TD: Gradient Descent for convex and smooth functions

Faïcel Chamroukhi

week 4-5 - Nov. 28 (lecture). Dec 05. 2024

Convergence Analysis

We study the convergence for a fixed step size α . Prove the following result.

Theorem Assume that $f : \mathbb{R}^n \to \mathbb{R}$ is convex and *L*-smooth. If x^* is a critical point of f, i.e., $\nabla f(x^*) = 0$, then the the sequence $\{x^{(k)}\}$ generated by gradient descent

$$x^{(k+1)} = x^{(k)} + \alpha \nabla f(x^{(k)}),$$

with fixed step size $0 \leq \alpha \leq \frac{1}{L}$ satisfies:

$$f(x^{(k)}) - f(x^{\star}) \le \frac{\|x^{(0)} - x^{\star}\|^2}{2\alpha k}.$$

Theorem Assume that $f : \mathbb{R}^n \to \mathbb{R}$ is convex and *L*-smooth. If x^* is a critical point of f, i.e., $\nabla f(x^*) = 0$, then the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ generated by a gradient descent

$$x^{(k+1)} = x^{(k)} + \alpha \nabla f(x^{(k)}),$$

with fixed step size $\alpha \leq \frac{1}{L}$ satisfies:

$$f(x^{(k)}) - f(x^{\star}) \le \frac{\|x^{(0)} - x^{\star}\|^2}{2\alpha k}.$$

i.e., This implies that gradient descent has a convergence rate of $O\left(\frac{1}{k}\right)$. i.e., To achieve $f(x^{(k)}) - f(x^*) \leq \epsilon$, we need $O\left(\frac{1}{\epsilon}\right)$ iterations.

Proof: Using the smoothness property, we can write:

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||^2$$
 for any x, y

Proving this property:

• Since f is L-smooth, then ∇f is L-Lipschitz continuous, this means there exists a constant L > 0 such that

$$\nabla^2 f \leq LI$$
, or equivalently, $\nabla^2 f(z) - LI \leq 0$

• i.e., $\nabla^2 f(z) - LI$ is semi-definite negative, which means $\forall x, y, z$ we have:

$$(x-y)^{\top} (\nabla^2 f(z) - LI)(x-y) \le 0$$

which means:

$$(x-y)^{\top} \nabla^2 f(z)(x-y) = (x-y)^{\top} \nabla^2 f(z)(x-y) - L ||x-y||^2 \le 0$$

Rearranging this inequality, we get the bound:

$$(x-y)^{\top} \nabla^2 f(z)(x-y) \le L ||x-y||^2$$

• Based on Taylor's Remainder Theorem, we have $\forall x, y, \exists z \in [x, y]$:

$$f(y) = f(x) + \nabla f(x)^{\top} (y - x) + \frac{1}{2} (x - y)^{\top} \nabla^2 f(z) (x - y)^{\top}$$

where $\nabla f(x)$ is the gradient of f at x, $\nabla^2 f(z)$ is the Hessian matrix of f evaluated at some intermediate point $z \in [x, y]$, and the notation $z \in [x, y]$ (i.e., z lies on the line segment between x and y, i.e., z = x + t(y - x) for some $t \in (0, 1)$).

• Substituting the bound from the previous step into Taylor's expansion, we get:

$$f(y) \le f(x) + \nabla f(x)^{\top} (y - x) + \frac{L}{2} ||y - x||^2$$
 for any x, y

• Plugging in $y = x^{(k+1)}$ and $x = x^{(k)}$ with $x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)})$. To simplify notation, let's use $x^+ = x - \alpha \nabla f(x)$:

$$\begin{aligned} f(x^{+}) &\leq f(x) + \nabla f(x)^{\top} (x^{+} - x) + \frac{L}{2} \|x^{+} - x\|^{2} \\ &= f(x) + \nabla f(x)^{\top} (x - \alpha \nabla f(x) - x) + \frac{L}{2} \|x - \alpha \nabla f(x) - x\|^{2} \\ &= f(x) - \alpha \nabla f(x)^{\top} \nabla f(x) + \frac{L}{2} \alpha^{2} \|\nabla f(x)\|^{2} \\ &= f(x) - \left(1 - \frac{L\alpha}{2}\right) \alpha \|\nabla f(x)\|^{2} \end{aligned}$$

• Taking $0 < \alpha \leq \frac{1}{L}$, we have $1 - \frac{L\alpha}{2} \geq \frac{1}{2}$. Therefore:

$$f(x^+) \le f(x) - \frac{\alpha}{2} \|\nabla f(x)\|^2.$$

• Since f is convex, $f(x) \leq f(x^*) + \nabla f(x)^{\top} (x - x^*)$, we have:

$$f(x^{+}) \leq f(x) - \frac{\alpha}{2} \|\nabla f(x)\|^{2}$$

$$\leq f(x^{*}) + \nabla f(x)^{\top} (x - x^{*}) - \frac{\alpha}{2} \|\nabla f(x)\|^{2}$$

$$= f(x^{*}) + \frac{1}{2\alpha} \left(2\alpha \nabla f(x)^{\top} (x - x^{*}) - \alpha^{2} \|\nabla f(x)\|^{2} \right)$$

• using the fact that $2\alpha \nabla f(x)^{\top}(x-x^{\star}) - \alpha^2 \|\nabla f(x)\|^2$ is a part of a remarkable identity $\|a-b\|^2 = \|a\|^2 - 2a^{\top}b + \|b\|^2$ where

$$a = x - x^*, \quad b = \alpha \nabla f(x),$$

since $||x - x^{\star} - \alpha \nabla f(x)||^2 = ||x - x^{\star}||^2 - 2\alpha (x - x^{\star})^{\top} \nabla f(x) + \alpha^2 ||\nabla f(x)||^2$. Then we have

$$2\alpha(x-x^{\star})^{\top}\nabla f(x) - \alpha^{2} \|\nabla f(x)\|^{2} = \|x-x^{\star}\|^{2} - \|x-x^{\star} - \alpha \nabla f(x)\|^{2}.$$

• The previous inequality becomes

$$f(x^{+}) \leq f(x) - \frac{\alpha}{2} \|\nabla f(x)\|^{2}$$

$$\leq f(x^{*}) + \frac{1}{2\alpha} \left(\|x - x^{*}\|^{2} - \|x - x^{*} - \alpha \nabla f(x)\|^{2} \right)$$

$$= f(x^{*}) + \frac{1}{2\alpha} \left(\|x - x^{*}\|^{2} - \|x^{+} - x^{*}\|^{2} \right)$$

and we finally get

$$f(x^+) - f(x^*) \le \frac{1}{2\alpha} \left(\|x - x^*\|^2 - \|x^+ - x^*\|^2 \right)$$

• This inequality holds for x^+ on every iteration of gradient descent. Summing over iterations, we have:

$$\begin{split} \sum_{i=1}^{k} \left(f(x^{(i)}) - f(x^{*}) \right) &\leq \sum_{i=1}^{k} \frac{1}{2\alpha} \left(\|x^{(i-1)} - x^{*}\|_{2}^{2} - \|x^{(i)} - x^{*}\|_{2}^{2} \right) \\ & \stackrel{\text{telescoping series}}{=} \frac{1}{2\alpha} \left(\|x^{(0)} - x^{*}\|_{2}^{2} - \|x^{(k)} - x^{*}\|_{2}^{2} \right) \\ &\leq \frac{1}{2\alpha} \left(\|x^{(0)} - x^{*}\|_{2}^{2} \right) \end{split}$$

So we obtain:

$$\sum_{i=1}^{k} \left(f(x^{(i)}) - f(x^*) \right) \le \frac{1}{2\alpha} \|x^{(0)} - x^*\|_2^2$$

• Since $f(x^{(k)})$ is nonincreasing,

$$kf(x^{(k)}) \le \sum_{i=1}^{k} f(x^{(i)})$$

which implies

$$k(f(x^{(k)}) - f(x^{\star})) \le \sum_{i=1}^{k} (f(x^{(i)}) - f(x^{\star})),$$

equivalently,

$$f(x^{(k)}) - f(x^{\star}) \le \frac{1}{k} \sum_{i=1}^{k} (f(x^{(i)}) - f(x^{\star})).$$

Thus:

$$f(x^{(k)}) - f(x^{\star}) \le \frac{1}{k} \sum_{i=1}^{k} \left(f(x^{(i)}) - f(x^{\star}) \right) \le \frac{\|x^{(0)} - x^{\star}\|^2}{2\alpha k}$$

We then finally have:

$$f(x^{(k)}) - f(x^{\star}) \le \frac{\|x^{(0)} - x^{\star}\|^2}{2\alpha k}.$$

appendix

Telescoping Series: To understand why

$$\sum_{i=1}^{k} \frac{1}{2\alpha} \left(\|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2 \right) = \frac{1}{2\alpha} \left(\|x^{(0)} - x^*\|_2^2 - \|x^{(k)} - x^*\|_2^2 \right)$$

let's expand the summation to observe the telescoping effect:

$$\sum_{i=1}^{k} \frac{1}{2\alpha} \left(\|x^{(i-1)} - x^*\|_2^2 - \|x^{(i)} - x^*\|_2^2 \right)$$

Expanding this explicitly, we have:

$$\frac{1}{2\alpha} \left(\|x^{(0)} - x^*\|_2^2 - \|x^{(1)} - x^*\|_2^2 \right) + \frac{1}{2\alpha} \left(\|x^{(1)} - x^*\|_2^2 - \|x^{(2)} - x^*\|_2^2 \right) + \dots + \frac{1}{2\alpha} \left(\|x^{(k-1)} - x^*\|_2^2 - \|x^{(k)} - x^*\|_2^2 \right)$$

Notice that most intermediate terms **cancel**:

- The term $||x^{(1)} x^*||_2^2$ appears as a positive value in the first part and cancels with the negative value in the next part.
- Similarly, the term $\|x^{(2)}-x^*\|_2^2$ cancels out, and this pattern continues.

Thus, the only terms that do not cancel are the **first** term $||x^{(0)} - x^*||_2^2$ and the **ast** negative term $-||x^{(k)} - x^*||_2^2$, which results in:

$$\frac{1}{2\alpha} \left(\|x^{(0)} - x^*\|_2^2 - \|x^{(k)} - x^*\|_2^2 \right)$$