

Equating the two expressions for A :

—2x1 = —2x9 — X1 = Zo.

From the constraint : h(x1,22) = x1 + 22 — 1 = 0 : Substitute x; = x2 into
the constraint x1 + 29 —1=0:

The solution is :
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Remarks :

m If the regularity condition (linear independence of Vh;(z*)) is not
satisfied, additional tools such as the Karush-Kuhn-Tucker (KKT)
conditions are required to analyze the problem.

m Karush-Kuhn-Tucker (KKT) extend the method of Lagrange
multipliers to handle inequality constraints.
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Optimization with Inequality Constraints universite

Consider the optimization problem (primal form) :

min  f(z)
st. gi(x) <0, i=1,...,m
:O’

h](ﬂi) jZl,...,p

F. CHAMROUKHI TC2: Optimization for Machine Learning:(



Karush-Kuhn-Tucker (KKT) Conditions université
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The Karush-Kuhn-Tucker (KKT) Conditions are necessary conditions to check
optimality in problems involving both equality and inequality constraints. They
extend the method of Lagrange multipliers to handle inequality constraints.

p
the Lagrangian : L(z, A, i) )+ ZAZQZ + Z”jhﬂ (z)

Stationarity : The gradient of the Lagrangian w.r.t solution z must be zero :
¢
VL(z, A 1) +Z>\ Vgi(x) + Y i Vhy(x) =
=1

m Primal feasibility : The solution = must satisfy all the constraints :

gi(x) <0, h;(z)=0.
m Dual feasibility : The Lagrange multipliers A; > 0 for inequality constraints.
m Complementary slackness : For each i, either \; =0 or g;(z) =0 :

)\i-gi(x):(), Vi=1,...,m
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Stationarity Condition université
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Stationarity :
P
VL(z, A\, ) )+ Z)\ Vgi(x) + Z,uthj(m) =0.

Interpretation :

m At the optimal solution z*, the gradient of the objective function f(z)
is balanced by the gradients of the active constraints g;(z) and h;(z).

m This condition ensures no further improvement in f(x) is possible
while satisfying the constraints.
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Primal Feasibility université

Primal Feasibility :

Interpretation :
m The solution x* must satisfy :
» All inequality constraints (g;(z) < 0),
» All equality constraints (h;(z) = 0).
m Primal feasibility ensures the solution lies in the feasible region of the
optimization problem.
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Dual Feasibility université

Dual Feasibility :
A >0, Vi=1,...,m.
Interpretation :

m The Lagrange multipliers \; associated with the inequality constraints
must be non-negative.

m If \; > 0 this indicates the corresponding constraint g;(x) is active
(gi(x) =0).

m If \; =0, the corresponding inequality constraint g;(x) is inactive
(gi(x) <0).
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Complementary Slackness université

PARIS-SACLAY

Complementary Slackness :
Xi-gi(z)=0, Vi=1,...,m.

Interpretation :

m If \; > 0, then g;(x) = 0, meaning the constraint is active and
binding at the solution.
m If g;(x) <0, then \; = 0, meaning the constraint is inactive and

does not affect the optimality condition.

m Complementary slackness ensures that inactive constraints do not
influence the solution.
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Summary université
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Summary of KKT Conditions :

m Stationarity : Ensures that the gradient of the objective function is
aligned with the gradients of the active constraints.

m Primal Feasibility : Guarantees the solution lies within the feasible
region.

m Dual Feasibility : Ensures the Lagrange multipliers \; are meaningful
(non-negative).

m Complementary Slackness : Eliminates the influence of inactive
constraints on the solution.

Optimality Check :

m Together, these conditions provide a framework to verify whether a

candidate solution z* is optimal in constrained optimization problems.
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Summary universite

m Inequality constraints become active when g;(z*) = 0, contributing
to the optimality conditions through X\; > 0.

m Inactive constraints (g;(z*) < 0) have A\; = 0, meaning they do not
influence the solution.

m Complementary slackness ensures that inactive constraints (those
with g;(z*) < 0) do not contribute to the optimality condition.

m Equality constraints (h;(x*) = 0) are always active and satisfied
exactly.

m The gradient of the resulting objective function is a linear
combination of the gradients of the active constraints : The gradients
of f(x), gi(x), and hj(z) at =* reflecting a balance between
optimizing the objective function and respecting the constraints.

F. CHAMROUKHI TC2: Optimization for Machine Learning:(



Theorem : KKT Conditions université
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Theorem : Let f(x), g;(x), and hj(x) be continuously differentiable. If z*
is a local minimum and satisfies certain regularity conditions, then there
exist A\; > 0 and p; such that the KKT conditions hold.
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Definition :

m The dual function, g(\, i), is obtained by minimizing the Lagrangian with respect
to the primal variable x :

g\, p) = inf L(z, A, p).

m The dual function g(\, ) provides a lower bound to the primal problem for any
A >0 and any pu.

m The dual function is always concave (the inf of an affine transformation is a
concave function, and L is a linear combination of A and y, so produces a function
that is concave in X\ and p, regardless of whether £ is convex or not in x.

Dual function importance

m Duality Gap : The difference between the primal optimal value f(z*) and the dual
optimal value g(A\*, u*), known as the duality gap, quantifies how close the
solution of the dual problem is to the solution of the primal problem.

m If the duality gap is zero, the dual solution exactly matches the primal solution,
indicating perfect alignment between the two.
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Duality and Lagrangian Function universite

Dual Problem :

m The dual problem is derived by minimizing the Lagrangian over x :
g\, 1) =inf L(z, A\, ).
x
m The dual problem is (recall the dual function is concave in A and p) :

N ).
Anzl%ig( ")

m Weak Duality :
f@®) = g(\*, 1).
m Strong Duality : If strong duality holds :
g\ 1) = f(a7),

where x* is the optimal solution of the primal problem, and (\*, u*)
are the optimal dual variables.
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Strong Duality université
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Strong Duality :
m If strong duality holds, f(z*) = g(A*, u*).
Theorem : (Slater's Condition) For a convex optimization problem, if

there exists a strictly feasible point = (one that satisfies
gi(z) < 0,hj(x) = 0), then strong duality holds.

m Strong duality ensures that solving the dual problem gives the exact
same result as solving the primal problem :
» primal problem (minimizing the original objective function, i.e. f s.t.
the constraints),
» dual problem (maximizing the dual function, ie. the Lagrangian £).
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Exercices : in TD today
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