

TC2: Optimization for Machine Learning

Master of Science in AI and Master of Science in Data Science @ UPSaclay 2024/2025.

FAÏCEL CHAMROUKHI

week 6 : December 12, 2024.

Stochastic optimization, Non-convex optimization (Stochastic Gradient, The EM Algorithm)

Stochastic Optimization

- **Stochastic optimization refers to optimization techniques that incorporate** randomness to handle uncertainty in :
	- \triangleright Data (e.g., large-scale datasets).
	- \blacktriangleright Models (e.g., probabilistic or latent variable models).
	- \blacktriangleright The optimization process itself.
	- \triangleright Data Sampling : Operates on random subsets of data (e.g., Stochastic Gradient Descent).
		- \triangleright Latent Variables : Estimates unobserved variables iteratively (e.g., Expectation-Maximization algorithm).
- Unlike deterministic methods, stochastic optimization uses probabilistic techniques to find optimal solutions

Eg. :

- Gradient Descent : Handles large datasets by using sampled gradients.
- **EM Algorithm :** Handles natrually and explicitly latent variables : Alternates between estimating latent variables and optimizing parameters.

Stochastic Optimization

Stochastic Gradient Descent

Stochastic Gradient Descent

■ Consider minimizing an average of functions :

$$
\min_{x} \frac{1}{m} \sum_{i=1}^{m} f_i(x)
$$

Gradient Descent Update :

$$
x^{(k+1)} = x^{(k)} - \alpha_k \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x^{(k)})
$$

■ Stochastic (or Incremental) Gradient Descent (SGD) Update :

$$
x^{(k+1)} = x^{(k)} - \alpha_k \cdot \nabla f_{i_k}(x^{(k)})
$$

 \bullet ik is chosen at each iteration, using :

- **Randomized Rule :** Choose i_k uniformly at random.
- \triangleright Cyclic Rule : Iterate over $i_k = 1, 2, \ldots, m$ cyclically.

Stochastic Gradient Descent

■ Consider minimizing an average of functions :

$$
\min_{x} \frac{1}{m} \sum_{i=1}^{m} f_i(x)
$$

Gradient Descent Update :

$$
x^{(k+1)} = x^{(k)} - \alpha_k \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x^{(k)})
$$

Stochastic (or Incremental) Gradient Descent (SGD) Update :

$$
x^{(k+1)} = x^{(k)} - \alpha_k \cdot \nabla f_{i_k}(x^{(k)})
$$

- \bullet ik is chosen at each iteration, using :
	- **Randomized Rule :** Choose i_k uniformly at random.
	- \triangleright Cyclic Rule : Iterate over $i_k = 1, 2, \ldots, m$ cyclically.

Stochastic Gradient Descent

■ Consider minimizing an average of functions :

$$
\min_{x} \frac{1}{m} \sum_{i=1}^{m} f_i(x)
$$

Gradient Descent Update :

$$
x^{(k+1)} = x^{(k)} - \alpha_k \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x^{(k)})
$$

Stochastic (or Incremental) Gradient Descent (SGD) Update :

$$
x^{(k+1)} = x^{(k)} - \alpha_k \cdot \nabla f_{i_k}(x^{(k)})
$$

 \bullet ik is chosen at each iteration, using :

- **Randomized Rule :** Choose i_k uniformly at random.
- ▶ Cyclic Rule : Iterate over $i_k = 1, 2, ..., m$ cyclically.

Choosing the index i_k in SGD

Two rules for choosing i_k at iteration k :

- **Randomized Rule :** Choose $i_k \in \{1, ..., m\}$ uniformly at random.
- **Cyclic Rule :** Choose $i_k = 1, 2, \ldots, m, 1, 2, \ldots, m, \ldots$
- The Randomized Rule is more common in practice.
- \blacksquare For the randomized rule :

$$
\mathbb{E}[\nabla f_{i_k}(x)] = \nabla f(x),
$$

meaning SGD uses an unbiased estimate of the gradient at each step. (see next slide)

Main appeal of SGD :

Ifteration cost is independent of m (number of functions).

Saves memory by processing one sample (or function) at a time.

Avoids storing the entire dataset in memory.

Choosing the index i_k in SGD

Two rules for choosing i_k at iteration k :

- **Randomized Rule :** Choose $i_k \in \{1, ..., m\}$ uniformly at random.
- **Cyclic Rule :** Choose $i_k = 1, 2, \ldots, m, 1, 2, \ldots, m, \ldots$
- The Randomized Rule is more common in practice.
- \blacksquare For the randomized rule :

$$
\mathbb{E}[\nabla f_{i_k}(x)] = \nabla f(x),
$$

meaning SGD uses an unbiased estimate of the gradient at each step. (see next slide)

Main appeal of SGD :

- **Ifteration cost is independent of** m (number of functions).
- Saves memory by processing one sample (or function) at a time. Avoids storing the entire dataset in memory.

SGD with randomized choice

- SGD Objective and gradient : $f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x); \nabla f(x) = \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x).$
- **■** Randomized rule, i.e choosing i_k uniformly, i.e. $i_k \sim \mathcal{U}([1,m])$: $\mathbb{P}(i_k = i) = \frac{1}{m}, \forall i \in \{1, 2, ..., m\}.$

Expected value of the Stochastic Gradient

- \blacktriangleright The stochastic gradient $\nabla f_{i_k}(x)$ is a random variable because i_k is selected randomly.
- Its expectation : $\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^m \mathbb{P}(i_k = i) \nabla f_i(x)$.
- Substituting $\mathbb{P}(i_k = i) = \frac{1}{m}$, we have : $\mathbb{E}[\nabla f_{i_k}(x)] = \frac{1}{m} \sum_{i=1}^m \nabla f_i(x) = \nabla f(x).$
- Hence $\nabla f_{i_k}(x)$ is an unbiased estimator of the full gradient $\nabla f(x).$
	- \hookrightarrow (but the variance ...!)
- $\blacksquare \leftrightarrow$ Instead of calculating the full gradient $\nabla f(x)$, SGD approximates it using a single component gradient $\nabla f_{i_k}(x)$, where i_k is chosen randomly at each iteration k

SGD with randomized choice

- SGD Objective and gradient : $f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x); \nabla f(x) = \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x).$
- **■** Randomized rule, i.e choosing i_k uniformly, i.e. $i_k \sim \mathcal{U}([1,m])$: $\mathbb{P}(i_k = i) = \frac{1}{m}, \forall i \in \{1, 2, ..., m\}.$
- Expected value of the Stochastic Gradient
	- ▶ The stochastic gradient $\nabla f_{i_k}(x)$ is a random variable because i_k is selected randomly.
	- Its expectation : $\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^m \mathbb{P}(i_k = i) \nabla f_i(x)$.
	- Substituting $\mathbb{P}(i_k = i) = \frac{1}{m}$, we have : $\mathbb{E}[\nabla f_{i_k}(x)] = \frac{1}{m} \sum_{i=1}^m \nabla f_i(x) = \nabla f(x).$
- Hence $\nabla f_{i_k}(x)$ is an unbiased estimator of the full gradient $\nabla f(x).$
	- \hookrightarrow (but the variance ...!)
- $\blacksquare \leftrightarrow$ Instead of calculating the full gradient $\nabla f(x)$, SGD approximates it using a single component gradient $\nabla f_{i_k}(x)$, where i_k is chosen randomly at each iteration k .

SGD with randomized choice

- SGD Objective and gradient : $f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x); \nabla f(x) = \frac{1}{m} \sum_{i=1}^{m} \nabla f_i(x).$
- **■** Randomized rule, i.e choosing i_k uniformly, i.e. $i_k \sim \mathcal{U}([1, m])$: $\mathbb{P}(i_k = i) = \frac{1}{m}, \forall i \in \{1, 2, ..., m\}.$
- Expected value of the Stochastic Gradient
	- ▶ The stochastic gradient $\nabla f_{i_k}(x)$ is a random variable because i_k is selected randomly.
	- Its expectation : $\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^m \mathbb{P}(i_k = i) \nabla f_i(x)$.
	- Substituting $\mathbb{P}(i_k = i) = \frac{1}{m}$, we have : $\mathbb{E}[\nabla f_{i_k}(x)] = \frac{1}{m} \sum_{i=1}^m \nabla f_i(x) = \nabla f(x).$
- Hence $\nabla f_{i_k}(x)$ is an unbiased estimator of the full gradient $\nabla f(x).$
	- \hookrightarrow (but the variance ...!)
- \hookrightarrow Instead of calculating the full gradient $\nabla f(x)$, SGD approximates it using a single component gradient $\nabla f_{i_k}(x)$, where i_k is chosen randomly at **each iteration k.**
F. Chamroukhi [TC2: Optimization for Machine Learning:\(](#page-0-0)In progress) 7/25

example with $n = 10$, $p = 2$ to show the behavior for batch versus stochastic gradient

Stochastic methods : generally thrive far from optimum generally struggle close to optimum

Example : SGD for Logistic Regression

Problem : Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}, i = 1, \ldots, n$, logistic reg. objective :

$$
\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left[-y_i x_i^T \theta + \log \left(1 + \exp(x_i^T \theta) \right) \right].
$$

Each term in the sum is denoted as $f_i(\theta)$.

Gradient computation :

 $\nabla f(\theta) = \frac{1}{n} \sum_{i=1}^n (y_i - p_i(\theta)) x_i$, where $p_i(\theta) = \frac{\exp(x_i^T \theta)}{1 + \exp(x_i^T \theta)}$

Feasible when n (number of data points) is moderate.

Computationally expensive when n is very large.

Cost Comparison :

- **Full gradient (batch update)** : $O(np)$.
- Stochastic gradient update : $O(p)$.
- Eg., Computing much more Stochastic steps is significantly more affordable than computing the full gradient for each update.
- But slower convergence rate (ie. stochastic noise)

Example : SGD for Logistic Regression

Problem : Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}, i = 1, \ldots, n$, logistic reg. objective :

$$
\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left[-y_i x_i^T \theta + \log \left(1 + \exp(x_i^T \theta) \right) \right].
$$

Each term in the sum is denoted as $f_i(\theta)$. Gradient computation :

$$
\blacktriangleright \nabla f(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\theta)) x_i, \text{ where } p_i(\theta) = \frac{\exp(x_i^T \theta)}{1 + \exp(x_i^T \theta)}.
$$

Example Example 1 Feasible when n (number of data points) is moderate.

Gomputationally expensive when n is very large.

Cost Comparison :

- **Full gradient (batch update)** : $O(np)$.
- Stochastic gradient update : $O(p)$.
- Eg., Computing much more Stochastic steps is significantly more affordable than computing the full gradient for each update.
- But slower convergence rate (ie. stochastic noise)

Example : SGD for Logistic Regression

Problem : Given $(x_i, y_i) \in \mathbb{R}^p \times \{0, 1\}, i = 1, \ldots, n$, logistic reg. objective :

$$
\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \left[-y_i x_i^T \theta + \log \left(1 + \exp(x_i^T \theta) \right) \right].
$$

Each term in the sum is denoted as $f_i(\theta)$. Gradient computation :

$$
\blacktriangleright \nabla f(\theta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - p_i(\theta)) x_i, \text{ where } p_i(\theta) = \frac{\exp(x_i^T \theta)}{1 + \exp(x_i^T \theta)}.
$$

Example Example 1 Feasible when n (number of data points) is moderate.

Computationally expensive when n is very large.

Cost Comparison :

- **Full gradient (batch update)** : $O(np)$.
- Stochastic gradient update : $O(p)$.
- Eg., Computing much more Stochastic steps is significantly more affordable than computing the full gradient for each update.
- But slower convergence rate (ie. stochastic noise)

Step Sizes in SGD

Step size (α_k) :

- Step size (α_k) controls the magnitude of each update in stochastic gradient descent (SGD).
- **Example 3 Standard practice : Use diminishing step sizes : Common forms :** $\alpha_k=\frac{1}{k}$ $\frac{1}{k}$, $\alpha_k = \frac{\alpha_0}{1 + \lambda k}$ or $\alpha_k = \frac{\alpha_0}{k}$ with (α_0) to be tuned
- Diminishing step sizes :
	- \triangleright Gradually reduce the impact of noisy gradients.
	- \blacktriangleright Ensure that the difference between stochastic and full gradient steps vanishes over time.

Convergence Rates of SGD

For convex $f(x)$, SGD with diminishing step sizes satisfies :

$$
\mathbb{E}[f(x^{(k)})] - f^* = O\left(\frac{1}{\sqrt{k}}\right)
$$

When f is μ -strongly convex and has a LLipschitz gradient

$$
\mathbb{E}[f(x^{(k)})] - f^* = O\left(\frac{1}{k}\right)
$$

so sublinear convergence (due to gradient noise) :

- Comparison with Gradient Descent : So SGD methods do not enjoy the linear convergence rate of gradient descent under strong convexity
- Noisy gradient estimates introduce variance.

Strategies to Improve SGD :

for example Mini-Batching : Reduces variance by using a small batch of data points.

Mini-Batches in SGD

in Mini-batch stochastic gradient descent, we choose a random subset $I_k \subset \{1, ..., m\}$, with $\#I_k = b \ll m$, repeat :

Update rule for mini-batches :

$$
x^{(k+1)} = x^{(k)} - \alpha_k \cdot \frac{1}{b} \sum_{i \in I_k} \nabla f_i(x^{(k)})
$$

Benefits:

- Reduces variance by a factor of $\frac{1}{b}$.
- \blacktriangleright Practical for parallel computations.
- \blacksquare Trade-off :
	- \blacktriangleright Mini-batches reduce variance but are b-times more expensive.
	- ► Convergence rate : $O\left(\frac{1}{\sqrt{bk}+\frac{1}{k}}\right)$.

- SGD is efficient for large-scale optimization.
- Convergence rates are slower than full gradient methods.
- Mini-batches and (other techniques eg. early stopping) are practical techniques for improving SGD.

SGD is widely used in machine learning for its simplicity and scalability.

Stochastic Optimization

The EM algorithm

The EM Algorithm

Purpose :

Solve maximum likelihood estimation (MLE) problems for latent variable models : probabilistic models with paramters θ , observed variables X , latent variables Z

Goal :

$$
\hat{\theta} = \arg\max_{\theta} \log p(X \mid \theta),
$$

where $\log p(X | \theta)$ is the observed data log-likelihood.

I Iteratively optimize the likelihood function $\log p(X | \theta)$.

Key Idea: Exploit the observed data X and latent (unobserved) data Z in the construction of the optimization process :

- Alternately estimate :
	- **1** Compute an expectation of the log-likelihood assuming the latent variables Z are available
	- **2** Maximize the resulting expectation w.r.t the model parameters θ .

The EM Algorithm

Purpose :

Solve maximum likelihood estimation (MLE) problems for latent variable models : probabilistic models with paramters θ , observed variables X , latent variables Z

Goal :

$$
\hat{\theta} = \arg\max_{\theta} \log p(X \mid \theta),
$$

where $\log p(X | \theta)$ is the observed data log-likelihood.

- **I** Iteratively optimize the likelihood function $\log p(X | \theta)$.
- Key Idea : Exploit the observed data X and latent (unobserved) data Z in the construction of the optimization process :
	- Alternately estimate :
		- **1** Compute an expectation of the log-likelihood assuming the latent variables Z are available
		- **2** Maximize the resulting expectation w.r.t the model parameters θ .

The EM Algorithm

The EM Algorithm

Steps in the EM Algorithm

- $1.$ Initialize : Start with an initial estimate $\theta^{(0)}.$
- 2. Repeat until Convergence :

E-Step : Compute the expected complete-data log-likelihood :

$$
Q(\theta \mid \theta^{(k)}) = \mathbb{E}_{Z \sim p(Z|X, \theta^{(k)})}[\log p(X, Z \mid \theta)].
$$

• **M-Step**: Maximize
$$
Q(\theta | \theta^{(k)})
$$
 to update θ :

$$
\theta^{(k+1)} = \arg\max_{\theta} Q(\theta \mid \theta^{(k)}).
$$

Convergence Properties of EM

- The EM algorithm ensures that the observed data log-likelihood $\log p(X | \theta)$ increases at every iteration.
- EM converges to a stationary point of the log-likelihood (not necessarily a global maximum).

Advantages :

- Handles missing or latent data efficiently.
- Straightforward to implement for many problems.

Advantages and Limitations of EM

Advantages :

- **Handles latent variables naturally.**
- **EXTERNAL EXTERNAL STRAIGHTFORWARD I**n Straightforward implementation for many probabilistic models.
- Widely used in probabilistic machine leanring

Limitations :

- Generraly used for non-convex problems
- **E** Converges but may converge to a local optimum instead of the global optimum.
- Slow convergence near the optimum.
- Sensitive to initialization of parameters.

Finite Mixture Models

$$
f(x; \theta) = \sum_{j=1}^{m} \pi_j f_j(x; \theta_j) \text{ with } \pi_j > 0 \; \forall j \text{ and } \sum_{j=1}^{m} \pi_j = 1.
$$

Maximum-Likelihood Estimation

 $\widehat{\theta} \in \arg \max_{\theta} \log L(\theta)$ log-likelihood $:\, \log L(\theta) = \sum_{i=1}^n \log \sum_{j=1}^m \pi_j f_j(x_j;\theta_j).$

$$
\theta^{new} \in \arg\max_{\theta \in \Omega} \mathbb{E}[\log L_c(\theta)|\mathcal{D}, \theta^{old}]
$$

completed-data log-likelihood : $\log L_c(\theta) = \sum_{i=1}^n\sum_{j=1}^m Z_{ij} \log \left[\pi_j f_j(x_i;\theta_j) \right]$ where Z_{ij} is such that $Z_{ij} = 1$ if $Z_i = j$ and $Z_{ij} = 0$ otherwise.

Finite Mixture Models

$$
f(x; \theta) = \sum_{j=1}^{m} \pi_j f_j(x; \theta_j)
$$
 with $\pi_j > 0$ $\forall j$ and $\sum_{j=1}^{m} \pi_j = 1$.

Maximum-Likelihood Estimation

 $\widehat{\theta} \in \arg \max_{\theta} \log L(\theta)$ log-likelihood : $\log L(\theta) = \sum_{i=1}^n \log \sum_{j=1}^m \pi_j f_j(x_j; \theta_j).$

$$
\theta^{new} \in \arg\max_{\theta \in \Omega} \mathbb{E}[\log L_c(\theta)|\mathcal{D}, \theta^{old}]
$$

completed-data log-likelihood : $\log L_c(\theta) = \sum_{i=1}^n\sum_{j=1}^m Z_{ij} \log \left[\pi_j f_j(x_i;\theta_j) \right]$ where Z_{ij} is such that $Z_{ij} = 1$ if $Z_i = j$ and $Z_{ij} = 0$ otherwise.

Finite Mixture Models

$$
f(x; \theta) = \sum_{j=1}^{m} \pi_j f_j(x; \theta_j)
$$
 with $\pi_j > 0$ $\forall j$ and $\sum_{j=1}^{m} \pi_j = 1$.

Maximum-Likelihood Estimation

$$
\widehat{\theta} \in \arg \max_{\theta} \log L(\theta)
$$

log-likelihood: $\log L(\theta) = \sum_{i=1}^{n} \log \sum_{j=1}^{m} \pi_j f_j(x_j; \theta_j).$

The EM algorithm

$$
\theta^{new} \in \arg\max_{\theta \in \Omega} \mathbb{E}[\log L_c(\theta)|\mathcal{D}, \theta^{old}]
$$

completed-data log-likelihood : $\log L_c(\theta) = \sum_{i=1}^n\sum_{j=1}^m Z_{ij} \log \left[\pi_j f_j(x_i;\theta_j) \right]$ where Z_{ij} is such that $Z_{ij} = 1$ if $Z_i = j$ and $Z_{ij} = 0$ otherwise.

Gaussian mixture models (GMMs)

The finite Gaussian mixture density is defined as :

$$
f(x_i; \theta) = \sum_{j=1}^{m} \pi_j \mathcal{N}(x_i; \mu_j, \Sigma_j)
$$

with $\mathcal{N}(x_i; \mu_j, \Sigma_j) = \frac{1}{(2\pi)^{p/2} |\Sigma_k|^{1/2}} \exp \left(-\frac{1}{2} (x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j) \right),$ $\pi_j > 0 \; \forall j$ and $\sum_{j=1}^m \pi_j = 1$.

 $\tt FIGURE – An example of a three-component Gaussian mixture density in \mathbb{R}^2 .$

F. CHAMROUKHI [TC2: Optimization for Machine Learning:\(](#page-0-0)In progress) 21/25

EM for Gaussian mixture models

E-Step : calculates the posterior component memberships :

$$
\tau_{ij}^{(k)} = \mathbb{P}(Z_i = j | x_i, \theta^{(k)}) = \frac{\pi_j \mathcal{N}(x_i; \mu_j^{(k)}, \Sigma_j^{(k)})}{\sum_{\ell=1}^m \pi_\ell \mathcal{N}(x_i; \mu_\ell^{(k)}, \Sigma_\ell^{(k)})}
$$

that x_i originates from the kth component density.

2 M-Step : parameter updates :

$$
\pi_j^{(k+1)} = \frac{\sum_{i=1}^n \tau_{ij}^{(k)}}{n} = \frac{n_j^{(k)}}{n},
$$

\n
$$
\mu_j^{(k+1)} = \frac{1}{n_j^{(k)}} \sum_{i=1}^n \tau_{ij}^{(k)} x_i,
$$

\n
$$
\Sigma_j^{(k+1)} = \frac{1}{n_j^{(k)}} \sum_{i=1}^n \tau_{ij}^{(k)} (x_i - \mu^{(k+1)})(x_i - \mu^{(k+1)})^T.
$$

EM for Gaussian mixture models

E-Step : calculates the posterior component memberships :

$$
\tau_{ij}^{(k)} = \mathbb{P}(Z_i = j | x_i, \theta^{(k)}) = \frac{\pi_j \mathcal{N}(x_i; \mu_j^{(k)}, \Sigma_j^{(k)})}{\sum_{\ell=1}^m \pi_\ell \mathcal{N}(x_i; \mu_\ell^{(k)}, \Sigma_\ell^{(k)})}
$$

that x_i originates from the kth component density.

2 M-Step : parameter updates :

$$
\pi_j^{(k+1)} = \frac{\sum_{i=1}^n \tau_{ij}^{(k)}}{n} = \frac{n_j^{(k)}}{n},
$$

\n
$$
\mu_j^{(k+1)} = \frac{1}{n_j^{(k)}} \sum_{i=1}^n \tau_{ij}^{(k)} x_i,
$$

\n
$$
\Sigma_j^{(k+1)} = \frac{1}{n_j^{(k)}} \sum_{i=1}^n \tau_{ij}^{(k)} (x_i - \mu^{(k+1)})(x_i - \mu^{(k+1)})^T.
$$

Proofs : as an exercice

The EM algorithm

$$
\theta^{new} \in \arg\max_{\theta \in \Omega} \mathbb{E}[\log L_c(\theta)|\mathcal{D}, \theta^{old}]
$$

completed-data log-likelihood :

 $\log L_c(\theta) = \sum_{i=1}^n \sum_{j=1}^m Z_{ij} \log \left[\pi_j f_j(x_i; \theta_j) \right]$ where Z_{ij} is such that $Z_{ij} = 1$ if $Z_i = j$ and $Z_{ij} = 0$ otherwise.

completed-data log-likelihood :
\n
$$
\log L_c(\theta) = \sum_{i=1}^n \sum_{j=1}^m Z_{ij} \log \left[\pi_j \mathcal{N}(x_i; \mu_j^{(k)}, \Sigma_j^{(k)}) \right] =
$$
\n
$$
\sum_{i=1}^n \sum_{j=1}^m Z_{ij} \log \pi_j + \sum_{i=1}^n \sum_{j=1}^m Z_{ij} \log \mathcal{N}(x_i; \mu_j^{(k)}, \Sigma_j^{(k)})
$$
\nSo

 \blacksquare E-Step : Compute the expected complete-data log-likelihood :

$$
Q(\theta \mid \theta^{(k)}) = \mathbb{E}_{Z \sim p(Z|X, \theta^{(k)})}[\log p(X, Z \mid \theta)].
$$

$$
= \sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{E}[Z_{ij} | x_i, \theta^{(k)}] \log \pi_j
$$

+
$$
\sum_{i=1}^{n} \sum_{j=1}^{m} \mathbb{E}[Z_{ij} | x_i, \theta^{(k)}] \log \mathcal{N}(x_i; \mu_j^{(k)}, \Sigma_j^{(k)})
$$

M-Step : Maximize $Q(\theta \mid \theta^{(k)})$ to update θ :

$$
\theta^{(k+1)} = \arg\max_{\theta} Q(\theta \mid \theta^{(k)}).
$$

Proofs left as an exercice

E-Step (Expectation)

M-Step (paramter update :)

- For the mixture proportions π_j 's : a constrained optimization problem solution provided on the board
- \blacksquare for the mean and the covariance matrix : a weighted estimation of the standard multivariate gaussian

Hints :

- For the mixture proportions π_j 's, use Lagrange multipliers
- For the means μ_j 's, use the fact that $\frac{\partial x^TAx}{x} = (A+A^T)x$
- For the covriance matrices Σ_i 's, use standard results

$$
\blacktriangleright \frac{\partial \log |A|}{\partial A} = A^{-1}
$$

$$
\blacktriangleright x^T A x = \text{trace } (x^T A x)
$$

$$
\text{trace}(x^T A x) = \text{trace}(xx^T A)
$$

$$
\frac{\partial \text{trace}(BA)}{A} = B^T
$$

I

Proofs left as an exercice

E-Step (Expectation)

- M-Step (paramter update :)
	- **For the mixture proportions** π_j **'s : a constrained optimization problem** solution provided on the board
	- \blacksquare for the mean and the covariance matrix : a weighted estimation of the standard multivariate gaussian

Hints :

- For the mixture proportions π_j 's, use Lagrange multipliers
- For the means μ_j 's, use the fact that $\frac{\partial x^TAx}{x} = (A + A^T)x$
- For the covriance matrices Σ_i 's, use standard results

$$
\frac{\partial \log |A|}{\partial A} = A^{-1}
$$

\n
$$
x^T A x = \text{trace } (x^T A x)
$$

$$
\leftarrow\text{trace}(x^T A x) = \text{trace}(xx^T A)\\ \leftarrow\frac{\partial\text{trace}(B A)}{A} = B^T
$$