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Solution 1. Gradient Descent
1. Calculate the gradient:

e Given the function f(z) = 22 + 4z + 4, the gradient is computed
as follows:

d
Vi) = %(x2+4x+4) =2z +4.

2. Perform two steps of Gradient Descent:

e We start from an initial point zg = 2.

e The update rule for gradient descent is given by
Tpy1 = 2 — aV f(xr)

, where « is the step size.

e Setting a = 0.1:
21 =20 — aVf(z) =2-01x (2x2+4)=2—-0.1x8=1.2,
xo=x1—aVf(r;))=12-01x(2x1.24+4)=12-0.1 x6.4=0.56.

e The sequence zg = 2, 1 = 1.2, and 22 = 0.56 shows the progres-
sion towards minimizing f(z).

Solution 2. Least Squares Function
1. Gradient of the Least Squares Function:

e We can write f(w) = 3|y — Xw]? as:

—_

fw) = Sly—Xw) (y - Xw)
= % (yTy —y' Xw—w' XTy+ WTXTXW)
= % (yTy — 2y Xw + WTXTXW) (1)
Since the two terms —y' Xw = —w ' X Ty are scalars and equal.

e To compute the gradient V f(w) = %, we differentiate. We

can differentiate (1) term by term:



— % (%yTy) = 0 as this term is a constant with respect to w.

a% (—yTXW) = —X Ty as this term is linear in w, so its

derivative with respect to w is —X ' y.
We have the property:
da'z) O(zTa)

= = Q.

ox ox

- a% (Aw'XTXw) = X" Xw: This term is quadratic in w,
so its derivative with respect to w yields X ' Xw.

We have the property:

O(x T Ax)

= (A+ ANz,
Ep (A+ B

If A is symmetric (which is the case for X " X), then:

T
76(1’ Az) = 2Ax.
0x
Combining these results, we obtain:
Viw)= X"y + X" Xw=-X"(y — Xw) (2)

2. Hessian of the Least Squares Function:

e The Hessian of f(w) is given by the second derivative: By differ-
entiating the gradient (2) w.r.t w we get

Vif(w)=X"X
since o(Ax)
T
or A

where A is a matrix and z is a vector.

e Since X ' X is positive semi-definite (V2,27 X T Xz = || X z||2 > 0),
the function f(w) is convex. This confirms that the least squares
problem is a convex optimization problem.

e If the matrix X is of full rank, then X "X is not only positive
semi-definite but also positive definite. This means X ' X has
strictly positive eigenvalues, ensuring a unique global minimum
for the least squares problem. The full rank condition implies that
the columns of X are linearly independent, which guarantees that
X TX is invertible.



