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Solution 1. General questions about optimization

(a) Objective function: The function to be maximized or minimized in
an optimization problem.

(b) Feasible set: The set of all points that satisfy the constraints of the
optimization problem.

(c) Optimal solution: A point within the feasible set that minimizes or
maximizes the objective function.

Solution 2. Convexity

(a) The function f(x) = |x| is convex.

A function f : R → R is convex if, for all x1, x2 ∈ R and for any
λ ∈ [0, 1]:

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)

For f(x) = |x|, for any x1, x2 ∈ R and λ ∈ [0, 1], we have:

f(λx1 + (1− λ)x2) = |λx1 + (1− λ)x2|

By the triangle inequality, we have:

|λx1+(1−λ)x2| ≤ |λx1|+|(1−λ)x2| = λ|x1|+(1−λ)|x2| = λf(x1)+(1−λ)f(x2)

Threfore f(x) = |x| is convex.

(b) For f(x) = x2, the second derivative f ′′(x) = 2 ≥ 0 for all x ∈ R.
Therefore, f(x) is convex.

(c) f(x, y) = x2 + y2 is convex because the Hessian matrix ∇2f =

[
2 0
0 2

]
is positive semidefinite : For f : R2 → R

∇2f =

[
∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

]

For the function f(x, y) = x2 + y2:
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∂2f

∂x2
= 2,

∂2f

∂y2
= 2,

∂2f

∂x∂y
= 0

Therefore, the Hessian matrix is:

∇2f =

[
2 0
0 2

]
= 2I2

To determine if f is convex, we need to verify if the Hessian matrix
is positive semidefinite. A matrix is positive semidefinite if all its
eigenvalues are non-negative.

In this case, the Hessian matrix is diagonal, the eigenvalues are then
simply the diagonal elements, which are 2 and 2, so positive, which
means that the Hessian matrix is positive semidefinite.

Since the Hessian matrix is positive semidefinite for all points (x, y) ∈
R2, the function f(x, y) = x2 + y2 is convex.

Solution 3. Differentiability

(a) The derivative of f(x) = x3 is f ′(x) = 3x2.

(b) f(x) = |x| is not differentiable at x = 0 because the left-hand and
right-hand derivatives at this point are not equal :

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

At x = 0, we have: f ′(0) = limh→0
|0+h|−|0|

h = limh→0
|h|
h

When h > 0, |h| = h, so: limh→0+
|h|
h = limh→0+

h
h = 1

When h < 0, |h| = −h, so: limh→0−
|h|
h = limh→0−

−h
h = −1

lim
h→0+

|h|
h
6= lim

h→0−

|h|
h

Therefore, the derivative does not exist at x = 0.

(c) The gradient of f(x, y) = x2+y2+xy is ∇f = (2x+y, 2y+x)>, which
is well-defined everywhere in R2.

Solution 4. Optimality Conditions

(a) The minimum of f(x) = x2 + 4x + 4 occurs at x = −2. This point
satisfies the FOC f ′(x) = 0 and satisfies SOC f ′′(x) ≥ 0.
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- To determine the point where f(x) achieves its minimum, we first
need to find the critical points by taking the first derivative and
setting it equal to zero (First-Order Optimality Condition):

f ′(x) =
d

dx
(x2 + 4x+ 4) = 2x+ 4

Then the critical point(s) correspond() to

f ′(x) = 2x+ 4 = 0

which gives x = −2, So the critical point is at x = −2.

- Verify the Second-Order Optimality Condition (we can also verify
the first ones) : i.e. Determine the nature of the critical point:
To determine whether the critical point x = −2 is a minimum,
we can use the second derivative test. The second derivative of
f(x) is:

f ′′(x) =
d

dx
(2x+ 4) = 2

Since f ′′(x) = 2 > 0 for all values of x, meaning that the critical
point at x = −2 is a minimum.

The function f(x) = x2+4x+4 achieves its minimum at x = −2.
The first-order optimality condition is satisfied because f(−2) =
0 and the second-order optimality condition is satisfied because
the second derivative at f ′′(−2) ≥ 0.
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