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Objectives

The objective of this lecture is to understand :

The foundational principles of decision-making in machine learning,

including from a probabilistic perspective.

The different errors and risk measures associated with a machine

learning problem.

Their optimal formulations and key decompositions, including the

bias-variance decomposition.

The intuitions behind standard decision rules.

Practical applications showcased through selected machine learning

algorithms.
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Supervised Learning

The data are represented by a random pair (X, Y ) ∈ X × Y where X is a vector

of descriptors for some variable of interest Y

The objective is Prediction, i.e. to seek for a prediction function h : X → Y for

which ŷ = h(x) is a good approximation of the true output y

Problems : typically Xi ∈ Rp, Y ∈ Y = Rd for regression and

Y ∈ Y = {0, 1}, {−1,+1} or {1, · · · ,K} for classification

↪→ We will mainly focus on parametric probabilistic models of the form

Y = h(X) + ε, ε ∼ pθ

with the conditional distr. P (Y |X,h) can be computed in terms of Pθ(Y − h(X)).

Data : a random sample (Xi, Yi)
n
i=1 with observed values Dn = (xi, yi)

n
i=1

Data-Scientist’s role : given the data, choose a prediction function h from a

class H that attempts to “minimize” the prediction error for of all possible data

(risk) R(h), under a loss function ` measuring the error of predicting Y by h(X).

↪→ minimize the empirical risk (data-Dn-driven) Rn(h)

↪→ Minimizing Rn(h) always requires an optimization algorithm A
Data-Scientist’s “Toolbox” : {Data, loss, hypothesis, algorithm}
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which ŷ = h(x) is a good approximation of the true output y

Problems : typically Xi ∈ Rp, Y ∈ Y = Rd for regression and

Y ∈ Y = {0, 1}, {−1,+1} or {1, · · · ,K} for classification

↪→ We will mainly focus on parametric probabilistic models of the form

Y = h(X) + ε, ε ∼ pθ

with the conditional distr. P (Y |X,h) can be computed in terms of Pθ(Y − h(X)).

Data : a random sample (Xi, Yi)
n
i=1 with observed values Dn = (xi, yi)

n
i=1

Data-Scientist’s role : given the data, choose a prediction function h from a

class H that attempts to “minimize” the prediction error for of all possible data

(risk) R(h), under a loss function ` measuring the error of predicting Y by h(X).

↪→ minimize the empirical risk (data-Dn-driven) Rn(h)

↪→ Minimizing Rn(h) always requires an optimization algorithm A
Data-Scientist’s “Toolbox” : {Data, loss, hypothesis, algorithm}

F. Chamroukhi Statistical Learning 4/34



Supervised Learning

The data are represented by a random pair (X, Y ) ∈ X × Y where X is a vector

of descriptors for some variable of interest Y

The objective is Prediction, i.e. to seek for a prediction function h : X → Y for
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Prediction/decision function

Def. Prediction function

h : X → Y
x 7→ h(x)

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear prediction functions

h : Rp → R

x 7→ 〈x, θ〉 = θTx

The predicted values of Yi’s for new covariates Xi = xis correspond to

ŷi = h(xi)

Example : Linear prediction functions (cont.) : ŷi = 〈xi, θ〉 = θTxi

Q : How good we are in prediction on a particular pair (x, y) ?
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Loss

Def. Loss function

` : Y × Y → R

(y, h(x)) 7→ `(y, h(x))

It measures how good we are on a particular pair (x, y).

(We assume that the distribution of the test data is the same as that of the training.)

Examples of loss functions

Square (`2)-loss :

`(y, h(x)) = (y − h(x))2

Absolute (`1)-loss :

`(y, h(x)) = |y − h(x)|
Huber loss : `δ(y, h(x)) ={

1
2
(y − h(x))2 if |y − h(x)| ≤ δ,

δ (|y − h(x)| − 1
2
δ), otherwise.

logarithmic loss :

`(y, hθ(x)) = − log(pθ(x, y))

“0-1” loss : `(y, h(x)) = 1h(x)6=y

Denoting `(y, h(x)) = φ(yh(x)) and

u = yh(x)

Hinge loss φhinge(u) = (1− u)+

Logistic loss

φlogistic(u) = log(1 + exp(−u))

Square loss φsquare(u) = (1− u)2

Exponential loss φexp(u) = exp(−u)
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Examples of loss functions

-3 -2 -1 0 1 2 3
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Square Loss

Absolute Loss

Huber Loss (  = 1)

Huber Loss (  = 5)

Figure – Some loss functions in regression. (curve of `(u) for u = y − h(x) ; y ∈ R)
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Figure – Some loss functions in classification. (curve of `(u) for u = yh(x) and y ∈ {−1,+1})
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Examples of loss functions in machine learning

Squared (`2)-loss :

`(y, h(x)) = (y − h(x))2

used in Ordinary Least Squares

(OLS) Also regression with Gaussian

noise

Absolute (`1)-loss :

`(y, h(x)) = |y − h(x)| used in least

absolute deviation (LAD) (Robust)

regression (idem Regression with

Laplace noise), and in some settings

for Lasso regression (for sparsity).

Huber loss : `δ(y, h(x)) ={
1
2
(y − h(x))2, |y − h(x)| ≤ δ

δ(|y − h(x)| − 1
2
δ), otherwise

used in Robust regression (to

mitigate the effect of outliers.).

Logarithmic loss :

`(y, hθ(x)) = − log(pθ(x, y)) used in

Logistic regression

and in many maximum-likelihood

estimation problems

Hinge loss :

φhinge(u) = (1− u)+

used in Support Vector Machines

Logistic loss :

φlogistic(u) = log(1 + exp(−u))

used in Logistic regression

0-1 loss : `(y, h(x)) = 1h(x)6=y used

in theoretical analysis of classifiers

(not differentiable) like Bayes

classifiers and risk minimization.F. Chamroukhi Statistical Learning 8/34
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Risk

Risk : Given the pair (X,Y ) with (unknown) joint distribution P , the error of

approximating Y by h(X) is measured by a chosen loss function `(Y, h(X)). Then,

the Risk associated to model/hypothesis h under loss l is the Expected loss :

R(h) = EP [`(Y, h(X))] =

∫
X×Y

`(y, h(x))dP (x, y).

↪→ prediction error that measures the generalization performance of h.

Risk Examples

I Under the “0-1”-loss `(y, h(x)) = 1h(x)6=y :

R(h) =

∫
X×Y

1h(x) 6=ydP (x, y) = EP [1h(x) 6=y] = P(h(X) 6= Y ).

↪→ This is the most used risk in classification
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Optimal Risk

R(h) = E[`(Y, h(X))] is the error of function h under loss `

Q : What is the smallest possible error we can achieve (under loss `) ?

Bayes Risk

I R(h) is minimized at a Bayes decision function h∗ : X → Y satisfying

∀x ∈ X , h∗(x) ∈ arg min
h(x)∈Y

E[`(Y, h(x))|X = x]. [See proof in the next slide]

I The Bayes risk R∗ is the risk of all Bayes predictors is equal to

R∗ = R(h∗) = inf
h

R(h)

I The infimum risk R∗ (taken for all possible prediction functions h) is known

as the Bayes risk.

I A Bayes decision function h∗ is a function that achieves the minimal risk R∗

Excess risk : The excess risk of h is equal to R(h)−R∗ (always non-negative).
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Bayes Risk

By the law of total expectation we have : E[Z] = E[E[Z|T ]]. We can then write

R(h) = E[E[`(Y, h(X))|X]] = Ex∼PX [E[`(Y, h(X))|X = x]] = Ex∼PX [r(z|x)]

if we consider the conditional risk (deterministic function)

r(h(x)|x) = E[`(Y, h(x))|X = x],

this leads to

R(h) = E[r(h(X)|X)].

Bayes risk

Given the distribution Y |X = x for any x, the optimal predictor h∗ is known : R(h) is

minimized at a Bayes predictor h∗ : X → Y satisfying

∀x ∈ X , h∗(x) ∈ arg min
z∈Y

E[`(Y, z)|X = x].

The Bayes risk R∗ is the risk of all Bayes predictors and is equal to

R∗ = R(h∗) = Ex∼PX inf
h(x)∈Y

E[`(Y, h(x))|X = x].
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Optimal prediction functions

In classification, i.e Y = {0, 1} or Y = {1, . . . ,K}, under the (0-1)-loss,

`(y, h(x)) = 1h(x)6=y, the best predictor is

h∗(x) ∈ arg max
h(x)∈Y

P(Y = h(x)|X = x).

We have the conditional risk :

E[`(Y, h(X))|X = x] = E[1h(X)6=Y |X = x]

= P[h(X) 6= Y |X = x]

= 1− P[Y = h(X)|X = x],

then

h∗(x) ∈ arg min
h(X)∈Y

E[`(Y, h(X))|X = x]

= arg min
h(X)∈Y

{1− P[Y = h(X)|X = x]}

= arg max
h(X)∈Y

P(Y = h(X)|X = x)

This why under this loss Bayes’ risk corresponds to the MAP - Maximum A

Posteriori principle

F. Chamroukhi Statistical Learning 12/34



Optimal prediction functions

In classification, i.e Y = {0, 1} or Y = {1, . . . ,K}, under the (0-1)-loss,

`(y, h(x)) = 1h(x)6=y, the best predictor is

h∗(x) ∈ arg max
h(x)∈Y

P(Y = h(x)|X = x).

We have the conditional risk :

E[`(Y, h(X))|X = x] = E[1h(X)6=Y |X = x]

= P[h(X) 6= Y |X = x]

= 1− P[Y = h(X)|X = x],

then

h∗(x) ∈ arg min
h(X)∈Y

E[`(Y, h(X))|X = x]

= arg min
h(X)∈Y

{1− P[Y = h(X)|X = x]}

= arg max
h(X)∈Y

P(Y = h(X)|X = x)

This why under this loss Bayes’ risk corresponds to the MAP - Maximum A

Posteriori principle

F. Chamroukhi Statistical Learning 12/34



Optimal prediction functions

In classification, i.e Y = {0, 1} or Y = {1, . . . ,K}, under the (0-1)-loss,

`(y, h(x)) = 1h(x)6=y, the best predictor is

h∗(x) ∈ arg max
h(x)∈Y

P(Y = h(x)|X = x).

We have the conditional risk :

E[`(Y, h(X))|X = x] = E[1h(X)6=Y |X = x]

= P[h(X) 6= Y |X = x]

= 1− P[Y = h(X)|X = x],

then

h∗(x) ∈ arg min
h(X)∈Y

E[`(Y, h(X))|X = x]

= arg min
h(X)∈Y

{1− P[Y = h(X)|X = x]}

= arg max
h(X)∈Y

P(Y = h(X)|X = x)

This why under this loss Bayes’ risk corresponds to the MAP - Maximum A

Posteriori principle

F. Chamroukhi Statistical Learning 12/34



Optimal prediction functions

In regression, i.e Y = R, under the square loss, `(y, h(x)) = (h(x)− y)2, the best

predictor is

h∗(x) = E[Y |X = x]

We have the conditional risk :

R(h(x)) = E[`(Y, h(X))|X = x] = E[(h(X)− Y )2|X = x]

=

∫
(h(X)− y)2p(y|x)dy

optimizing the Risk by differentiating w.r.t h(x) and setting the derivative to 0 :

∂R(h(x))

∂h(x)
=

∂

∂h(x)
{
∫

(h(X)− y)2p(y|x)dy}

= 2

∫
(h(x)− y)p(y|x)dy

= 2
[
h(x)

∫
p(y|x)dy︸ ︷︷ ︸

1

−
∫
yp(y|x)dy

]
= 2
(
h(x)− E[Y |X = x])

which is zero at h(x)∗ = E[Y |X = x] then

h∗(x) = arg min
h(x)∈Y

E[`(Y, h(X))|X = x] = E[Y |X = x]
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Empirical Risk Minimization

Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y ).

5 In real situations P is in unknown, as we only have a sample Dn = (Xi, Yi)1≤i≤n,

↪→ We attempt to minimize the Empirical Risk

Rn(h) =
1

n

n∑
i=1

`(Yi, h(Xi))

to estimate h (within a family H) :

ĥn ∈ arg min
h∈H

Rn(h).

Why this is relevant ? Note : By the Law of Large Numbers,

( 1
n

∑n
i=1 `(Yi, h(Xi))n

p→ E[`(Y, h(X))] (the empirical mean converges to the true

mean in probability), then

(Rn(h))n
p→ R(h)

Goal : of supervised learning : estimate h∗, knowing only the data Dn and loss `.

Fitting/Estimation/Learning : The objective is to construct a fit (estimate,

learning) ĥn of the unknown function h to an observed sample (training set) Dn
by minimizing Rn
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learning) ĥn of the unknown function h to an observed sample (training set) Dn
by minimizing Rn

F. Chamroukhi Statistical Learning 14/34



Empirical Risk Minimization

Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y ).

5 In real situations P is in unknown, as we only have a sample Dn = (Xi, Yi)1≤i≤n,

↪→ We attempt to minimize the Empirical Risk

Rn(h) =
1

n

n∑
i=1

`(Yi, h(Xi))

to estimate h (within a family H) :
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ĥn ∈ arg min
h∈H

Rn(h).

Why this is relevant ? Note : By the Law of Large Numbers,

( 1
n

∑n
i=1 `(Yi, h(Xi))n

p→ E[`(Y, h(X))] (the empirical mean converges to the true

mean in probability), then

(Rn(h))n
p→ R(h)

Goal : of supervised learning : estimate h∗, knowing only the data Dn and loss `.

Fitting/Estimation/Learning : The objective is to construct a fit (estimate,
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Example : Ordinary Least Squares (OLS)

MSE and Ordinary Least Squares (OLS) :

The standard loss for regression is the squared loss : `2(x, y, h(x)) = (y − h(x))2.

ERM :

ĥn ∈ arg min
h∈H

Rn(h)

where the empirical risk Rn(h) under the square loss is the empirical squared loss 1

Rn(h) =
1

n

n∑
i=1

||Yi − h(Xi)||22

ĥn is known as the Ordinary Least Squares (OLS) Estimator of h,

Consider H = {hθ(x) = α+ βTx}, the set of linear functions in x of the form θTx

with x = (1, xT )T , and θ = (α, βT )T .

Solution : θ̂n = (XTX)−1XTY , whenever XTX has full rank.

(X = (x1, . . . ,xn)T and Y = (Y1, . . . , Yn)T )

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum

(RSS) when the ML problem is phrased as an error model Y = h(X) + ε, ε ∼ p
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Rn(h)

where the empirical risk Rn(h) under the square loss is the empirical squared loss 1

Rn(h) =
1

n

n∑
i=1

||Yi − h(Xi)||22

ĥn is known as the Ordinary Least Squares (OLS) Estimator of h,

Consider H = {hθ(x) = α+ βTx}, the set of linear functions in x of the form θTx

with x = (1, xT )T , and θ = (α, βT )T .

Solution : θ̂n = (XTX)−1XTY , whenever XTX has full rank.

(X = (x1, . . . ,xn)T and Y = (Y1, . . . , Yn)T )

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum

(RSS) when the ML problem is phrased as an error model Y = h(X) + ε, ε ∼ p
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Excess Risk Decomposition

Suppose that a learning algorithm chooses the predictor from a class H, and define

hH = arg inf
h∈H

R(h)

Let h∗ be the best predictor, i.e which achieves the Bayes risk :

R∗ = R(h∗) = inf
h∈all possible h

R(h)

Given any ĥn ∈ H, the excess risk of ĥn, R(ĥn)−R∗, which compares the risk of

ĥ to the Bayes optimal prediction function h∗, can be decomposed as

R(ĥn)−R∗ = R(ĥn)−R(hH)︸ ︷︷ ︸
Estimation Error

+ R(hH)−R∗︸ ︷︷ ︸
Approximation Error

The approximation error : R(hH)−R∗ is deterministic and is caused by the

restriction to the class H rather than all possible functions.

↪→ It is a property of the class H. Bigger H implies smaller approximation error.

The estimation error R(ĥn)−R(hH) is caused by the usage of a finite sample that

cannot completely represent the underlying distribution. It is random.

↪→ With smaller H we expect smaller estimation error.

↪→ Trade-off : When the “number” of models in H (e.g., number of parameters in Θ)

grows, the approximation error goes down, while the estimation error goes up, and

vice versa.F. Chamroukhi Statistical Learning 16/34
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ERM Overview in Practice

Given a loss function `.

Choose a hypothesis space H.

Use an optimization method to find the Empirical Risk Minimizer (ERM) :

ĥn ∈ arg min
h∈H

1

n

n∑
i=1

`(yi, h(xi)).

↪→ Data Scientist’s Role : Choose H to balance approximation and estimation

error.

↪→ As we get more training data, we can use a larger H.

Optimization Error :

In practice, we very often need an optimization method to find ĥn ∈ H.

However, we may not find the exact ERM ĥn. Instead, we find an approximation

h̃n ∈ H that is hopefully good enough, and in some cases, h̃n may generalize

better than ĥn (i.e., achieves a lower true risk R(h̃n) < R(ĥn)) due to

regularization or improved numerical stability, early stopping, etc
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However, we may not find the exact ERM ĥn. Instead, we find an approximation
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Optimization Error & Excess Risk

Decomposition

Optimization Error :

Measures the difference in true risk between the empirical risk minimizer ĥn and

the function h̃n returned by the optimization algorithm.

Optimization error is defined as :

Optimization Error = R(h̃n)−R(ĥn).

This error can be negative (if optimization finds a better function than ĥn due to

regularization or numerical properties as explained in the previous slide).

Excess Risk Decomposition :

The excess risk of h̃n can be decomposed as :

Excess Risk(h̃n) = R(h̃n)−R(h∗)

= R(h̃n)−R(ĥn)︸ ︷︷ ︸
Optimization Error

+R(ĥn)−R(hH)︸ ︷︷ ︸
Estimation Error

+R(hH)−R(h∗)︸ ︷︷ ︸
Approximation Error

.
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+R(ĥn)−R(hH)︸ ︷︷ ︸
Estimation Error

+R(hH)−R(h∗)︸ ︷︷ ︸
Approximation Error

.

F. Chamroukhi Statistical Learning 18/34



Optimization Error & Excess Risk

Decomposition

Optimization Error :

Measures the difference in true risk between the empirical risk minimizer ĥn and
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Continued : Regularization and

Optimization Error

Optimization error can be negative (but the excess risk is always non-negative) :

Optimization does not always return the ERM ĥn, but sometimes finds a better

function h̃n that generalizes better (achieving smaller true risk R).

Example : by Regularization. Regularization prevents overfitting and can improve

generalization, resulting in a lower true risk R.

Example : We train a logistic regression classifier with the log loss :

ĥn = arg min
h∈H

1

n

n∑
i=1

`(yi, h(xi))

Instead of attempting to solve this exactly, we use `2-regularization (Ridge

penalty) : h̃n = arg minh∈H
1
n

∑n
i=1 `(yi, h(xi)) + λ‖h‖2. Then we can get

R(h̃n) ≤ R(ĥn) (if λ is well-chosen, avoiding underfitting or overfitting)

This leads to an apparent negative optimization error, but it is due to

regularization : Regularization Effect = R(h̃n)−R(ĥn) ≤ 0

However, this is not always due to optimization – it is due to regularization.
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Continued : Regularization and

Optimization Error

Why can regularization improve true risk R ?

Regularization improves generalization by reducing variance.

Logistic regression without regularization can produce very large coefficients,

leading to poor generalization.

Avoiding poorly conditioned solutions helps in optimization stability.

SGD/momentum methods can converge to flatter (less-sharp) minima thus more

stable (to small data deviations) that generalize better.

Early stopping in neural networks prevents overfitting by stopping training when

validation error increases.

For a reminder on optimization principles and algorithms, see my course :

Optimization for Machine Learning available at : https://chamroukhi.com/teaching.php
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Excess Risk and Kullback-Leibler Divergence

Consider the log-loss : `(y, hθ(x)) = − log(pθ(x, y))

The risk under this loss is R(θ) = EP [`(Y, hθ(X))] = EP [− log pθ(X,Y )]

The excess risk of θ

R(θ)−R∗ = EP [− log pθ(X,Y ) + log pθ∗(X,Y )]

= EP [log
pθ∗(X,Y )

pθ(X,Y )
]

=

∫
log

pθ∗(x, y)

pθ(x, y)
pθ∗(x, y) dP (x, y)

= KL(pθ∗‖pθ)
≥ 0 :

which is equal to KL(pθ∗‖pθ), the Kullback-Leibler divergence between pθ and pθ∗

Note : KL(pθ∗‖pθ) = 0 holds if and only if pθ∗ = pθ.

Although not a distance measure (not symmetric), the KL-divergence measures

the discrepancy between two distributions.
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Maximum Likelihood Estimation
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Maximum Likelihood Estimation

Def. Likelihood function : The likelihood function for model h is the joint pdf of

the observed data given h

L(h) = P (D|h) = P ({(xi, yi)ni=1}|h)

Def. The Maximum Likelihood Estimator : Maximum likelihood estimation seeks

for the model ĥ that fits best the data : The Maximum Likelihood Estimator

(MLE) is then a maximizer of the likelihood function, i.e :

ĥn ∈ arg max
h∈H

L(h).

Note : Since the log function is strictly increasing, then, the MLE is preferentially

performed (for notably numerical reasons, and sums are easier to work with than

products) by maximizing the log-likelihood :

ĥn ∈ arg max
h∈H

logL(h).
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ĥn ∈ arg max
h∈H

logL(h).

F. Chamroukhi Statistical Learning 23/34



Maximum Likelihood Estimation

Def. Likelihood function : The likelihood function for model h is the joint pdf of

the observed data given h

L(h) = P (D|h) = P ({(xi, yi)ni=1}|h)

Def. The Maximum Likelihood Estimator : Maximum likelihood estimation seeks
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Parametric models

Def. Parametric model of distributions
A probabilistic model on a data space X is a family of probability distributions indexed

by θ ∈ Θ. We denote this as

P = {pθ(x); θ ∈ Θ}

where θ is the (vector of) parameter(s) and Θ is the parameter space.

Bernoulli : pθ(x) = Pθ(X = x) = θx(1− θ)1−x with X = {0, 1} and θ ∈ Θ = [0, 1]

Binomial : pθ(x) = Pθ(X = x) =
(
N
x

)
νx(1− ν)1−x with X = {0, 1, ..., N} and

θ = (N, ν) ∈ Θ = N× [0, 1]

Univariate Gaussian : pθ(x) = ϕ(x;µ, σ2) = 1

σ
√
2π

exp
(
− 1

2
(x−µ
σ

)2
)

with X = R
and θ = (µ, σ2) ∈ Θ = R× R+

multivariate Gaussian : φd(x;µ,Σ) = 1

(2π)
d
2 |Σ|

1
2

exp
(
− 1

2
(x− µ)′Σ−1(x− µ)

)
with X = Rd and θ = (µ′, vech(Σ)′)′ ∈ Θ = R× Sd++ ; The set of symmetric

positive definite matrices on Rd : Sd++ = {Σ ∈ Rd×d : Σ = Σ′ and Σ � 0}
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Univariate Gaussian : pθ(x) = ϕ(x;µ, σ2) = 1

σ
√
2π

exp
(
− 1

2
(x−µ
σ

)2
)

with X = R
and θ = (µ, σ2) ∈ Θ = R× R+

multivariate Gaussian : φd(x;µ,Σ) = 1

(2π)
d
2 |Σ|

1
2

exp
(
− 1

2
(x− µ)′Σ−1(x− µ)

)
with X = Rd and θ = (µ′, vech(Σ)′)′ ∈ Θ = R× Sd++ ; The set of symmetric

positive definite matrices on Rd : Sd++ = {Σ ∈ Rd×d : Σ = Σ′ and Σ � 0}
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Examples of MLE

Example : MLE for the Bernoulli

Bernoulli : pθ(x) = P(X = x|θ) = θx(1− θ)1−x with X = {0, 1} and θ ∈ Θ = [0, 1]

MLE : θ̂ = 1
n

∑n
i=1Xi.

MLE : θ̂ = arg maxθ logL(θ). By independence and identical distribution, we have

logL(θ) = log P(X1 = x1, . . . , Xn = xn; θ) = log
∏n
i=1 P(Xi = xi; θ)

= log
∏n
i=1 θ

xi (1− θ)1−xi

=
∑n
i=1 xi log θ +

∑n
i=1(1− xi) log(1− θ)

∂ logL(θ)
∂θ

= 1
θ

∑n
i=1 xi −

1
1−θ

∑n
i=1(1− xi),which is zero at

1

θ̂

∑n
i=1 xi −

1

1−θ̂

∑n
i=1(1− xi) = 0

(1− θ̂)
∑n
i=1 xi − θ̂

∑n
i=1(1− xi) = 0∑n
i=1 xi − nθ̂ = 0

θ̂ = 1
n

∑n
i=1Xi.
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Examples of MLE

Example : MLE for the Gaussian mean

Univariate Gaussian : pθ(x) = φ1(x;µ, σ2) = 1
σ
√
2π

exp
(
− 1

2
(x−µ
σ

)2
)

with X = R and

θ = (µ, σ2) ∈ Θ = R× R+

MLE : θ̂ = (µ̂, σ̂2) with µ̂ = 1
n

∑n
i=1Xi and σ̂2 = 1

n

∑n
i=1(Xi − µ̂)2.

MLE : θ̂ = arg maxθ logL(θ).

logL(µ, σ2) = log p(X1 = x1, . . . , Xn = xn;µ, σ2) = log
n∏
i=1

1

σ
√

2π
e
− 1

2

(
xi−µ
σ

)2

=
n∑
i=1

log
1

σ
√

2π
−

1

2σ2

n∑
i=1

(xi − µ)2 = −
n

2
log 2π −

n

2
log σ2 −

1

2σ2

n∑
i=1

(xi − µ)2.

We have ∂L(µ,σ2)
∂µ

= 1
σ2

∑n
i=1(xi − µ) and ∂L(µ,σ2)

∂σ2 = − n
2σ2 + 1

2σ4

∑n
i=1(xi − µ)2.

which are zero at

∂L(µ̂,σ2)
∂µ

= 0 =⇒
∑n
i=1(Xi − µ̂) = 0 =⇒ µ̂ = 1

n

∑n
i=1Xi

∂L(µ,σ̂2)

∂σ2 = 0 =⇒ −nσ̂2 +
∑n
i=1(xi − µ)2 =⇒ σ̂2 = 1

n

∑n
i=1(Xi − µ̂)2.
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When MLE coincides with ERM I

Consider the parametric setting :

MLE (density estimation framework) : We seek for an esitmator of the parameters

θ of the joint distribution pθ(x, y). For an independent and identically distributed

(iid) sample {(xi, yi)ni=1}, the log-likelihood function of θ is :

logL(θ) =
n∑
i=1

log pθ(xi, yi).

ERM : We seek for a predictor hθ given a training set {(xi, yi)ni=1} from pθ(x, y).

Consider the log-loss :

`(y, hθ(x)) = − log(pθ(x, y)).

The corresponding empirical risk is by definition

Rn(θ) =
1

n

n∑
i=1

`(yi, hθ(xi)) = − 1

n

n∑
i=1

log pθ(xi, yi) = − 1

n
logL(θ)

↪→ With the log-loss, ERM coincides with MLE.
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Examples :

MLE coincides with OLS (ERM) in Gaussian regression (see later)

MLE coincides with ERM in Logistic regression (see later)
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Conditional maximum likelihood risks

In some situations, we are interested in estimating the conditional distribution

P (Y |X), rather than the joint distribution P (X,Y ).

As we’ll see it later, this is the case for example in discriminative learning (eg.

logistic regression for classification, or Gaussian linear regression with non-random

predictors) where we do not need to define a distribution of X.

In the parametric setting, we therefore have the conditional log-likehood risk

R(θ) = −E[log pθ(Y |X)]

and the corresponding conditional empirical risk

Rn(θ) = − 1

n

n∑
i=1

log pθ(yi|xi)

which coincides with the conditional log-likehood.
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Conditional maximum likelihood risks

Example : Logistic Regression :

Logistic Regression model : pθ(y|x) = πθ(x)y(1− πθ(x))1−y with y ∈ {0, 1},

and πθ(x) = σ(β0 + βTx) = exp (β0+β
Tx)

1+exp (β0+βTx)
is the logistic function.

Empirical risk :

Rn(θ) = − 1

n

n∑
i=1

log pθ(yi|xi)

= − 1

n

n∑
i=1

log[πθ(xi)
yi(1− πθ(x))

1−yi ]

=

n∑
i=1

yi log π(xi;θ) + (1− yi) log (1− π(xi;θ))

= − 1

n

n∑
i=1

yi(β0 + β>xi)− log(1 + exp(β0 + β>xi))︸ ︷︷ ︸
Conditional log-likelihood L(θ)

↪→ Then we have : arg minθ Rn(θ) = arg maxθ logL(θ).
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When OLS coincides with MLE

Regression with Gaussian errors

Let y ∈ R and X = Rp and onsider the following model

Yi = h(Xi;β) + εi with εi|X ∼
iid
N (0, σ2)

Empirical Squared Risk : under the square loss, Rn(β) = 1
n

∑n
i=1(yi − h(xi;β))2

Empirical Risk Minimizer : β̂n = arg minβ Rn(β)

Conditional Maximum Likelihood Risk

Data model : Yi|Xi ∼
iid
N (h(Xi;β), σ2) : pθ(yi|xi) = 1

σ
√
2π
e
− 1

2

(
y−h(xi;β)

σ

)2

logL(θ) =
∑n
i=1 log pθ(yi|xi) = − 1

2σ2

n∑
i=1

(yi − h(xi;β))2︸ ︷︷ ︸
∝Rn(β)

− n
2

log σ2 − n
2

log(2π)

Conditional MLE : = β̂n = arg maxβ logL(θ)

↪→ Then we have : arg minβ Rn(β) = arg maxβ logL(θ).

Remark : For both we can take the sample variance as an estimator of the variance

σ2 : σ̂2 = 1
n

∑n
i=1(Yi − h(Xi, β̂))2 which is the Maximum-Likelihood Estimator
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Overview

Data Representation : A random pair (X,Y ) ∈ X × Y, where X contains input

features and Y is the target output.

Supervised learning aims to find a prediction function h : X → Y that provides a

good approximation of the true output y.

Loss Function `(y, h(x)) : Measures the error in predicting Y using h(X).

Risk Function R(h) = E[`(Y, h(X))] : Expected loss over the data distribution. It

measures the generalization performance of h.

Bayes Risk : The lowest achievable risk, attained by the optimal prediction

function h∗. Optimal Decision Rules :

I Bayes Classifier : h∗(x) = argmaxy∈Y P(Y = y|X = x) minimizes

classification error under 0-1 loss.
I Optimal Regression Function : h∗(x) = E[Y |X = x] provides the

best prediction error under the squared loss.

Empirical Risk Minimization (ERM) finds h by minimizing the empirical risk :

Rn(h) = 1
n

∑n
i=1 `(yi, h(xi)) using an optimization method.

The Excess Risk R(h̃n)−R(h∗) of a learned model h̃n, can be decomposed as

sum of an approximation error, anestimation error, and an optimization error.
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Overview

Data Scientist’s Role :

Choose a hypothesis space H that balances approximation and estimation error.

Adjust H as more data becomes available to improve approximation.

More data implies a larger hypothesis space H, reducing approximation error.

Use optimization algorithms to minimize empirical risk Rn(h).

Regularization and optimization impact the final model ?s performance.

Regularization (e.g., in logistic regression) prevents overfitting and improves

generalization.

Optimization can sometimes outperform ERM, e.g., regularized logistic

regression may yield a lower true risk.
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Next slides topics

See Later :

Bias-Variance Decomposition

Practical illustrations (Risks, Bayes Risk, Bias-Variance

Tradeoff, etc)
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