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Solution 1. Gradient Descent

1. Calculate the gradient:

• Given the function f(x) = x2 + 4x+ 4, the gradient is computed
as follows:

∇f(x) =
d

dx
(x2 + 4x+ 4) = 2x+ 4.

2. Perform two steps of Gradient Descent:

• We start from an initial point x0 = 2.

• The update rule for gradient descent is given by

xk+1 = xk − α∇f(xk)

, where α is the step size.

• Setting α = 0.1:

x1 = x0 − α∇f(x0) = 2− 0.1× (2× 2 + 4) = 2− 0.1× 8 = 1.2,

x2 = x1 − α∇f(x1) = 1.2− 0.1× (2× 1.2 + 4) = 1.2− 0.1× 6.4 = 0.56.

• The sequence x0 = 2, x1 = 1.2, and x2 = 0.56 shows the progres-
sion towards minimizing f(x).

Solution 2. Least Squares Function

1. Gradient of the Least Squares Function:

• We can write f(w) = 1
2‖y −Xw‖2 as:

f(w) =
1

2
(y −Xw)>(y −Xw)

=
1

2

(
y>y − y>Xw −w>X>y + w>X>Xw

)
=

1

2

(
y>y − 2y>Xw + w>X>Xw

)
(1)

Since the two terms −y>Xw = −w>X>y are scalars and equal.

• To compute the gradient ∇f(w) = ∂f(w)
∂w , we differentiate. We

can differentiate (1) term by term:
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– ∂
∂w

(
1
2y

>y
)

= 0 as this term is a constant with respect to w.

– ∂
∂w

(
−y>Xw

)
= −X>y as this term is linear in w, so its

derivative with respect to w is −X>y.
We have the property:

∂(a>x)

∂x
=
∂(x>a)

∂x
= a.

– ∂
∂w

(
1
2w>X>Xw

)
= X>Xw: This term is quadratic in w,

so its derivative with respect to w yields X>Xw.
We have the property:

∂(x>Ax)

∂x
= (A+A>)x.

If A is symmetric (which is the case for X>X), then:

∂(x>Ax)

∂x
= 2Ax.

Combining these results, we obtain:

∇f(w) = −X>y +X>Xw = −X>(y −Xw) (2)

2. Hessian of the Least Squares Function:

• The Hessian of f(w) is given by the second derivative: By differ-
entiating the gradient (2) w.r.t w we get

∇2f(w) = X>X

since
∂(Ax)

∂x
= A

where A is a matrix and x is a vector.

• Since X>X is positive semi-definite (∀z, z>X>Xz = ‖Xz‖2 ≥ 0),
the function f(w) is convex. This confirms that the least squares
problem is a convex optimization problem.

• If the matrix X is of full rank, then X>X is not only positive
semi-definite but also positive definite. This means X>X has
strictly positive eigenvalues, ensuring a unique global minimum
for the least squares problem. The full rank condition implies that
the columns of X are linearly independent, which guarantees that
X>X is invertible.
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