TD/TP - 2 - November 2024.

Solution 1. Gradient Descent

- 1. Calculate the gradient:
 - Given the function $f(x) = x^2 + 4x + 4$, the gradient is computed as follows:

$$\nabla f(x) = \frac{d}{dx}(x^2 + 4x + 4) = 2x + 4.$$

- 2. Perform two steps of Gradient Descent:
 - We start from an initial point $x_0 = 2$.
 - The update rule for gradient descent is given by

$$x_{k+1} = x_k - \alpha \nabla f(x_k)$$

, where α is the step size.

• Setting $\alpha = 0.1$:

$$x_1 = x_0 - \alpha \nabla f(x_0) = 2 - 0.1 \times (2 \times 2 + 4) = 2 - 0.1 \times 8 = 1.2,$$

$$x_2 = x_1 - \alpha \nabla f(x_1) = 1.2 - 0.1 \times (2 \times 1.2 + 4) = 1.2 - 0.1 \times 6.4 = 0.56.$$

• The sequence $x_0 = 2$, $x_1 = 1.2$, and $x_2 = 0.56$ shows the progression towards minimizing f(x).

Solution 2. Least Squares Function

1. Gradient of the Least Squares Function:

• We can write $f(\mathbf{w}) = \frac{1}{2} ||y - X\mathbf{w}||^2$ as:

$$f(\mathbf{w}) = \frac{1}{2} (y - X\mathbf{w})^{\top} (y - X\mathbf{w})$$

$$= \frac{1}{2} \left(y^{\top} y - y^{\top} X \mathbf{w} - \mathbf{w}^{\top} X^{\top} y + \mathbf{w}^{\top} X^{\top} X \mathbf{w} \right)$$

$$= \frac{1}{2} \left(y^{\top} y - 2y^{\top} X \mathbf{w} + \mathbf{w}^{\top} X^{\top} X \mathbf{w} \right)$$
(1)

Since the two terms $-y^{\top}X\mathbf{w} = -\mathbf{w}^{\top}X^{\top}y$ are scalars and equal.

• To compute the gradient $\nabla f(\mathbf{w}) = \frac{\partial f(\mathbf{w})}{\partial \mathbf{w}}$, we differentiate. We can differentiate (1) term by term:

 $-\frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2} y^{\top} y\right) = 0 \text{ as this term is a constant with respect to } \mathbf{w}.$ $-\frac{\partial}{\partial \mathbf{w}} \left(-y^{\top} X \mathbf{w}\right) = -X^{\top} y \text{ as this term is linear in } \mathbf{w}, \text{ so its derivative with respect to } \mathbf{w} \text{ is } -X^{\top} y.$ We have the property:

$$\frac{\partial(a^{\top}x)}{\partial x} = \frac{\partial(x^{\top}a)}{\partial x} = a.$$

 $- \frac{\partial}{\partial \mathbf{w}} \left(\frac{1}{2} \mathbf{w}^{\top} X^{\top} X \mathbf{w} \right) = X^{\top} X \mathbf{w}$: This term is quadratic in \mathbf{w} , so its derivative with respect to \mathbf{w} yields $X^{\top} X \mathbf{w}$. We have the property:

$$\frac{\partial (x^\top A x)}{\partial x} = (A + A^\top) x.$$

If A is symmetric (which is the case for $X^{\top}X$), then:

$$\frac{\partial(x^{\top}Ax)}{\partial x} = 2Ax.$$

Combining these results, we obtain:

$$\nabla f(\mathbf{w}) = -X^{\top}y + X^{\top}X\mathbf{w} = -X^{\top}(y - X\mathbf{w})$$
(2)

2. Hessian of the Least Squares Function:

• The Hessian of $f(\mathbf{w})$ is given by the second derivative: By differentiating the gradient (2) w.r.t \mathbf{w} we get

$$\nabla^2 f(\mathbf{w}) = X^\top X$$

since

$$\frac{\partial(Ax)}{\partial x} = A$$

where A is a matrix and x is a vector.

- Since $X^{\top}X$ is positive semi-definite $(\forall z, z^{\top}X^{\top}Xz = ||Xz||^2 \ge 0)$, the function $f(\mathbf{w})$ is convex. This confirms that the least squares problem is a convex optimization problem.
- If the matrix X is of full rank, then $X^{\top}X$ is not only positive semi-definite but also positive definite. This means $X^{\top}X$ has strictly positive eigenvalues, ensuring a unique global minimum for the least squares problem. The full rank condition implies that the columns of X are linearly independent, which guarantees that $X^{\top}X$ is invertible.