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Convergence Analysis

We study the convergence for a fixed step size α. Prove the following result.

Theorem Assume that f : Rn → R is convex and L-smooth. If x∗ is a critical
point of f , i.e., ∇f(x∗) = 0, then the the sequence {x(k)} generated by gradient
descent

x(k+1) = x(k) + α∇f(x(k)),

with fixed step size 0 ≤ α ≤ 1
L satisfies:

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖2

2αk
.
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Theorem Assume that f : Rn → R is convex and L-smooth. If x∗ is a critical
point of f , i.e., ∇f(x∗) = 0, then the the sequence {x(k)}∞k=0 generated by a
gradient descent

x(k+1) = x(k) + α∇f(x(k)),

with fixed step size α ≤ 1
L satisfies:

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖2

2αk
.

i.e., This implies that gradient descent has a convergence rate of O
(
1
k

)
.

i.e., To achieve f(x(k))− f(x?) ≤ ε, we need O
(
1
ε

)
iterations.

Proof: Using the smoothness property, we can write:

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖y − x‖2 for any x, y

Proving this property:

• Since f is L-smooth, then ∇f is L-Lipschitz continuous, this means there
exists a constant L > 0 such that

∇2f � LI, or equivalently, ∇2f(z)− LI � 0

• i.e., ∇2f(z)− LI is semi-definite negative, which means ∀x, y, z we have:

(x− y)>(∇2f(z)− LI)(x− y) ≤ 0

which means:

(x− y)>∇2f(z)(x− y) = (x− y)>∇2f(z)(x− y)− L‖x− y‖2 ≤ 0

Rearranging this inequality, we get the bound:

(x− y)>∇2f(z)(x− y) ≤ L‖x− y‖2

• Based on Taylor’s Remainder Theorem, we have ∀x, y,∃z ∈ [x, y]:

f(y) = f(x) +∇f(x)>(y − x) +
1

2
(x− y)>∇2f(z)(x− y)

where ∇f(x) is the gradient of f at x, ∇2f(z) is the Hessian matrix of f
evaluated at some intermediate point z ∈ [x, y], and the notation z ∈ [x, y]
(i.e., z lies on the line segment between x and y, i.e., z = x+ t(y − x) for
some t ∈ (0, 1)).

• Substituting the bound from the previous step into Taylor’s expansion, we
get:

f(y) ≤ f(x) +∇f(x)>(y − x) +
L

2
‖y − x‖2 for any x, y
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• Plugging in y = x(k+1) and x = x(k) with x(k+1) = x(k) − α∇f(x(k)). To
simplify notation, let’s use x+ = x− α∇f(x):

f(x+) ≤ f(x) +∇f(x)>(x+ − x) +
L

2
‖x+ − x‖2

= f(x) +∇f(x)>(x− α∇f(x)− x) +
L

2
‖x− α∇f(x)− x‖2

= f(x)− α∇f(x)>∇f(x) +
L

2
α2‖∇f(x)‖2

= f(x)−
(

1− Lα

2

)
α‖∇f(x)‖2

• Taking 0 < α ≤ 1
L , we have 1− Lα

2 ≥
1
2 . Therefore:

f(x+) ≤ f(x)− α

2
‖∇f(x)‖2.

• Since f is convex, f(x) ≤ f(x∗) +∇f(x)>(x− x∗), we have:

f(x+) ≤ f(x)− α

2
‖∇f(x)‖2

≤ f(x?) +∇f(x)>(x− x?)− α

2
‖∇f(x)‖2

= f(x?) +
1

2α

(
2α∇f(x)>(x− x?)− α2‖∇f(x)‖2

)
• using the fact that 2α∇f(x)>(x−x?)−α2‖∇f(x)‖2 is a part of a remark-

able identity ‖a− b‖2 = ‖a‖2 − 2a>b+ ‖b‖2 where

a = x− x?, b = α∇f(x),

since ‖x−x?−α∇f(x)‖2 = ‖x−x?‖2−2α(x−x?)>∇f(x)+α2‖∇f(x)‖2.
Then we have

2α(x− x?)>∇f(x)− α2‖∇f(x)‖2 = ‖x− x?‖2 − ‖x− x? − α∇f(x)‖2.

• The previous inequality becomes

f(x+) ≤ f(x)− α

2
‖∇f(x)‖2

≤ f(x?) +
1

2α

(
‖x− x?‖2 − ‖x− x? − α∇f(x)‖2

)
= f(x?) +

1

2α

(
‖x− x?‖2 − ‖x+ − x?‖2

)
and we finally get

f(x+)− f(x?) ≤ 1

2α

(
‖x− x?‖2 − ‖x+ − x?‖2

)
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• This inequality holds for x+ on every iteration of gradient descent.

Summing over iterations, we have:

k∑
i=1

(
f(x(i))− f(x∗)

)
≤

k∑
i=1

1

2α

(
‖x(i−1) − x∗‖22 − ‖x(i) − x∗‖22

)
telescoping series

=
1

2α

(
‖x(0) − x∗‖22 − ‖x(k) − x∗‖22

)
≤ 1

2α

(
‖x(0) − x∗‖22

)
So we obtain:

k∑
i=1

(
f(x(i))− f(x∗)

)
≤ 1

2α
‖x(0) − x∗‖22

• Since f(x(k)) is nonincreasing,

kf(x(k)) ≤
k∑
i=1

f(x(i))

which implies

k(f(x(k))− f(x?)) ≤
k∑
i=1

(f(x(i))− f(x?)),

equivalently,

f(x(k))− f(x?) ≤ 1

k

k∑
i=1

(f(x(i))− f(x?)).

Thus:

f(x(k))− f(x?) ≤ 1

k

k∑
i=1

(
f(x(i))− f(x?)

)
≤ ‖x

(0) − x?‖2

2αk

We then finally have:

f(x(k))− f(x?) ≤ ‖x
(0) − x?‖2

2αk
.
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appendix
Telescoping Series:
To understand why

k∑
i=1

1

2α

(
‖x(i−1) − x∗‖22 − ‖x(i) − x∗‖22

)
=

1

2α

(
‖x(0) − x∗‖22 − ‖x(k) − x∗‖22

)
let’s expand the summation to observe the telescoping effect:

k∑
i=1

1

2α

(
‖x(i−1) − x∗‖22 − ‖x(i) − x∗‖22

)
Expanding this explicitly, we have:

1

2α

(
‖x(0) − x∗‖22 − ‖x(1) − x∗‖22

)
+

1

2α

(
‖x(1) − x∗‖22 − ‖x(2) − x∗‖22

)
+ · · ·

+
1

2α

(
‖x(k−1) − x∗‖22 − ‖x(k) − x∗‖22

)
Notice that most intermediate terms cancel:

• The term ‖x(1) − x∗‖22 appears as a positive value in the first part and
cancels with the negative value in the next part.

• Similarly, the term ‖x(2) − x∗‖22 cancels out, and this pattern continues.

Thus, the only terms that do not cancel are the first term ‖x(0) − x∗‖22 and
the ast negative term −‖x(k) − x∗‖22, which results in:

1

2α

(
‖x(0) − x∗‖22 − ‖x(k) − x∗‖22

)
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