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Constrained Optimization Problem

Objective : Minimize or maximize a function f(x) subject to

constraints.

General Form :

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p

I f(x) : Objective function.
I gi(x) : Inequality constraints.
I hj(x) : Equality constraints.

Budget limits in economics.

Physical constraints in engineering.

sparcity or regularity constraints in machine learning

etc
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Feasible Sets and Feasible Solutions I

1. Feasible Set :

The feasible set (or feasible region) is the set of all points that satisfy the

constraints of an optimization problem.

Formally, for a problem with constraints gi(x) ≤ 0 and hj(x) = 0, the

feasible set S is :

S = {x ∈ Rn | gi(x) ≤ 0, hj(x) = 0, ∀i, j}

Only points within this set can be considered as potential solutions to the

optimization problem.

Constraints narrow down the feasible region to search for the optimum.

2. Feasible Solution :

A feasible solution is any point x ∈ S that satisfies all problem constraints.

An optimal solution, if it exists, is a feasible solution that minimizes (or

maximizes) the objective function within the feasible set.
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example

Example of feasible region for a set of linear inequality constraints.

Constraints for the feasible region :

x+ y ≤ 4

x ≥ 0

y ≥ 0

y ≤ 3

Plots of each constraint line :
I y = 4− x : Boundary for x+ y ≤ 4.
I x = 0 : Vertical line for x ≥ 0.
I y = 3 : Horizontal line representing y ≤ 3.
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Example

The feasible region is the intersection of the regions defined by each

constraint.

The feasible region, represented by the shaded area, satisfies all specified

constraints. Only points within this shaded area are feasible solutions

Figure – Feasible region for a set of linear inequalities : the constraints limit the solution space.
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Mathematically

Mathematical tools help us handle constraints effectively.
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Optimization with Equality Constraints

Consider the problem (will be referred to as the primal problem)

min
x∈Rn

f(x)

s.t. hj(x) = 0, j = 1, . . . , p

Lagrange Multipliers Method :

The Lagrangian function is defined as :

L(x, λ) = f(x) +

p∑
j=1

λjhj(x),

where λj are the Lagrange multipliers.

Dual problem : minimize w.r.t x and λi’s the lagrangian L(x, λ)
Optimality conditions :

∇L(x, λ) = 0, hj(x) = 0 for all j.
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Theorem : First-Order Optimality Conditions I

Theorem : Let x∗ be a local minimum of f(x) subject to equality
constraints hj(x) = 0 for j = 1, . . . , p. If x∗ is a regular point (the
gradients ∇h1(x∗), . . . ,∇hp(x∗) are linearly independent), there exist
Lagrange multipliers λ1, λ2, . . . , λp such that :

∇f(x∗) +
p∑
j=1

λj∇hj(x∗) = 0, hj(x
∗) = 0, j = 1, . . . , p.

The condition ∇f(x∗) +
∑p

j=1 λj∇hj(x∗) = 0 ensures that the

gradients of f(x) and the constraints hj(x) align to define a critical

point of the Lagrangian function.

The equality constraints hj(x
∗) = 0 ensure feasibility of the solution

x∗.

A regular point implies the linear independence of the gradients of the

constraints, which ensures that x∗ is not on a ”degenerate” surface.
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Optimization with Equality Constraints I

Example :
min
x∈R2

f(x1, x2) = x21 + x22

s.t. h(x1, x2) = x1 + x2 − 1 = 0.

Using Lagrange Multipliers :

The Lagrangian function is :

L(x1, x2, λ) = x21 + x22 + λ(x1 + x2 − 1),

where λ is the Lagrange multiplier.

Optimality conditions : ∇L(x1, x2, λ) = 0. Compute partial derivatives :

∂L
∂x1

= 2x1 + λ = 0,

∂L
∂x2

= 2x2 + λ = 0,
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Optimization with Equality Constraints II

1 From ∂L
∂x1

= 0 and ∂L
∂x2

= 0, we have :

2x1 + λ = 0 =⇒ λ = −2x1,

2x2 + λ = 0 =⇒ λ = −2x2.

Equating the two expressions for λ :

−2x1 = −2x2 =⇒ x1 = x2.

2 From the constraint : h(x1, x2) = x1 + x2 − 1 = 0 : Substitute x1 = x2 into

the constraint x1 + x2 − 1 = 0 :

x1 + x1 = 1 =⇒ x1 = x2 =
1

2
.

3 The solution is :

x∗1 =
1

2
, x∗2 =

1

2
, λ∗ = −1.
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Remarks :

If the regularity condition (linear independence of ∇hj(x∗)) is not

satisfied, additional tools such as the Karush-Kuhn-Tucker (KKT)

conditions are required to analyze the problem.

Karush-Kuhn-Tucker (KKT) extend the method of Lagrange

multipliers to handle inequality constraints.
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Optimization with Inequality Constraints

Consider the optimization problem (primal form) :

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p
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Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) Conditions are necessary conditions to check

optimality in problems involving both equality and inequality constraints. They

extend the method of Lagrange multipliers to handle inequality constraints.

the Lagrangian : L(x, λ, µ) = f(x) +

m∑
i=1

λigi(x) +

p∑
j=1

µjhj(x).

Stationarity : The gradient of the Lagrangian w.r.t solution x must be zero :

∇L(x, λ, µ) = ∇f(x) +
m∑
i=1

λi∇gi(x) +
∑̀
j=1

µj∇hj(x) = 0.

Primal feasibility : The solution x must satisfy all the constraints :

gi(x) ≤ 0, hj(x) = 0.

Dual feasibility : The Lagrange multipliers λi ≥ 0 for inequality constraints.

Complementary slackness : For each i, either λi = 0 or gi(x) = 0 :

λi · gi(x) = 0, ∀i = 1, . . . ,m.
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Stationarity Condition

Stationarity :

∇L(x, λ, µ) = ∇f(x) +
m∑
i=1

λi∇gi(x) +
p∑
j=1

µj∇hj(x) = 0.

Interpretation :

At the optimal solution x∗, the gradient of the objective function f(x)

is balanced by the gradients of the active constraints gi(x) and hj(x).

This condition ensures no further improvement in f(x) is possible

while satisfying the constraints.
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Primal Feasibility

Primal Feasibility :
gi(x) ≤ 0, hj(x) = 0.

Interpretation :

The solution x∗ must satisfy :
I All inequality constraints (gi(x) ≤ 0),
I All equality constraints (hj(x) = 0).

Primal feasibility ensures the solution lies in the feasible region of the

optimization problem.
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Dual Feasibility

Dual Feasibility :
λi ≥ 0, ∀i = 1, . . . ,m.

Interpretation :

The Lagrange multipliers λi associated with the inequality constraints

must be non-negative.

If λi > 0 this indicates the corresponding constraint gi(x) is active

(gi(x) = 0 ).

If λi = 0, the corresponding inequality constraint gi(x) is inactive

(gi(x) < 0).
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Complementary Slackness

Complementary Slackness :

λi · gi(x) = 0, ∀i = 1, . . . ,m.

Interpretation :

If λi > 0, then gi(x) = 0, meaning the constraint is active and

binding at the solution.

If gi(x) < 0, then λi = 0, meaning the constraint is inactive and

does not affect the optimality condition.

Complementary slackness ensures that inactive constraints do not

influence the solution.
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Summary

Summary of KKT Conditions :

Stationarity : Ensures that the gradient of the objective function is

aligned with the gradients of the active constraints.

Primal Feasibility : Guarantees the solution lies within the feasible

region.

Dual Feasibility : Ensures the Lagrange multipliers λi are meaningful

(non-negative).

Complementary Slackness : Eliminates the influence of inactive

constraints on the solution.

Optimality Check :

Together, these conditions provide a framework to verify whether a

candidate solution x∗ is optimal in constrained optimization problems.
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Summary

Inequality constraints become active when gi(x
∗) = 0, contributing

to the optimality conditions through λi > 0.

Inactive constraints (gi(x
∗) < 0) have λi = 0, meaning they do not

influence the solution.

Complementary slackness ensures that inactive constraints (those

with gi(x
∗) < 0) do not contribute to the optimality condition.

Equality constraints (hj(x
∗) = 0) are always active and satisfied

exactly.

The gradient of the resulting objective function is a linear

combination of the gradients of the active constraints : The gradients

of f(x), gi(x), and hj(x) at x∗ reflecting a balance between

optimizing the objective function and respecting the constraints.
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Theorem : KKT Conditions

Theorem : Let f(x), gi(x), and hj(x) be continuously differentiable. If x∗

is a local minimum and satisfies certain regularity conditions, then there
exist λi ≥ 0 and µj such that the KKT conditions hold.
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Duality

Definition :

The dual function, g(λ, µ), is obtained by minimizing the Lagrangian with respect

to the primal variable x :

g(λ, µ) = inf
x
L(x, λ, µ).

The dual function g(λ, µ) provides a lower bound to the primal problem for any

λ ≥ 0 and any µ.

The dual function is always concave (the inf of an affine transformation is a

concave function, and L is a linear combination of λ and µ, so produces a function

that is concave in λ and µ, regardless of whether L is convex or not in x.

Dual function importance

Duality Gap : The difference between the primal optimal value f(x∗) and the dual

optimal value g(λ∗, µ∗), known as the duality gap, quantifies how close the

solution of the dual problem is to the solution of the primal problem.

If the duality gap is zero, the dual solution exactly matches the primal solution,

indicating perfect alignment between the two.
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Duality and Lagrangian Function

Dual Problem :

The dual problem is derived by minimizing the Lagrangian over x :

g(λ∗, µ∗) = inf
x
L(x, λ, µ).

The dual problem is (recall the dual function is concave in λ and µ) :

max
λ≥0,µ

g(λ∗, µ∗).

Weak Duality :

f(x∗) ≥ g(λ∗, µ∗).

Strong Duality : If strong duality holds :

g(λ∗, µ∗) = f(x∗),

where x∗ is the optimal solution of the primal problem, and (λ∗, µ∗)

are the optimal dual variables.
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Strong Duality

Strong Duality :

If strong duality holds, f(x∗) = g(λ∗, µ∗).

Theorem : (Slater’s Condition) For a convex optimization problem, if
there exists a strictly feasible point x (one that satisfies
gi(x) < 0, hj(x) = 0), then strong duality holds.

Strong duality ensures that solving the dual problem gives the exact
same result as solving the primal problem :

I primal problem (minimizing the original objective function, i.e. f s.t.

the constraints),
I dual problem (maximizing the dual function, ie. the Lagrangian L).
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Exercices : in TD today
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