Université Paris SaclayMSc AI & MSc Data Science.TC2-Optimization for Machine LearningFaïcel Chamroukhi

TP - December 05, 2024.

Exercice 1. Gradient Descent and variants: Given $f(x) = x^2, x \in \mathbb{R}$. Write a Python/Jupyter code to

- 1. Minimize f by gradient descent with a fixed step size (eg. $\alpha = 0.1$)
- 2. Minimize f by classical momentum (eg. use $\mu = 0.6$).
- 3. Consider now a Nesterov accelerated gradient descent.
- 4. Compare and comment your results by considering the same starting values (for example $x^{(0)} = 0.6, \alpha = 0.1$ for $f(x) = x^2$). eg. observe across algorithm's iterations, the solution's paths, the gradient paths, the function values along the paths, the norm of the gradients, etc
- 5. Use it for $f(x) = (x 3)^2 + 2x, x \in \mathbb{R}$.

Exercice 2. Newton Method Now write a Python/Jupyter code to

- 1. Minimize f with the Newton method
- 2. What do you observe ? How do you explain this ?
- 3. Use the Newton method for $f(x) = (x-3)^2 + 2x, x \in \mathbb{R}$.
- 4. Comment.

Exercice 3. Gradient Descent and variants, and Newton method for multivariate problems Given $f(x) = x^t A x$, with $A = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & 2, \end{pmatrix} x \in \mathbb{R}^2$.

Write a Python/Jupyter code to

- 1. Minimize f by gradient descent with a fixed step size (eg. $\alpha = 0.1$)
- 2. Minimize f by gradient descent with the step size chozen by Armijo's method (eg. set $\sigma = 0.1$, and $\beta^{(0)} = 1$ and then reduce it by some factor).
- 3. Minimize f by classical momentum (eg. use $\mu = 0.8$).
- 4. Consider Nesterov momentum (use the same momentum eg. $\mu = 0.8$).
- 5. Consider the Newton method. What do you observe? Why this?
- 6. Compare and comment your results by considering the same starting values (eg. $x^{(0)} = (2.5, 2.5)^T$, $\alpha = 0.1$) eg. observe across algorithm's iterations, the solution's paths, the gradient paths, the function values along the paths, the norm of the gradients similarly, etc