
(In Progress)

TC2: Optimization for Machine Learning

Master of Science in AI and Master of Science in Data Science

@ UPSaclay

2024/2025.

Fäıcel Chamroukhi

chamroukhi.com

https://chamroukhi.com

week 6 : December 12, 2024.

Stochastic optimization, Non-convex optimization
(Stochastic Gradient, The EM Algorithm)

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 2/25

Stochastic Optimization

Stochastic optimization refers to optimization techniques that incorporate

randomness to handle uncertainty in :

I Data (e.g., large-scale datasets).
I Models (e.g., probabilistic or latent variable models).
I The optimization process itself.

I Data Sampling : Operates on random subsets of data (e.g.,

Stochastic Gradient Descent).
I Latent Variables : Estimates unobserved variables iteratively (e.g.,

Expectation-Maximization algorithm).

Unlike deterministic methods, stochastic optimization uses probabilistic

techniques to find optimal solutions

Eg. :

Gradient Descent : Handles large datasets by using sampled gradients.

EM Algorithm : Handles natrually and explicitly latent variables :

Alternates between estimating latent variables and optimizing parameters.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 3/25

Stochastic Optimization

Stochastic Gradient Descent

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 4/25

Stochastic Gradient Descent

Consider minimizing an average of functions :

min
x

1

m

m∑
i=1

fi(x)

Gradient Descent Update :

x(k+1) = x(k) − αk ·
1

m

m∑
i=1

∇fi(x(k))

Stochastic (or Incremental) Gradient Descent (SGD) Update :

x(k+1) = x(k) − αk · ∇fik(x(k))

ik is chosen at each iteration, using :
I Randomized Rule : Choose ik uniformly at random.
I Cyclic Rule : Iterate over ik = 1, 2, . . . ,m cyclically.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 5/25

Stochastic Gradient Descent

Consider minimizing an average of functions :

min
x

1

m

m∑
i=1

fi(x)

Gradient Descent Update :

x(k+1) = x(k) − αk ·
1

m

m∑
i=1

∇fi(x(k))

Stochastic (or Incremental) Gradient Descent (SGD) Update :

x(k+1) = x(k) − αk · ∇fik(x(k))

ik is chosen at each iteration, using :
I Randomized Rule : Choose ik uniformly at random.
I Cyclic Rule : Iterate over ik = 1, 2, . . . ,m cyclically.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 5/25

Stochastic Gradient Descent

Consider minimizing an average of functions :

min
x

1

m

m∑
i=1

fi(x)

Gradient Descent Update :

x(k+1) = x(k) − αk ·
1

m

m∑
i=1

∇fi(x(k))

Stochastic (or Incremental) Gradient Descent (SGD) Update :

x(k+1) = x(k) − αk · ∇fik(x(k))

ik is chosen at each iteration, using :
I Randomized Rule : Choose ik uniformly at random.
I Cyclic Rule : Iterate over ik = 1, 2, . . . ,m cyclically.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 5/25

Choosing the index ik in SGD

Two rules for choosing ik at iteration k :

Randomized Rule : Choose ik ∈ {1, . . . ,m} uniformly at random.

Cyclic Rule : Choose ik = 1, 2, . . . ,m, 1, 2, . . . ,m,

The Randomized Rule is more common in practice.

For the randomized rule :

E[∇fik(x)] = ∇f(x),

meaning SGD uses an unbiased estimate of the gradient at each step.

(see next slide)

Main appeal of SGD :

Iteration cost is independent of m (number of functions).

Saves memory by processing one sample (or function) at a time.

Avoids storing the entire dataset in memory.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 6/25

Choosing the index ik in SGD

Two rules for choosing ik at iteration k :

Randomized Rule : Choose ik ∈ {1, . . . ,m} uniformly at random.

Cyclic Rule : Choose ik = 1, 2, . . . ,m, 1, 2, . . . ,m,

The Randomized Rule is more common in practice.

For the randomized rule :

E[∇fik(x)] = ∇f(x),

meaning SGD uses an unbiased estimate of the gradient at each step.

(see next slide)

Main appeal of SGD :

Iteration cost is independent of m (number of functions).

Saves memory by processing one sample (or function) at a time.

Avoids storing the entire dataset in memory.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 6/25

SGD with randomized choice

SGD Objective and gradient :

f(x) = 1
m

∑m
i=1 fi(x);∇f(x) = 1

m

∑m
i=1∇fi(x).

Randomized rule, i.e choosing ik uniformly, i.e. ik ∼ U([1,m]) :

P(ik = i) = 1
m ,∀i ∈ {1, 2, . . . ,m}.

Expected value of the Stochastic Gradient

I The stochastic gradient ∇fik(x) is a random variable because ik is

selected randomly.
I Its expectation : E[∇fik(x)] =

∑m
i=1 P(ik = i)∇fi(x).

I Substituting P(ik = i) = 1
m , we have :

E[∇fik(x)] = 1
m

∑m
i=1∇fi(x) = ∇f(x).

Hence ∇fik(x) is an unbiased estimator of the full gradient ∇f(x).

↪→ (but the variance ... !)

↪→ Instead of calculating the full gradient ∇f(x), SGD approximates it

using a single component gradient ∇fik(x), where ik is chosen randomly at

each iteration k.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/25

SGD with randomized choice

SGD Objective and gradient :

f(x) = 1
m

∑m
i=1 fi(x);∇f(x) = 1

m

∑m
i=1∇fi(x).

Randomized rule, i.e choosing ik uniformly, i.e. ik ∼ U([1,m]) :

P(ik = i) = 1
m ,∀i ∈ {1, 2, . . . ,m}.

Expected value of the Stochastic Gradient

I The stochastic gradient ∇fik(x) is a random variable because ik is

selected randomly.
I Its expectation : E[∇fik(x)] =

∑m
i=1 P(ik = i)∇fi(x).

I Substituting P(ik = i) = 1
m , we have :

E[∇fik(x)] = 1
m

∑m
i=1∇fi(x) = ∇f(x).

Hence ∇fik(x) is an unbiased estimator of the full gradient ∇f(x).

↪→ (but the variance ... !)

↪→ Instead of calculating the full gradient ∇f(x), SGD approximates it

using a single component gradient ∇fik(x), where ik is chosen randomly at

each iteration k.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/25

SGD with randomized choice

SGD Objective and gradient :

f(x) = 1
m

∑m
i=1 fi(x);∇f(x) = 1

m

∑m
i=1∇fi(x).

Randomized rule, i.e choosing ik uniformly, i.e. ik ∼ U([1,m]) :

P(ik = i) = 1
m ,∀i ∈ {1, 2, . . . ,m}.

Expected value of the Stochastic Gradient

I The stochastic gradient ∇fik(x) is a random variable because ik is

selected randomly.
I Its expectation : E[∇fik(x)] =

∑m
i=1 P(ik = i)∇fi(x).

I Substituting P(ik = i) = 1
m , we have :

E[∇fik(x)] = 1
m

∑m
i=1∇fi(x) = ∇f(x).

Hence ∇fik(x) is an unbiased estimator of the full gradient ∇f(x).

↪→ (but the variance ... !)

↪→ Instead of calculating the full gradient ∇f(x), SGD approximates it

using a single component gradient ∇fik(x), where ik is chosen randomly at

each iteration k.
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 7/25

example with n = 10, p = 2 to show the behavior for batch versus
stochastic gradient

Stochastic methods :
generally thrive far from optimum
generally struggle close to optimum

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 8/25

Example : SGD for Logistic Regression

Problem : Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, logistic reg. objective :

min
θ

1

n

n∑
i=1

[
−yixTi θ + log

(
1 + exp(xTi θ)

)]
.

Each term in the sum is denoted as fi(θ).

Gradient computation :

∇f(θ) = 1
n

∑n
i=1 (yi − pi(θ))xi, where pi(θ) =

exp(xT
i θ)

1+exp(xT
i θ)

.

Feasible when n (number of data points) is moderate.

Computationally expensive when n is very large.

Cost Comparison :

Full gradient (batch update) : O(np).

Stochastic gradient update : O(p).

Eg., Computing much more Stochastic steps is significantly more affordable

than computing the full gradient for each update.

But slower convergence rate (ie. stochastic noise)
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 9/25

Example : SGD for Logistic Regression

Problem : Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, logistic reg. objective :

min
θ

1

n

n∑
i=1

[
−yixTi θ + log

(
1 + exp(xTi θ)

)]
.

Each term in the sum is denoted as fi(θ).

Gradient computation :

∇f(θ) = 1
n

∑n
i=1 (yi − pi(θ))xi, where pi(θ) =

exp(xT
i θ)

1+exp(xT
i θ)

.

Feasible when n (number of data points) is moderate.

Computationally expensive when n is very large.

Cost Comparison :

Full gradient (batch update) : O(np).

Stochastic gradient update : O(p).

Eg., Computing much more Stochastic steps is significantly more affordable

than computing the full gradient for each update.

But slower convergence rate (ie. stochastic noise)
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 9/25

Example : SGD for Logistic Regression

Problem : Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, logistic reg. objective :

min
θ

1

n

n∑
i=1

[
−yixTi θ + log

(
1 + exp(xTi θ)

)]
.

Each term in the sum is denoted as fi(θ).

Gradient computation :

∇f(θ) = 1
n

∑n
i=1 (yi − pi(θ))xi, where pi(θ) =

exp(xT
i θ)

1+exp(xT
i θ)

.

Feasible when n (number of data points) is moderate.

Computationally expensive when n is very large.

Cost Comparison :

Full gradient (batch update) : O(np).

Stochastic gradient update : O(p).

Eg., Computing much more Stochastic steps is significantly more affordable

than computing the full gradient for each update.

But slower convergence rate (ie. stochastic noise)
F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 9/25

Step Sizes in SGD

Step size (αk) :

Step size (αk) controls the magnitude of each update in stochastic

gradient descent (SGD).

Standard practice : Use diminishing step sizes : Common forms :

αk = 1
k , αk = α0

1+λk or αk = α0
k with (α0) to be tuned

Diminishing step sizes :
I Gradually reduce the impact of noisy gradients.
I Ensure that the difference between stochastic and full gradient steps

vanishes over time.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 10/25

Convergence Rates of SGD

For convex f(x), SGD with diminishing step sizes satisfies :

E[f(x(k))]− f∗ = O

(
1√
k

)
When f is µ-strongly convex and has a LLipschitz gradient

E[f(x(k))]− f∗ = O

(
1

k

)
so sublinear convergence (due to gradient noise) :

Comparison with Gradient Descent : So SGD methods do not enjoy the

linear convergence rate of gradient descent under strong convexity

Noisy gradient estimates introduce variance.

Strategies to Improve SGD :

for example Mini-Batching : Reduces variance by using a small batch of

data points.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 11/25

Mini-Batches in SGD

in Mini-batch stochastic gradient descent, we choose a random subset

Ik ⊂ {1, ...,m}, with #Ik = b� m, repeat :

Update rule for mini-batches :

x(k+1) = x(k) − αk ·
1

b

∑
i∈Ik

∇fi(x(k))

Benefits :
I Reduces variance by a factor of 1

b .
I Practical for parallel computations.

Trade-off :
I Mini-batches reduce variance but are b-times more expensive.

I Convergence rate : O
(

1√
bk+ 1

k

)
.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 12/25

Summary

SGD is efficient for large-scale optimization.

Convergence rates are slower than full gradient methods.

Mini-batches and (other techniques eg. early stopping) are practical

techniques for improving SGD.

SGD is widely used in machine learning for its simplicity and scalability.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 13/25

Stochastic Optimization

The EM algorithm

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 14/25

The EM Algorithm

Purpose :

Solve maximum likelihood estimation (MLE) problems for latent

variable models : probabilistic models with paramters θ, observed

variables X, latent variables Z

Goal :

θ̂ = arg max
θ

log p(X | θ),

where log p(X | θ) is the observed data log-likelihood.

Iteratively optimize the likelihood function log p(X | θ).

Key Idea : Exploit the observed data X and latent (unobserved) data Z

in the construction of the optimization process :

Alternately estimate :

1 Compute an expectation of the log-likelihood assuming the latent

variables Z are available

2 Maximize the resulting expectation w.r.t the model parameters θ.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 15/25

The EM Algorithm

Purpose :

Solve maximum likelihood estimation (MLE) problems for latent

variable models : probabilistic models with paramters θ, observed

variables X, latent variables Z

Goal :

θ̂ = arg max
θ

log p(X | θ),

where log p(X | θ) is the observed data log-likelihood.

Iteratively optimize the likelihood function log p(X | θ).

Key Idea : Exploit the observed data X and latent (unobserved) data Z

in the construction of the optimization process :

Alternately estimate :

1 Compute an expectation of the log-likelihood assuming the latent

variables Z are available

2 Maximize the resulting expectation w.r.t the model parameters θ.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 15/25

The EM Algorithm

The EM Algorithm

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 16/25

Steps in the EM Algorithm

1. Initialize : Start with an initial estimate θ(0).

2. Repeat until Convergence :

E-Step : Compute the expected complete-data log-likelihood :

Q(θ | θ(k)) = EZ∼p(Z|X,θ(k))[log p(X,Z | θ)].

M-Step : Maximize Q(θ | θ(k)) to update θ :

θ(k+1) = arg max
θ
Q(θ | θ(k)).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 17/25

Convergence Properties of EM

The EM algorithm ensures that the observed data log-likelihood

log p(X | θ) increases at every iteration.

EM converges to a stationary point of the log-likelihood (not

necessarily a global maximum).

Advantages :

Handles missing or latent data efficiently.

Straightforward to implement for many problems.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 18/25

Advantages and Limitations of EM

Advantages :

Handles latent variables naturally.

Straightforward implementation for many probabilistic models.

Widely used in probabilistic machine leanring

Limitations :

Generraly used for non-convex problems

Converges but may converge to a local optimum instead of the global

optimum.

Slow convergence near the optimum.

Sensitive to initialization of parameters.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 19/25

Example : The EM algorithm for Mixtures

Finite Mixture Models

f(x; θ) =
∑m
j=1 πjfj(x; θj) with πj > 0 ∀j and

∑m
j=1 πj = 1.

Maximum-Likelihood Estimation

θ̂ ∈ arg maxθ logL(θ)

log-likelihood : logL(θ) =
∑n
i=1 log

∑m
j=1 πjfj(xj ; θj).

The EM algorithm

θnew ∈ arg max
θ∈Ω

E[logLc(θ)|D, θold]

completed-data log-likelihood : logLc(θ) =
∑n
i=1

∑m
j=1 Zij log [πjfj(xi; θj)]

where Zij is such that Zij = 1 if Zi = j and Zij = 0 otherwise.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 20/25

Example : The EM algorithm for Mixtures

Finite Mixture Models

f(x; θ) =
∑m
j=1 πjfj(x; θj) with πj > 0 ∀j and

∑m
j=1 πj = 1.

Maximum-Likelihood Estimation

θ̂ ∈ arg maxθ logL(θ)

log-likelihood : logL(θ) =
∑n
i=1 log

∑m
j=1 πjfj(xj ; θj).

The EM algorithm

θnew ∈ arg max
θ∈Ω

E[logLc(θ)|D, θold]

completed-data log-likelihood : logLc(θ) =
∑n
i=1

∑m
j=1 Zij log [πjfj(xi; θj)]

where Zij is such that Zij = 1 if Zi = j and Zij = 0 otherwise.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 20/25

Example : The EM algorithm for Mixtures

Finite Mixture Models

f(x; θ) =
∑m
j=1 πjfj(x; θj) with πj > 0 ∀j and

∑m
j=1 πj = 1.

Maximum-Likelihood Estimation

θ̂ ∈ arg maxθ logL(θ)

log-likelihood : logL(θ) =
∑n
i=1 log

∑m
j=1 πjfj(xj ; θj).

The EM algorithm

θnew ∈ arg max
θ∈Ω

E[logLc(θ)|D, θold]

completed-data log-likelihood : logLc(θ) =
∑n
i=1

∑m
j=1 Zij log [πjfj(xi; θj)]

where Zij is such that Zij = 1 if Zi = j and Zij = 0 otherwise.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 20/25

Gaussian mixture models (GMMs)

The finite Gaussian mixture density is defined as :

f(xi; θ) =
m∑
j=1

πjN (xi;µj ,Σj)

with N (xi;µj ,Σj) = 1

(2π)p/2|Σk|1/2
exp

(
− 1

2
(xi − µj)T Σ−1

j (xi − µj)
)
,

πj > 0 ∀j and
∑m
j=1 πj = 1.

−4
−2

0
2

4

−4

−2

0

2

4
0

0.05

0.1

0.15

0.2

0.25

x1
x2

f(
x
)

Figure – An example of a three-component Gaussian mixture density in R2.

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 21/25

EM for Gaussian mixture models

1 E-Step : calculates the posterior component memberships :

τ
(k)
ij = P(Zi = j|xi, θ(k)) =

πjN (xi;µ
(k)
j ,Σ

(k)
j)∑m

`=1 π`N (xi;µ
(k)
` ,Σ

(k)
`)

that xi originates from the kth component density.

2 M-Step : parameter updates :

π
(k+1)
j =

∑n
i=1 τ

(k)
ij

n
=
n

(k)
j

n
,

µ
(k+1)
j =

1

n
(k)
j

n∑
i=1

τ
(k)
ij xi,

Σ
(k+1)
j =

1

n
(k)
j

n∑
i=1

τ
(k)
ij (xi − µ(k+1))(xi − µ(k+1))T .

Proofs : as an exercice

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 22/25

EM for Gaussian mixture models

1 E-Step : calculates the posterior component memberships :

τ
(k)
ij = P(Zi = j|xi, θ(k)) =

πjN (xi;µ
(k)
j ,Σ

(k)
j)∑m

`=1 π`N (xi;µ
(k)
` ,Σ

(k)
`)

that xi originates from the kth component density.

2 M-Step : parameter updates :

π
(k+1)
j =

∑n
i=1 τ

(k)
ij

n
=
n

(k)
j

n
,

µ
(k+1)
j =

1

n
(k)
j

n∑
i=1

τ
(k)
ij xi,

Σ
(k+1)
j =

1

n
(k)
j

n∑
i=1

τ
(k)
ij (xi − µ(k+1))(xi − µ(k+1))T .

Proofs : as an exercice

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 22/25

The EM algorithm

θnew ∈ arg max
θ∈Ω

E[logLc(θ)|D, θold]

completed-data log-likelihood :

logLc(θ) =
∑n

i=1

∑m
j=1 Zij log [πjfj(xi; θj)]

where Zij is such that Zij = 1 if Zi = j and Zij = 0 otherwise.

completed-data log-likelihood :

logLc(θ) =
∑n

i=1

∑m
j=1 Zij log

[
πjN (xi;µ

(k)
j ,Σ

(k)
j)
]

=∑n
i=1

∑m
j=1 Zij log πj +

∑n
i=1

∑m
j=1 Zij logN (xi;µ

(k)
j ,Σ

(k)
j)

So

E-Step : Compute the expected complete-data log-likelihood :

Q(θ | θ(k)) = EZ∼p(Z|X,θ(k))[log p(X,Z | θ)].

=
∑n

i=1

∑m
j=1 E[Zij | xi, θ(k)] log πj

+
∑n

i=1

∑m
j=1 E[Zij | xi, θ(k)] logN (xi;µ

(k)
j ,Σ

(k)
j)

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 23/25

M-Step

M-Step : Maximize Q(θ | θ(k)) to update θ :

θ(k+1) = arg max
θ
Q(θ | θ(k)).

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 24/25

Proofs left as an exercice

E-Step (Expectation)

M-Step (paramter update :)

For the mixture proportions πj ’s : a constrained optimization problem

solution provided on the board

for the mean and the covariance matrix : a weighted estimation of the

standard multivariate gaussian

Hints :

For the mixture proportions πj ’s, use Lagrange multipliers

For the means µj ’s, use the fact that ∂xTAx
x = (A+AT)x

For the covriance matrices Σj ’s, use standard results

I ∂ log |A|
∂A = A−1

I xTAx = trace (xTAx)
I trace(xTAx) = trace(xxTA)
I ∂trace(BA)

A = BT

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 25/25

Proofs left as an exercice

E-Step (Expectation)

M-Step (paramter update :)

For the mixture proportions πj ’s : a constrained optimization problem

solution provided on the board

for the mean and the covariance matrix : a weighted estimation of the

standard multivariate gaussian

Hints :

For the mixture proportions πj ’s, use Lagrange multipliers

For the means µj ’s, use the fact that ∂xTAx
x = (A+AT)x

For the covriance matrices Σj ’s, use standard results

I ∂ log |A|
∂A = A−1

I xTAx = trace (xTAx)
I trace(xTAx) = trace(xxTA)
I ∂trace(BA)

A = BT

F. Chamroukhi TC2: Optimization for Machine Learning:(In progress) 25/25

	EM

