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Solution 1. General questions about optimization

(a) Objective function: The function to be maximized or minimized in
an optimization problem.

(b) Feasible set: The set of all points that satisfy the constraints of the
optimization problem.

(c) Optimal solution: A point within the feasible set that minimizes or
maximizes the objective function.

Solution 2. Convexity

(a) The function f(z) = |z| is convex.

A function f : R — R is convex if, for all 1,22 € R and for any
A€ 0,1]:
fz1+ (1= Nw2) < Af(21) + (1= A) f(22)
For f(x) = |z|, for any 1,22 € R and A € [0, 1], we have:
f()\afl + (1 - )\)$2) = |)\.1‘1 + (1 — )\)l‘Q‘

By the triangle inequality, we have:

[Az1+(1=A)z| < [Az1|[+[(1=N)za| = Ao |[+(1=A)|za| = Af (21)+(1=A) f (x2)

Threfore f(x) = |z| is convex.

(b) For f(z) = 2, the second derivative f”(z) = 2 > 0 for all z € R.
Therefore, f(z) is convex.

(c) f(x,y) = 2% +y? is convex because the Hessian matrix V2f = [(2] (2)]

is positive semidefinite : For f : R? — R
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For the function f(x,y) = 22 + y*
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Therefore, the Hessian matrix is:

2 0
Vif = [o 2} =21,

To determine if f is convex, we need to verify if the Hessian matrix
is positive semidefinite. A matrix is positive semidefinite if all its
eigenvalues are non-negative.

In this case, the Hessian matrix is diagonal, the eigenvalues are then
simply the diagonal elements, which are 2 and 2, so positive, which
means that the Hessian matrix is positive semidefinite.

Since the Hessian matrix is positive semidefinite for all points (z,y) €
R2?, the function f(x,y) = 22 + 32 is convex.

Solution 3. Differentiability

(a)
(b)

()

The derivative of f(z) = 23 is f'(x) = 322.

f(z) = |x| is not differentiable at x = 0 because the left-hand and
right-hand derivatives at this point are not equal :

fle+h) - f(x)

/ — 1'
fiz) = lim -
At z =0, we have: f/(0) = limy,_, W = limy,_so %
When h > 0, |h| = h, so: limy,_,o+ % =limy o+ 2 =1
When h < 0, |h| = —h, so: lim,_,o- % =limy,_,o- 72 = —1
h h
lim L # lim 7l

h—0t+ h h—0— h

Therefore, the derivative does not exist at © = 0.

The gradient of f(x,y) = 22 +y*>+xyis Vf = (2z4y,2y+2) ", which
is well-defined everywhere in R2.

Solution 4. Optimality Conditions

(a)

The minimum of f(x) = x? + 42 + 4 occurs at x = —2. This point
satisfies the FOC f/(x) = 0 and satisfies SOC f”(x) > 0.



- To determine the point where f(x) achieves its minimum, we first
need to find the critical points by taking the first derivative and
setting it equal to zero (First-Order Optimality Condition):

d
f'(z) = %(x2+4x+4) =2r+4

Then the critical point(s) correspond() to
fl(z)=22+4=0

which gives x = —2, So the critical point is at x = —2.

- Verify the Second-Order Optimality Condition (we can also verify
the first ones) : i.e. Determine the nature of the critical point:
To determine whether the critical point x = —2 is a minimum,
we can use the second derivative test. The second derivative of
f(x) is:

d

f(z) = %(Qx +4)=2

Since f”(x) =2 > 0 for all values of z, meaning that the critical
point at x = —2 is a minimum.

The function f(x) = 22 + 42 +4 achieves its minimum at x = —2.
The first-order optimality condition is satisfied because f(—2) =
0 and the second-order optimality condition is satisfied because
the second derivative at f”(—2) > 0.



