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Instructions : : Only pens are allowed (documents and electronic devices are forbidden). It is for-
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area, your last name, first name, and signature. This designated area must be concealed by gluing. All
your supplementary sheets must be numbered. The grading scale is provided for reference only.
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Preliminaries : In the following let f : Rn → R be a differentiable (and possibly twice-differentiable)
function. If f is minimized iteratively, it is assumed that the initial point x(0) is close enough to x?

(i.e., ‖x(0) − x?‖ is small enough) where x∗ is a critical point of f .

Theorem 1 : If f is µ-strongly convex and L-smooth then the sequence (xk)k≥0 generated by gradient

descent iterates with a fixed step size α = 1
L satisfies f(x(k))− f(x∗) ≤ exp

(
−kµ

L

) (
f(x(0))− f(x∗)

)
.

Theorem 2 : If f is convex and L-smooth then the sequence (xk)k≥0 generated by gradient descent

iterates with a fixed step size 0 ≤ α ≤ 1
L satisfies f(x(k))− f(x?) ≤ ‖x

(0)−x?‖2
2αk .

Exercice 1 (2 ;2 ;2 ;2) Consider f(x) = 1
2x
>Ax where A =

(
2 0
0 1

)
.

1. Show whether f(x) is µ-strongly convex (in that case determine the value of µ) or only convex.

2. Show that f(x) is L-smooth and determine the value of L.

3. For this problem determine the convergence rate of gradient descent with step size α = 1
2 and

comment on the result.

4. What happens if we have A =

(
4 0
0 1

)
?

Exercice 2 (2 ;2 ;3 ;1) Let X ∈ Rn×p (p < n), y ∈ Rn and λ > 0.

1. Prove that the following problem always admits a closed-form global solution :

min
θ∈Rp

1

2
‖y −Xθ‖22 +

λ

2
‖θ‖22.

2. Prove that for this problem the Newton algorithm converges globally and exactly in one iteration.

3. Now consider the following constrained minimization problem :

min
θ∈Rp

1

2
‖y −Xθ‖22 subject to ‖θ‖22 ≤ c

where c is a constant c > 0 representing a constraint on the norm of θ. Show that solving this
constrained problem (3.) is equivalent to solving the unconstrained prblem (1.) with the following
relation between the regularization parameter λ and the Lagrange multiplier µ :

λ = 2µ.

4. Discuss the role of the multiplier µ (and consequently the role of the regularizer λ).

Exercice 3 (2 ;2) Consider minimizing the following problem iteratively :

min
θ∈Rp

1

n

n∑
i=1

(yi − x>i θ)2,

where xi ∈ Rp and yi ∈ R for i = 1, . . . , n. Suppose n is very large, and the admissible computational
cost per iteration is bounded by O(m), where m � n. Propose a gradient algorithm to solve this
problem efficiently. Justify your choice and discuss both its statistical and computational properties.


