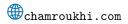
Statistical Learning

Master Spécialisé Intelligence Artificielle de Confiance (IAC) @ Centrale Supélec en partenariat avec l'IRT SystemX 2024/2025.

Faïcel Chamroukhi



Objectives

The objective of this lecture is to understand :

- The foundational principles of decision-making in machine learning, including from a probabilistic perspective.
- The different errors and risk measures associated with a machine learning problem.
- Their optimal formulations and key decompositions, including the bias-variance decomposition.
- The intuitions behind standard decision rules.
- Practical applications showcased through selected machine learning algorithms.

Outline

- Supervised Learning
- Prediction function
- Loss function
- Risk function
- Bayes Risk

- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function h : X → Y for which ŷ = h(x) is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- ightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$

■ Data-Scientist's role : given the data, choose a prediction function h from a class H that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function l measuring the error of predicting Y by h(X).

 → minimize the empirical risk (data-D_n-driven) R_n(h)

- \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is Prediction, i.e. to seek for a prediction function h : X → Y for which ŷ = h(x) is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- ightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$

■ Data-Scientist's role : given the data, choose a prediction function h from a class H that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function l measuring the error of predicting Y by h(X).

 → minimize the empirical risk (data-D_n-driven) R_n(h)

- \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- System×
- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is Prediction, i.e. to seek for a prediction function h : X → Y for which ŷ = h(x) is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification

ightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

 $lacksymbol{I}$ Data : a random sample $(oldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(oldsymbol{x}_i,y_i)_{i=1}^n$

■ **Data-Scientist's role** : given the data, choose a prediction function h from a class \mathcal{H} that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X). \hookrightarrow minimize the empirical risk (data- \mathcal{D}_n -driven) $R_n(h)$

- \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- System×
- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is Prediction, i.e. to seek for a prediction function h : X → Y for which ŷ = h(x) is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- $\,\hookrightarrow\,$ We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(oldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(oldsymbol{x}_i,y_i)_{i=1}^n$

■ Data-Scientist's role : given the data, choose a prediction function h from a class H that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function l measuring the error of predicting Y by h(X).

 → minimize the empirical risk (data-D_n-driven) R_n(h)

- \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- System×
- The data are represented by a random pair (*X*, *Y*) ∈ X × Y where *X* is a vector of descriptors for some variable of interest *Y*
- The objective is **Prediction**, i.e. to seek for a prediction function $h : \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(\boldsymbol{x})$ is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- ightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n = (\boldsymbol{x}_i,y_i)_{i=1}^n$

Data-Scientist's role : given the data, choose a prediction function h from a class H that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X).
 → minimize the empirical risk (data-D_n-driven) R_n(h)

- \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- System×
- The data are represented by a random pair (*X*, *Y*) ∈ X × Y where *X* is a vector of descriptors for some variable of interest *Y*
- The objective is **Prediction**, i.e. to seek for a prediction function $h : \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(\boldsymbol{x})$ is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- \rightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n = (\boldsymbol{x}_i,y_i)_{i=1}^n$

■ Data-Scientist's role : given the data, choose a prediction function h from a class H that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X).

 \hookrightarrow minimize the empirical risk (data- \mathcal{D}_n -driven) $R_n(h)$

 \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}

Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- System×
- The data are represented by a random pair (*X*, *Y*) ∈ X × Y where *X* is a vector of descriptors for some variable of interest *Y*
- The objective is **Prediction**, i.e. to seek for a prediction function $h : \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(\boldsymbol{x})$ is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- ightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$

Data-Scientist's role : given the data, choose a prediction function h from a class H that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X).
 → minimize the empirical risk (data-D_n-driven) R_n(h)

 \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}

Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- System×
- The data are represented by a random pair (*X*, *Y*) ∈ X × Y where *X* is a vector of descriptors for some variable of interest *Y*
- The objective is **Prediction**, i.e. to seek for a prediction function $h : \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(\boldsymbol{x})$ is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- ightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$

Data-Scientist's role : given the data, choose a prediction function h from a class H that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X).
 → minimize the empirical risk (data-D_n-driven) R_n(h)

 \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}

Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- System×
- The data are represented by a random pair (*X*, *Y*) ∈ X × Y where *X* is a vector of descriptors for some variable of interest *Y*
- The objective is **Prediction**, i.e. to seek for a prediction function $h : \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(\boldsymbol{x})$ is a good approximation of the true output y
- Problems : typically $X_i \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$ for regression and $Y \in \mathcal{Y} = \{0, 1\}, \{-1, +1\}$ or $\{1, \dots, K\}$ for classification
- ightarrow We will mainly focus on parametric probabilistic models of the form

 $Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$

with the conditional distr. P(Y|X,h) can be computed in terms of $P_{\theta}(Y - h(X))$.

Data : a random sample $(\boldsymbol{X}_i, Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n = (\boldsymbol{x}_i, y_i)_{i=1}^n$

■ Data-Scientist's role : given the data, choose a prediction function h from a class \mathcal{H} that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X). \hookrightarrow minimize the empirical risk (data- \mathcal{D}_n -driven) $R_n(h)$

- \hookrightarrow Minimizing $R_n(h)$ always requires an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

Def. Prediction function

 $h\colon \mathcal{X} \to \mathcal{Y}$ $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear prediction functions

 $a \colon \mathbb{R}^p \to \mathbb{R}$ $x \mapsto \langle x, \theta \rangle = \theta^T x$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

 $\widehat{y}_i = h(x_i)$

Example : Linear prediction functions (cont.) : $\widehat{y_i} = \langle x_i, heta
angle = heta^T x_i$

Def. Prediction function

 $h\colon \mathcal{X} \to \mathcal{Y}$ $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear prediction functions

$$\begin{split} h \colon \mathbb{R}^p &\to \mathbb{R} \\ x \mapsto \langle x, \theta \rangle = \theta^T x \end{split}$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

 $\widehat{y}_i = h(x_i)$

Example : Linear prediction functions (cont.) : $\widehat{y}_i = \langle x_i, heta
angle = heta^T x_i$

Def. Prediction function

 $h\colon \mathcal{X} \to \mathcal{Y}$ $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear prediction functions

$$\begin{split} h \colon \mathbb{R}^p &\to \mathbb{R} \\ x &\mapsto \langle x, \theta \rangle = \theta^T x \end{split}$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

 $\widehat{y}_i = h(x_i)$

Example : Linear prediction functions (cont.) : $\hat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Def. Prediction function

 $h\colon \mathcal{X} \to \mathcal{Y}$ $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear prediction functions

$$\begin{split} h \colon \mathbb{R}^p &\to \mathbb{R} \\ x &\mapsto \langle x, \theta \rangle = \theta^T x \end{split}$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

 $\widehat{y}_i = h(x_i)$

Example : Linear prediction functions (cont.) : $\hat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Def. Loss function

$$\begin{split} \ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \\ (y, h(x)) \mapsto \ell(y, h(x)) \end{split}$$

It measures how good we are on a particular pair (x, y).

(We assume that the distribution of the test data is the same as that of the training.)

- Square (ℓ_2) -loss : $\ell(y, h(x)) = (y - h(x))^2$
- Absolute (ℓ_1) -loss : $\ell(y, h(x)) = |y - h(x)|$
- $\begin{array}{l} \blacksquare \mbox{ Huber loss }: \ell_{\delta}(y,h(x)) = \\ \begin{cases} \frac{1}{2}(y-h(x))^2 \mbox{ if } |y-h(x)| \leq \delta \\ \delta\left(|y-h(x)| \frac{1}{2}\delta\right), \mbox{ otherwise.} \end{cases}$
- logarithmic loss :

$$\ell(y, h_{ heta}(x)) = -\log(p_{ heta}(x, y))$$

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
 - Denoting $\ell(y,h(x))=\phi(yh(x))$ and u=yh(x)
- $\blacksquare \text{ Hinge loss } \phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Square loss $\phi_{\text{square}}(u) = (1-u)^2$
- Exponential loss $\phi_{\exp}(u) = \exp(-u)$

Def. Loss function

$$\begin{split} \ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \\ (y, h(x)) \mapsto \ell(y, h(x)) \end{split}$$

It measures how good we are on a particular pair (x, y).

(We assume that the distribution of the test data is the same as that of the training.)

- Square (ℓ_2) -loss : $\ell(y, h(x)) = (y - h(x))^2$
- Absolute (ℓ_1) -loss : $\ell(y, h(x)) = |y - h(x)|$
- $\begin{array}{l} \blacksquare \mbox{ Huber loss }: \ell_{\delta}(y,h(x)) = \\ \begin{cases} \frac{1}{2}(y-h(x))^2 \mbox{ if } |y-h(x)| \leq \delta, \\ \delta\left(|y-h(x)| \frac{1}{2}\delta\right), \mbox{ otherwise.} \end{cases}$
- logarithmic loss :

$$\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$$

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
 - Denoting $\ell(y,h(x))=\phi(yh(x))$ and u=yh(x)
- Hinge loss $\phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Square loss $\phi_{\text{square}}(u) = (1-u)^2$
- Exponential loss $\phi_{\exp}(u) = \exp(-u)$

Def. Loss function

$$\begin{split} \ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \\ (y, h(x)) \mapsto \ell(y, h(x)) \end{split}$$

It measures how good we are on a particular pair (x, y).

(We assume that the distribution of the test data is the same as that of the training.)

- Square (ℓ_2) -loss : $\ell(y, h(x)) = (y - h(x))^2$
- Absolute (ℓ_1) -loss : $\ell(y, h(x)) = |y - h(x)|$
- $\begin{array}{l} \blacksquare \mbox{ Huber loss }: \ell_{\delta}(y,h(x)) = \\ \begin{cases} \frac{1}{2}(y-h(x))^2 \mbox{ if } |y-h(x)| \leq \delta, \\ \delta\left(|y-h(x)| \frac{1}{2}\delta\right), \mbox{ otherwise.} \end{cases}$
- logarithmic loss :

$$\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$$

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
 - Denoting $\ell(y,h(x))=\phi(yh(x))$ and u=yh(x)
- Hinge loss $\phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Square loss $\phi_{\text{square}}(u) = (1-u)^2$
- Exponential loss $\phi_{\exp}(u) = \exp(-u)$

Def. Loss function

$$\begin{split} \ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \\ (y, h(x)) \mapsto \ell(y, h(x)) \end{split}$$

It measures how good we are on a particular pair (x, y).

(We assume that the distribution of the test data is the same as that of the training.)

- Square (ℓ_2) -loss : $\ell(y, h(x)) = (y - h(x))^2$
- Absolute (ℓ_1) -loss : $\ell(y, h(x)) = |y - h(x)|$
- $\begin{array}{l} \blacksquare \mbox{ Huber loss }: \ell_{\delta}(y,h(x)) = \\ \begin{cases} \frac{1}{2}(y-h(x))^2 \mbox{ if } |y-h(x)| \leq \delta, \\ \delta\left(|y-h(x)| \frac{1}{2}\delta\right), \mbox{ otherwise.} \end{cases}$
- logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
 - Denoting $\ell(y,h(x))=\phi(yh(x))$ and u=yh(x)
- $\blacksquare \text{ Hinge loss } \phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Square loss $\phi_{\text{square}}(u) = (1-u)^2$
- Exponential loss $\phi_{\exp}(u) = \exp(-u)$

Def. Loss function

$$\begin{split} \ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \\ (y, h(x)) \mapsto \ell(y, h(x)) \end{split}$$

It measures how good we are on a particular pair (x, y).

(We assume that the distribution of the test data is the same as that of the training.)

- Square (ℓ_2) -loss : $\ell(y, h(x)) = (y - h(x))^2$
- Absolute (ℓ_1) -loss : $\ell(y, h(x)) = |y - h(x)|$
- $\begin{array}{l} \blacksquare \mbox{ Huber loss }: \ell_{\delta}(y,h(x)) = \\ \begin{cases} \frac{1}{2}(y-h(x))^2 \mbox{ if } |y-h(x)| \leq \delta, \\ \delta\left(|y-h(x)| \frac{1}{2}\delta\right), \mbox{ otherwise.} \end{cases}$
- logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
 - Denoting $\ell(y,h(x)) = \phi(yh(x))$ and u = yh(x)
- $\blacksquare \text{ Hinge loss } \phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Square loss $\phi_{\text{square}}(u) = (1-u)^2$
- Exponential loss $\phi_{\exp}(u) = \exp(-u)$

Def. Loss function

$$\begin{split} \ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R} \\ (y, h(x)) \mapsto \ell(y, h(x)) \end{split}$$

It measures how good we are on a particular pair (x, y).

(We assume that the distribution of the test data is the same as that of the training.)

- Square (ℓ_2) -loss : $\ell(y, h(x)) = (y - h(x))^2$
- Absolute (ℓ_1) -loss : $\ell(y, h(x)) = |y - h(x)|$
- $\begin{array}{l} \blacksquare \mbox{ Huber loss }: \ell_{\delta}(y,h(x)) = \\ \begin{cases} \frac{1}{2}(y-h(x))^2 \mbox{ if } |y-h(x)| \leq \delta, \\ \delta\left(|y-h(x)| \frac{1}{2}\delta\right), \mbox{ otherwise.} \end{cases}$
- logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
 - Denoting $\ell(y,h(x))=\phi(yh(x))$ and u=yh(x)
- Hinge loss $\phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Square loss $\phi_{\text{square}}(u) = (1-u)^2$
- Exponential loss $\phi_{\exp}(u) = \exp(-u)$

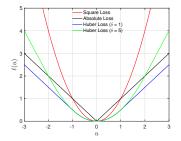


FIGURE – Some loss functions in regression. (curve of $\ell(u)$ for u = y - h(x); $y \in \mathbb{R}$)

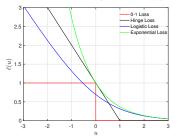


FIGURE – Some loss functions in classification. (curve of $\ell(u)$ for u = yh(x) and $y \in \{-1, +1\}$)

Examples of loss functions in machine learning

■ Squared (ℓ_2)-loss :

 $\ell(y, h(x)) = (y - h(x))^2$

used in Ordinary Least Squares (OLS) Also regression with Gaussian noise

• Absolute (ℓ_1) -loss :

 $\ell(y, h(x)) = |y - h(x)|$ used in least absolute deviation (LAD) (Robust) regression (idem Regression with Laplace noise), and in some settings for Lasso regression (for sparsity).

■ Huber loss : $\ell_{\delta}(y, h(x)) =$ $\begin{cases} \frac{1}{2}(y - h(x))^2, & |y - h(x)| \leq \delta \\ \delta(|y - h(x)| - \frac{1}{2}\delta), & \text{otherwise} \\ \text{used in Robust regression (to} \\ \text{mitigate the effect of outliers.).} \end{cases}$

 Logarithmic loss : ℓ(y, h_θ(x)) = -log(p_θ(x, y)) used in Logistic regression and in many maximum-likelihood estimation problems

Hinge loss :

 $\phi_{\mathsf{hinge}}(u) = (1-u)_+$

used in Support Vector Machines

Logistic loss :

 $\phi_{\rm logistic}(u) = \log(1 + \exp(-u))$

used in Logistic regression

 0-1 loss : ℓ(y, h(x)) = 1_{h(x)≠y} used in theoretical analysis of classifiers (not differentiable) like Bayes

Examples of loss functions in machine learning

■ Squared (ℓ_2)-loss :

 $\ell(y, h(x)) = (y - h(x))^2$

used in Ordinary Least Squares (OLS) Also regression with Gaussian noise

• Absolute (ℓ_1) -loss :

 $\ell(y, h(x)) = |y - h(x)|$ used in least absolute deviation (LAD) (Robust) regression (idem Regression with Laplace noise), and in some settings for Lasso regression (for sparsity).

■ Huber loss : $\ell_{\delta}(y, h(x)) =$ $\begin{cases} \frac{1}{2}(y - h(x))^2, & |y - h(x)| \leq \delta \\ \delta(|y - h(x)| - \frac{1}{2}\delta), & \text{otherwise} \\ \text{used in Robust regression (to} \\ \text{mitigate the effect of outliers.).} \end{cases}$

• Logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$ used in Logistic regression and in many maximum-likelihood estimation problems

Hinge loss :

 $\phi_{\rm hinge}(u) = (1-u)_+$

used in Support Vector Machines

Logistic loss :

 $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$

used in Logistic regression

 0-1 loss : ℓ(y, h(x)) = 1_{h(x)≠y} used in theoretical analysis of classifiers (not differentiable) like Bayes

Examples of loss functions in machine learning

■ Squared (ℓ_2)-loss :

 $\ell(y, h(x)) = (y - h(x))^2$

used in Ordinary Least Squares (OLS) Also regression with Gaussian noise

• Absolute (ℓ_1) -loss :

 $\ell(y, h(x)) = |y - h(x)|$ used in least absolute deviation (LAD) (Robust) regression (idem Regression with Laplace noise), and in some settings for Lasso regression (for sparsity).

 $\label{eq:hyperbolic} \blacksquare \mbox{ Huber loss }: \ell_{\delta}(y,h(x)) = \\ \begin{cases} \frac{1}{2}(y-h(x))^2, & |y-h(x)| \leq \delta \\ \delta(|y-h(x)|-\frac{1}{2}\delta), & \mbox{otherwise} \\ \mbox{ used in Robust regression (to} \\ \mbox{ mitigate the effect of outliers.).} \end{cases}$

• Logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$ used in Logistic regression and in many maximum-likelihood estimation problems

Hinge loss :

 $\phi_{\mathsf{hinge}}(u) = (1-u)_+$

used in Support Vector Machines

Logistic loss :

 $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$

used in Logistic regression

 0-1 loss : ℓ(y, h(x)) = 1_{h(x)≠y} used in theoretical analysis of classifiers (not differentiable) like Bayes

Risk : Given the pair (X, Y) with (unknown) joint distribution P, the error of approximating Y by h(X) is measured by a chosen loss function $\ell(Y, h(X))$. Then, the *Risk* associated to model/hypothesis h under loss l is the *Expected loss* :

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y).$$

 \hookrightarrow prediction error that measures the generalization performance of h.

Risk Examples

• Under the "0-1"-loss $\ell(y,h(x))=1\!\!1_{h(x)
eq y}$:

 $R(h) = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{h(x) \neq y} dP(x, y) = \mathbb{E}_P[\mathbb{1}_{h(x) \neq y}] = \mathbb{P}(h(X) \neq Y).$

 \hookrightarrow This is the most used risk in classification

• Under the squared loss $\ell(y,h(x)) = (y-h(x))^2$:

$$R(h) = \int_{\mathcal{X} \times \mathcal{Y}} (y - h(x))^2 dP(x, y) = \mathbb{E}_P[(Y - h(X))^2].$$

ightarrow This is the most used risk in regression

Risk : Given the pair (X, Y) with (unknown) joint distribution P, the error of approximating Y by h(X) is measured by a chosen loss function $\ell(Y, h(X))$. Then, the *Risk* associated to model/hypothesis h under loss l is the *Expected loss* :

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y).$$

 \rightarrow prediction error that measures the generalization performance of h.

- Risk Examples
 - Under the "0-1"-loss $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$:

$$R(h) = \int_{\mathcal{X} \times \mathcal{Y}} \mathbbm{1}_{h(x) \neq y} dP(x, y) = \mathbb{E}_P[\mathbbm{1}_{h(x) \neq y}] = \mathbb{P}(h(X) \neq Y).$$

\hookrightarrow This is the most used risk in classification

• Under the squared loss $\ell(y, h(x)) = (y - h(x))^2$:

$$R(h) = \int_{\mathcal{X} \times \mathcal{Y}} (y - h(x))^2 dP(x, y) = \mathbb{E}_P[(Y - h(X))^2].$$

 \hookrightarrow This is the most used risk in regression

Risk : Given the pair (X, Y) with (unknown) joint distribution P, the error of approximating Y by h(X) is measured by a chosen loss function $\ell(Y, h(X))$. Then, the *Risk* associated to model/hypothesis h under loss l is the *Expected loss* :

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y).$$

 \rightarrow prediction error that measures the generalization performance of h.

Risk Examples

• Under the "0-1"-loss $\ell(y,h(x)) = \mathbb{1}_{h(x)\neq y}$:

$$R(h) = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{h(x) \neq y} dP(x, y) = \mathbb{E}_P[\mathbb{1}_{h(x) \neq y}] = \mathbb{P}(h(X) \neq Y).$$

 \hookrightarrow This is the most used risk in classification

• Under the squared loss $\ell(y, h(x)) = (y - h(x))^2$:

$$R(h) = \int_{\mathcal{X} \times \mathcal{Y}} (y - h(x))^2 dP(x, y) = \mathbb{E}_P[(Y - h(X))^2].$$

 \hookrightarrow This is the most used risk in regression

Risk : Given the pair (X, Y) with (unknown) joint distribution P, the error of approximating Y by h(X) is measured by a chosen loss function $\ell(Y, h(X))$. Then, the *Risk* associated to model/hypothesis h under loss l is the *Expected loss* :

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y).$$

 \hookrightarrow prediction error that measures the generalization performance of h.

Risk Examples

- Under the "0-1"-loss $\ell(y,h(x))= 1_{h(x)
eq y}$:

 $R(h) = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{h(x) \neq y} dP(x, y) = \mathbb{E}_P[\mathbb{1}_{h(x) \neq y}] = \mathbb{P}(h(X) \neq Y).$

 \hookrightarrow This is the most used risk in classification

• Under the squared loss $\ell(y,h(x))=(y-h(x))^2$:

 $R(h) = \int_{Y \times Y} (y - h(x))^2 dP(x, y) = \mathbb{E}_{P}[(Y - h(X))^2].$

ightarrow This is the most used risk in regression

Optimal Risk

- $\blacksquare \ R(h) = \mathbb{E}[\ell(Y,h(X))]$ is the error of function h under loss ℓ
- **Q** : What is the smallest possible error we can achieve (under loss ℓ)?

Bayes Risk

• R(h) is minimized at a Bayes decision function $h^* : \mathcal{X} \to \mathcal{Y}$ satisfying

 $\forall x \in \mathcal{X}, h^*(x) \in \arg\min_{h(x) \in \mathcal{Y}} \mathbb{E}[\ell(Y, h(x)) | X = x].$ [See proof in the next slide

• The Bayes risk R^* is the risk of all Bayes predictors is equal to

$$R^* = R(h^*) = \inf_h R(h)$$

- ► The infimum risk *R*^{*} (taken for *all possible prediction functions h*) is known as the Bayes risk.
- A Bayes decision function h^* is a function that achieves the minimal risk R^*
- **Excess risk** : The excess risk of h is equal to $R(h) R^*$ (always non-negative).

Optimal Risk

- $\blacksquare \ R(h) = \mathbb{E}[\ell(Y,h(X))]$ is the error of function h under loss ℓ
- **Q** : What is the smallest possible error we can achieve (under loss ℓ)?

Bayes Risk

▶ R(h) is minimized at a Bayes decision function $h^* : X \to Y$ satisfying

 $\forall x \in \mathcal{X}, h^*(x) \in \arg\min_{h(x) \in \mathcal{Y}} \mathbb{E}[\ell(Y, h(x)) | X = x].$ [See proof in the next slide

• The Bayes risk R^* is the risk of all Bayes predictors is equal to

$$R^* = R(h^*) = \inf_h R(h)$$

- ▶ The infimum risk *R*^{*} (taken for *all possible prediction functions h*) is known as the Bayes risk.
- A Bayes decision function h^* is a function that achieves the minimal risk R^*
- **Excess risk** : The excess risk of h is equal to $R(h) R^*$ (always non-negative).

Optimal Risk

- $\blacksquare \ R(h) = \mathbb{E}[\ell(Y,h(X))]$ is the error of function h under loss ℓ
- **Q** : What is the smallest possible error we can achieve (under loss ℓ)?

Bayes Risk

▶ R(h) is minimized at a Bayes decision function $h^* : X \to Y$ satisfying

 $\forall x \in \mathcal{X}, h^*(x) \in \arg\min_{h(x) \in \mathcal{Y}} \mathbb{E}[\ell(Y, h(x)) | X = x].$ [See proof in the next slide

• The Bayes risk R^* is the risk of all Bayes predictors is equal to

$$R^* = R(h^*) = \inf_h R(h)$$

- ▶ The infimum risk *R*^{*} (taken for *all possible prediction functions h*) is known as the Bayes risk.
- A Bayes decision function h^* is a function that achieves the minimal risk R^*
- **Excess risk** : The excess risk of h is equal to $R(h) R^*$ (always non-negative).

Bayes Risk

By the law of total expectation we have : $\mathbb{E}[Z] = \mathbb{E}[\mathbb{E}[Z|T]]$. We can then write $R(h) = \mathbb{E}[\mathbb{E}[\ell(Y, h(X))|X]] = \mathbb{E}_{x \sim P_X}[\mathbb{E}[\ell(Y, h(X))|X = x]] = \mathbb{E}_{x \sim P_X}[r(z|x)]$

• if we consider the conditional risk (deterministic function)

$$r(h(x)|x) = \mathbb{E}[\ell(Y, h(x))|X = x],$$

this leads to

$$R(h) = \mathbb{E}[r(h(X)|X)].$$

Bayes risk

Given the distribution Y|X = x for any x, the optimal predictor h^* is known : R(h) is minimized at a Bayes predictor $h^* : \mathcal{X} \to \mathcal{Y}$ satisfying

$$\forall x \in \mathcal{X}, h^*(x) \in \arg\min_{z \in \mathcal{Y}} \mathbb{E}[\ell(Y, z) | X = x].$$

The Bayes risk R^* is the risk of all Bayes predictors and is equal to

$$R^* = R(h^*) = \mathbb{E}_{x \sim P_X} \inf_{h(x) \in \mathcal{Y}} \mathbb{E}[\ell(Y, h(x)) | X = x].$$

Bayes Risk

- By the law of total expectation we have : $\mathbb{E}[Z] = \mathbb{E}[\mathbb{E}[Z|T]]$. We can then write $R(h) = \mathbb{E}[\mathbb{E}[\ell(Y, h(X))|X]] = \mathbb{E}_{x \sim P_X}[\mathbb{E}[\ell(Y, h(X))|X = x]] = \mathbb{E}_{x \sim P_X}[r(z|x)]$
- if we consider the conditional risk (deterministic function)

$$r(h(x)|x) = \mathbb{E}[\ell(Y, h(x))|X = x],$$

this leads to

$$R(h) = \mathbb{E}[r(h(X)|X)].$$

Bayes risk

Given the distribution Y|X = x for any x, the optimal predictor h^* is known : R(h) is minimized at a Bayes predictor $h^* : \mathcal{X} \to \mathcal{Y}$ satisfying

$$\forall x \in \mathcal{X}, h^*(x) \in \arg\min_{z \in \mathcal{Y}} \mathbb{E}[\ell(Y, z) | X = x].$$

The Bayes risk R^* is the risk of all Bayes predictors and is equal to

$$R^* = R(h^*) = \mathbb{E}_{x \sim P_X} \inf_{h(x) \in \mathcal{Y}} \mathbb{E}[\ell(Y, h(x)) | X = x].$$

Bayes Risk

- By the law of total expectation we have : $\mathbb{E}[Z] = \mathbb{E}[\mathbb{E}[Z|T]]$. We can then write $R(h) = \mathbb{E}[\mathbb{E}[\ell(Y, h(X))|X]] = \mathbb{E}_{x \sim P_X}[\mathbb{E}[\ell(Y, h(X))|X = x]] = \mathbb{E}_{x \sim P_X}[r(z|x)]$
- if we consider the conditional risk (deterministic function)

$$r(h(x)|x) = \mathbb{E}[\ell(Y, h(x))|X = x],$$

this leads to

$$R(h) = \mathbb{E}[r(h(X)|X)].$$

Bayes risk

Given the distribution Y|X = x for any x, the optimal predictor h^* is known : R(h) is minimized at a Bayes predictor $h^* : \mathcal{X} \to \mathcal{Y}$ satisfying

$$\forall x \in \mathcal{X}, h^*(x) \in \arg\min_{z \in \mathcal{Y}} \mathbb{E}[\ell(Y, z) | X = x].$$

The Bayes risk R^* is the risk of all Bayes predictors and is equal to

$$R^* = R(h^*) = \mathbb{E}_{x \sim P_X} \inf_{h(x) \in \mathcal{Y}} \mathbb{E}[\ell(Y, h(x)) | X = x].$$

In classification, i.e $\mathcal{Y} = \{0, 1\}$ or $\mathcal{Y} = \{1, \dots, K\}$, under the (0-1)-loss, $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$, the best predictor is

$$h^*(x) \in \arg \max_{h(x) \in \mathcal{Y}} \mathbb{P}(Y = h(x) | X = x).$$

We have the conditional risk :

$$\mathbb{E}[\ell(Y, h(X))|X = x] = \mathbb{E}[\mathbb{1}_{h(X) \neq Y}|X = x]$$
$$= \mathbb{P}[h(X) \neq Y|X = x]$$
$$= 1 - \mathbb{P}[Y = h(X)|X = x],$$

then

$$\begin{aligned} h^*(x) &\in & \arg\min_{h(X)\in\mathcal{Y}} \mathbb{E}[\ell(Y,h(X))|X=x] \\ &= \arg\min_{h(X)\in\mathcal{Y}} \{1-\mathbb{P}[Y=h(X)|X=x]\} \\ &= \arg\max_{h(X)\in\mathcal{Y}} \mathbb{P}(Y=h(X)|X=x) \end{aligned}$$

 This why under this loss Bayes' risk corresponds to the MAP - Maximum A Posteriori principle

In classification, i.e $\mathcal{Y} = \{0, 1\}$ or $\mathcal{Y} = \{1, \dots, K\}$, under the (0-1)-loss, $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$, the best predictor is

$$h^*(x) \in \arg \max_{h(x) \in \mathcal{Y}} \mathbb{P}(Y = h(x)|X = x).$$

We have the conditional risk :

$$\mathbb{E}[\ell(Y, h(X))|X = x] = \mathbb{E}[\mathbb{1}_{h(X) \neq Y}|X = x]$$
$$= \mathbb{P}[h(X) \neq Y|X = x]$$
$$= 1 - \mathbb{P}[Y = h(X)|X = x],$$

then

$$\begin{split} h^*(x) &\in & \arg\min_{h(X)\in\mathcal{Y}} \mathbb{E}[\ell(Y,h(X))|X=x] \\ &= \arg\min_{h(X)\in\mathcal{Y}} \{1 - \mathbb{P}[Y=h(X)|X=x]\} \\ &= \arg\max_{h(X)\in\mathcal{Y}} \mathbb{P}(Y=h(X)|X=x) \end{split}$$

 This why under this loss Bayes' risk corresponds to the MAP - Maximum A Posteriori principle

In classification, i.e $\mathcal{Y} = \{0, 1\}$ or $\mathcal{Y} = \{1, \dots, K\}$, under the (0-1)-loss, $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$, the best predictor is

$$h^*(x) \in \arg \max_{h(x) \in \mathcal{Y}} \mathbb{P}(Y = h(x)|X = x).$$

We have the conditional risk :

$$\mathbb{E}[\ell(Y, h(X))|X = x] = \mathbb{E}[\mathbb{1}_{h(X) \neq Y}|X = x]$$
$$= \mathbb{P}[h(X) \neq Y|X = x]$$
$$= 1 - \mathbb{P}[Y = h(X)|X = x],$$

then

$$\begin{split} h^*(x) &\in & \arg\min_{h(X)\in\mathcal{Y}} \mathbb{E}[\ell(Y,h(X))|X=x] \\ &= \arg\min_{h(X)\in\mathcal{Y}} \{1-\mathbb{P}[Y=h(X)|X=x]\} \\ &= \arg\max_{h(X)\in\mathcal{Y}} \mathbb{P}(Y=h(X)|X=x) \end{split}$$

 This why under this loss Bayes' risk corresponds to the MAP - Maximum A Posteriori principle

■ In regression, i.e $\mathcal{Y} = \mathbb{R}$, under the square loss, $\ell(y, h(x)) = (h(x) - y)^2$, the best predictor is

$$h^*(x) = \mathbb{E}[Y|X = x]$$

We have the conditional risk :

$$R(h(x)) = \mathbb{E}[\ell(Y, h(X))|X = x] = \mathbb{E}[(h(X) - Y)^2|X = x]$$
$$= \int (h(X) - y)^2 p(y|x) dy$$

optimizing the Risk by differentiating w.r.t h(x) and setting the derivative to 0 :

$$\frac{\partial R(h(x))}{\partial h(x)} = \frac{\partial}{\partial h(x)} \{ \int (h(X) - y)^2 p(y|x) dy \}$$

= $2 \int (h(x) - y) p(y|x) dy$
= $2 [h(x) \underbrace{\int p(y|x) dy}_{1} - \int y p(y|x) dy] = 2(h(x) - \mathbb{E}[Y|X = x])$
which is zero at $h(x)^* = \mathbb{E}[Y|X = x]$ then
 $h^*(x) = \arg \min \mathbb{E}[\ell(Y, h(X))|X = x] = \mathbb{E}[Y|X = x]$

■ In regression, i.e $\mathcal{Y} = \mathbb{R}$, under the square loss, $\ell(y, h(x)) = (h(x) - y)^2$, the best predictor is

$$h^*(x) = \mathbb{E}[Y|X = x]$$

We have the conditional risk :

$$R(h(x)) = \mathbb{E}[\ell(Y, h(X))|X = x] = \mathbb{E}[(h(X) - Y)^2|X = x]$$

= $\int (h(X) - y)^2 p(y|x) dy$

optimizing the Risk by differentiating w.r.t h(x) and setting the derivative to 0:

$$\begin{aligned} \frac{\partial R(h(x))}{\partial h(x)} &= \frac{\partial}{\partial h(x)} \{ \int (h(X) - y)^2 p(y|x) dy \} \\ &= 2 \int (h(x) - y) p(y|x) dy \\ &= 2[h(x) \underbrace{\int p(y|x) dy}_{1} - \int y p(y|x) dy] = 2(h(x) - \mathbb{E}[Y|X = x]) \end{aligned}$$
which is zero at $h(x)^* = \mathbb{E}[Y|X = x]$ then
 $h^*(x) = \arg\min_{h(x) \in \mathcal{V}} \mathbb{E}[\ell(Y, h(X))|X = x] = \mathbb{E}[Y|X = x]$

• Then *Expected loss* R(h) depends on the joint distribution P of the pair (X, Y).

× In real situations P is in unknown, as we only have a sample $D_n = (X_i, Y_i)_{1 \le i \le n}$, \rightarrow We attempt to minimize the **Empirical Risk**

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$$

to estimate h (within a family \mathcal{H}) :

$$\widehat{h}_n \in \arg\min_{h\in\mathcal{H}} R_n(h).$$

Why this is relevant? Note : By the Law of Large Numbers, $(\frac{1}{n}\sum_{i=1}^{n}\ell(Y_i,h(X_i))_n \xrightarrow{p} \mathbb{E}[\ell(Y,h(X))]$ (the empirical mean converges to the true mean in probability), then

$$(R_n(h))_n \xrightarrow{p} R(h)$$

System×

Then Expected loss R(h) depends on the joint distribution P of the pair (X, Y).
 X In real situations P is in unknown, as we only have a sample D_n = (X_i, Y_i)_{1≤i≤n},
 → We attempt to minimize the Empirical Risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$$

to estimate h (within a family \mathcal{H}) :

 $\widehat{h}_n \in \arg\min_{h\in\mathcal{H}} R_n(h).$

Why this is relevant? Note : By the Law of Large Numbers, $(\frac{1}{n}\sum_{i=1}^{n}\ell(Y_i,h(X_i))_n \xrightarrow{p} \mathbb{E}[\ell(Y,h(X))]$ (the empirical mean converges to the true mean in probability), then

$$(R_n(h))_n \xrightarrow{p} R(h)$$

Then Expected loss R(h) depends on the joint distribution P of the pair (X, Y). X In real situations P is in unknown, as we only have a sample $D_n = (X_i, Y_i)_{1 \le i \le n}$, \hookrightarrow We attempt to minimize the Empirical Risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$$

to estimate h (within a family \mathcal{H}) :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h).$$

Why this is relevant? Note : By the Law of Large Numbers, $(\frac{1}{n}\sum_{i=1}^{n}\ell(Y_i,h(X_i))_n \xrightarrow{p} \mathbb{E}[\ell(Y,h(X))]$ (the empirical mean converges to the true mean in probability), then

$$(R_n(h))_n \xrightarrow{p} R(h)$$

Then Expected loss R(h) depends on the joint distribution P of the pair (X, Y). X In real situations P is in unknown, as we only have a sample $D_n = (X_i, Y_i)_{1 \le i \le n}$, \hookrightarrow We attempt to minimize the Empirical Risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$$

to estimate h (within a family \mathcal{H}) :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h).$$

Why this is relevant? Note : By the Law of Large Numbers, $(\frac{1}{n}\sum_{i=1}^{n}\ell(Y_i,h(X_i))_n \xrightarrow{p} \mathbb{E}[\ell(Y,h(X))]$ (the empirical mean converges to the true mean in probability), then

$$(R_n(h))_n \xrightarrow{p} R(h)$$

System×

Then Expected loss R(h) depends on the joint distribution P of the pair (X, Y). X In real situations P is in unknown, as we only have a sample $D_n = (X_i, Y_i)_{1 \le i \le n}$, \rightarrow We attempt to minimize the Empirical Risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$$

to estimate h (within a family \mathcal{H}) :

$$\widehat{h}_n \in \arg\min_{h\in\mathcal{H}} R_n(h).$$

Why this is relevant? Note : By the Law of Large Numbers, $(\frac{1}{n}\sum_{i=1}^{n}\ell(Y_i, h(X_i))_n \xrightarrow{p} \mathbb{E}[\ell(Y, h(X))]$ (the empirical mean converges to the true mean in probability) then

$$(R_n(h))_n \xrightarrow{p} R(h)$$

Goal : of supervised learning : estimate h^* , knowing only the data \mathcal{D}_n and loss ℓ .

Fitting/Estimation/Learning : The objective is to construct a fit (estimate, learning) \hat{h}_n of the unknown function h to an observed sample (training set) \mathcal{D}_n by minimizing R_n

Then *Expected loss* R(h) depends on the joint distribution P of the pair (X, Y). X In real situations P is in unknown, as we only have a sample $D_n = (X_i, Y_i)_{1 \le i \le n}$ Y We attempt to minimize the **Empirical Risk**

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$$

to estimate h (within a family \mathcal{H}) :

$$\widehat{h}_n \in \arg\min_{h\in\mathcal{H}} R_n(h).$$

Why this is relevant? Note : By the Law of Large Numbers, $(\frac{1}{n}\sum_{i=1}^{n}\ell(Y_i,h(X_i))_n \xrightarrow{p} \mathbb{E}[\ell(Y,h(X))]$ (the empirical mean converges

mean in probability), then

$$(R_n(h))_n \xrightarrow{p} R(h)$$

MSE and Ordinary Least Squares (OLS) :

■ The standard loss for regression is the squared loss : l₂(x, y, h(x)) = (y - h(x))².
 ■ ERM :

$$\widehat{h}_n \in \arg\min_{h\in\mathcal{H}} R_n(h)$$

where the empirical risk $R_n(h)$ under the square loss is the empirical squared loss ¹

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \|Y_i - h(X_i)\|_2^2$$

a \hat{h}_n is known as the **Ordinary Least Squares (OLS) Estimator** of h,

- Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x of the form $\theta^T x$ with $\boldsymbol{x} = (1, x^T)^T$, and $\theta = (\alpha, \beta^T)^T$.
- Solution : $\hat{\theta}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$, whenever $\mathbf{X}^T \mathbf{X}$ has full rank. $(\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T \text{ and } \mathbf{Y} = (Y_1, \dots, Y_n)^T)$

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum RSS) when the ML problem is phrased as an error model $Y = h(X) + \epsilon$, $\epsilon \sim p$

MSE and Ordinary Least Squares (OLS) :

The standard loss for regression is the squared loss : l₂(x, y, h(x)) = (y - h(x))².
ERM :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h)$$

where the empirical risk $R_n(h)$ under the square loss is the empirical squared loss ¹

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \|Y_i - h(X_i)\|_2^2$$

a \hat{h}_n is known as the **Ordinary Least Squares (OLS) Estimator** of h,

- Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x of the form $\theta^T x$ with $\boldsymbol{x} = (1, x^T)^T$, and $\theta = (\alpha, \beta^T)^T$.
- Solution : $\widehat{\theta}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$, whenever $\mathbf{X}^T \mathbf{X}$ has full rank. $(\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T \text{ and } \mathbf{Y} = (Y_1, \dots, Y_n)^T)$

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum (RSS) when the ML problem is phrased as an error model $Y = h(X) + \epsilon$, $\epsilon \sim p$

MSE and Ordinary Least Squares (OLS) :

The standard loss for regression is the squared loss : l₂(x, y, h(x)) = (y - h(x))².
ERM :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h)$$

where the empirical risk $R_n(h)$ under the square loss is the empirical squared loss ¹

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \|Y_i - h(X_i)\|_2^2$$

- \hat{h}_n is known as the Ordinary Least Squares (OLS) Estimator of h,
- Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x of the form $\theta^T x$ with $\boldsymbol{x} = (1, x^T)^T$, and $\theta = (\alpha, \beta^T)^T$.
- Solution : $\widehat{\theta}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$, whenever $\mathbf{X}^T \mathbf{X}$ has full rank. $(\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T \text{ and } \mathbf{Y} = (Y_1, \dots, Y_n)^T)$

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum (RSS) when the ML problem is phrased as an error model $Y = h(X) + \epsilon$, $\epsilon \sim p$

MSE and Ordinary Least Squares (OLS) :

The standard loss for regression is the squared loss : l₂(x, y, h(x)) = (y - h(x))².
ERM :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h)$$

where the empirical risk $R_n(h)$ under the square loss is the empirical squared loss ¹

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \|Y_i - h(X_i)\|_2^2$$

- \hat{h}_n is known as the Ordinary Least Squares (OLS) Estimator of h,
- Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x of the form $\theta^T x$ with $\boldsymbol{x} = (1, x^T)^T$, and $\theta = (\alpha, \beta^T)^T$.
- Solution : $\widehat{\theta}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$, whenever $\mathbf{X}^T \mathbf{X}$ has full rank. $(\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T$ and $\mathbf{Y} = (Y_1, \dots, Y_n)^T)$

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum (RSS) when the ML problem is phrased as an error model $Y = h(X) + \epsilon$, $\epsilon \sim p$

MSE and Ordinary Least Squares (OLS) :

The standard loss for regression is the squared loss : l₂(x, y, h(x)) = (y - h(x))².
ERM :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h)$$

where the empirical risk $R_n(h)$ under the square loss is the empirical squared loss ¹

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \|Y_i - h(X_i)\|_2^2$$

- \hat{h}_n is known as the Ordinary Least Squares (OLS) Estimator of h,
- Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x of the form $\theta^T x$ with $\boldsymbol{x} = (1, x^T)^T$, and $\theta = (\alpha, \beta^T)^T$.
- Solution : $\hat{\theta}_n = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$, whenever $\mathbf{X}^T \mathbf{X}$ has full rank. $(\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_n)^T \text{ and } \mathbf{Y} = (Y_1, \dots, Y_n)^T)$

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum (RSS) when the ML problem is phrased as an error model $Y = h(X) + \epsilon$, $\epsilon \sim p$

 \blacksquare Suppose that a learning algorithm chooses the predictor from a class \mathcal{H}_{r} and define

$$h_{\mathcal{H}} = \arg \inf_{h \in \mathcal{H}} R(h)$$

• Let h^* be the best predictor, i.e which achieves the Bayes risk :

$$R^* = R(h^*) = \inf_{h \in \text{all possible } h} R(h)$$

Given any $\hat{h}_n \in \mathcal{H}$, the excess risk of \hat{h}_n , $R(\hat{h}_n) - R^*$, which compares the risk of \hat{h} to the Bayes optimal prediction function h^* , can be decomposed as

$$R(\widehat{h}_n) - R^* = \underbrace{R(\widehat{h}_n) - R(h_{\mathcal{H}})}_{\text{Example 1}} + \underbrace{R(h_{\mathcal{H}}) - R^*}_{\text{Example 1}}$$

The approximation error : $R(h_{\mathcal{H}}) - R^*$ is deterministic and is caused by the restriction to the class \mathcal{H} rather than all possible functions.

 \hookrightarrow It is a property of the class $\mathcal H.$ Bigger $\mathcal H$ implies smaller approximation error.

The estimation error $R(\hat{h}_n) - R(h_H)$ is caused by the usage of a finite sample that cannot completely represent the underlying distribution. It is random.

 \hookrightarrow With smaller ${\mathcal H}$ we expect smaller estimation error.

 \hookrightarrow Trade-off : When the "number" of models in \mathcal{H} (e.g., number of parameters in Θ) grows, the approximation error goes down, while the estimation error goes up, and

Suppose that a learning algorithm chooses the predictor from a class \mathcal{H} , and define

$$h_{\mathcal{H}} = \arg \inf_{h \in \mathcal{H}} R(h)$$

• Let h^* be the best predictor, i.e which achieves the Bayes risk :

$$R^* = R(h^*) = \inf_{h \in \text{all possible } h} R(h)$$

Given any $\hat{h}_n \in \mathcal{H}$, the excess risk of \hat{h}_n , $R(\hat{h}_n) - R^*$, which compares the risk of \hat{h} to the Bayes optimal prediction function h^* , can be decomposed as

$$R(\hat{h}_n) - R^* = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}})}_{\text{Estimation Error}} + \underbrace{R(h_{\mathcal{H}}) - R^*}_{\text{Approximation Error}}$$

The approximation error : $R(h_H) - R^*$ is deterministic and is caused by the restriction to the class \mathcal{H} rather than all possible functions.

 \hookrightarrow It is a property of the class $\mathcal H.$ Bigger $\mathcal H$ implies smaller approximation error.

The estimation error $R(\hat{h}_n) - R(h_H)$ is caused by the usage of a finite sample that cannot completely represent the underlying distribution. It is random.

 \hookrightarrow With smaller ${\mathcal H}$ we expect smaller estimation error.

 \hookrightarrow Trade-off : When the "number" of models in \mathcal{H} (e.g., number of parameters in Θ) grows, the approximation error goes down, while the estimation error goes up, and

Suppose that a learning algorithm chooses the predictor from a class \mathcal{H} , and define

$$h_{\mathcal{H}} = \arg \inf_{h \in \mathcal{H}} R(h)$$

• Let h^* be the best predictor, i.e which achieves the Bayes risk :

$$R^* = R(h^*) = \inf_{h \in \text{all possible } h} R(h)$$

Given any $\hat{h}_n \in \mathcal{H}$, the excess risk of \hat{h}_n , $R(\hat{h}_n) - R^*$, which compares the risk of \hat{h} to the Bayes optimal prediction function h^* , can be decomposed as

$$R(\hat{h}_n) - R^* = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}})}_{\text{Estimation Error}} + \underbrace{R(h_{\mathcal{H}}) - R^*}_{\text{Approximation Error}}$$

• The approximation error : $R(h_H) - R^*$ is deterministic and is caused by the restriction to the class H rather than all possible functions.

 \hookrightarrow It is a property of the class $\mathcal H.$ Bigger $\mathcal H$ implies smaller approximation error.

■ The estimation error R(h_n) - R(h_H) is caused by the usage of a finite sample that cannot completely represent the underlying distribution. It is random.
→ With smaller H we expect smaller estimation error.

 \hookrightarrow Trade-off : When the "number" of models in \mathcal{H} (e.g., number of parameters in Θ) grows, the approximation error goes down, while the estimation error goes up, and

Suppose that a learning algorithm chooses the predictor from a class \mathcal{H} , and define

$$h_{\mathcal{H}} = \arg \inf_{h \in \mathcal{H}} R(h)$$

• Let h^* be the best predictor, i.e which achieves the Bayes risk :

$$R^* = R(h^*) = \inf_{h \in \text{all possible } h} R(h)$$

Given any $\hat{h}_n \in \mathcal{H}$, the excess risk of \hat{h}_n , $R(\hat{h}_n) - R^*$, which compares the risk of \hat{h} to the Bayes optimal prediction function h^* , can be decomposed as

$$R(\hat{h}_n) - R^* = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}})}_{\text{Estimation Error}} + \underbrace{R(h_{\mathcal{H}}) - R^*}_{\text{Approximation Error}}$$

The approximation error : $R(h_{\mathcal{H}}) - R^*$ is deterministic and is caused by the restriction to the class \mathcal{H} rather than all possible functions.

 \hookrightarrow It is a property of the class \mathcal{H} . Bigger \mathcal{H} implies smaller approximation error.

- The estimation error $R(\hat{h}_n) R(h_H)$ is caused by the usage of a finite sample that cannot completely represent the underlying distribution. It is random.
 - \hookrightarrow With smaller ${\mathcal H}$ we expect smaller estimation error.

 \hookrightarrow Trade-off : When the "number" of models in \mathcal{H} (e.g., number of parameters in Θ) grows, the approximation error goes down, while the estimation error goes up, and F. CHAMROUKH Statistical Learning 16

Suppose that a learning algorithm chooses the predictor from a class \mathcal{H} , and define

$$h_{\mathcal{H}} = \arg \inf_{h \in \mathcal{H}} R(h)$$

• Let h^* be the best predictor, i.e which achieves the Bayes risk :

$$R^* = R(h^*) = \inf_{h \in \text{all possible } h} R(h)$$

Given any $\hat{h}_n \in \mathcal{H}$, the excess risk of \hat{h}_n , $R(\hat{h}_n) - R^*$, which compares the risk of \hat{h} to the Bayes optimal prediction function h^* , can be decomposed as

$$R(\hat{h}_n) - R^* = \underbrace{R(\hat{h}_n) - R(h_{\mathcal{H}})}_{\text{Estimation Error}} + \underbrace{R(h_{\mathcal{H}}) - R^*}_{\text{Approximation Error}}$$

The approximation error : $R(h_{\mathcal{H}}) - R^*$ is deterministic and is caused by the restriction to the class \mathcal{H} rather than all possible functions.

 $\hookrightarrow \mathsf{It} \text{ is a property of the class } \mathcal{H}. \mathsf{ Bigger } \mathcal{H} \mathsf{ implies smaller approximation error}.$

The estimation error $R(\hat{h}_n) - R(h_H)$ is caused by the usage of a finite sample that cannot completely represent the underlying distribution. It is random.

 \hookrightarrow With smaller $\mathcal H$ we expect smaller estimation error.

 $\hookrightarrow \mbox{ Trade-off : When the "number" of models in \mathcal{H} (e.g., number of parameters in Θ)} grows, the approximation error goes down, while the estimation error goes up, and$

• Given a loss function ℓ .

- Choose a hypothesis space \mathcal{H} .
- Use an optimization method to find the Empirical Risk Minimizer (ERM) :

$$\widehat{h}_n \in \arg\min_{h\in\mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)).$$

- $\hookrightarrow\,$ Data Scientist's Role : Choose ${\cal H}$ to balance approximation and estimation error.
- $\,\hookrightarrow\,$ As we get more training data, we can use a larger $\mathcal{H}.$

- In practice, we very often need an **optimization method** to find $\hat{h}_n \in \mathcal{H}$.
- However, we may not find the exact ERM \hat{h}_n . Instead, we find an approximation $\tilde{h}_n \in \mathcal{H}$ that is hopefully good enough, and in some cases, \tilde{h}_n may generalize better than \hat{h}_n (i.e., achieves a lower true risk $R(\tilde{h}_n) < R(\hat{h}_n)$) due to regularization or improved numerical stability, early stopping, etc

- Given a loss function ℓ .
- Choose a hypothesis space \mathcal{H} .

Use an optimization method to find the Empirical Risk Minimizer (ERM) :

$$\widehat{h}_n \in \arg\min_{h\in\mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)).$$

- $\hookrightarrow\,$ Data Scientist's Role : Choose ${\cal H}$ to balance approximation and estimation error.
- $\,\hookrightarrow\,$ As we get more training data, we can use a larger $\mathcal{H}.$

- In practice, we very often need an **optimization method** to find $\hat{h}_n \in \mathcal{H}$.
- However, we may not find the exact ERM \hat{h}_n . Instead, we find an approximation $\tilde{h}_n \in \mathcal{H}$ that is hopefully good enough, and in some cases, \tilde{h}_n may generalize better than \hat{h}_n (i.e., achieves a lower true risk $R(\tilde{h}_n) < R(\hat{h}_n)$) due to regularization or improved numerical stability, early stopping, etc

- Given a loss function ℓ .
- Choose a hypothesis space \mathcal{H} .
- Use an optimization method to find the Empirical Risk Minimizer (ERM) :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)).$$

- $\hookrightarrow\,$ Data Scientist's Role : Choose ${\cal H}$ to balance approximation and estimation error.
- $\,\hookrightarrow\,$ As we get more training data, we can use a larger $\mathcal{H}.$

- In practice, we very often need an **optimization method** to find $\hat{h}_n \in \mathcal{H}$.
- However, we may not find the exact ERM \hat{h}_n . Instead, we find an approximation $\tilde{h}_n \in \mathcal{H}$ that is hopefully good enough, and in some cases, \tilde{h}_n may generalize better than \hat{h}_n (i.e., achieves a lower true risk $R(\tilde{h}_n) < R(\hat{h}_n)$) due to regularization or improved numerical stability, early stopping, etc

- Given a loss function ℓ .
- Choose a hypothesis space \mathcal{H} .
- Use an optimization method to find the Empirical Risk Minimizer (ERM) :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)).$$

- $\hookrightarrow\,$ Data Scientist's Role : Choose ${\cal H}$ to balance approximation and estimation error.
- $\,\hookrightarrow\,$ As we get more training data, we can use a larger $\mathcal{H}.$

- In practice, we very often need an **optimization method** to find $\hat{h}_n \in \mathcal{H}$.
- However, we may not find the exact ERM \hat{h}_n . Instead, we find an approximation $\tilde{h}_n \in \mathcal{H}$ that is hopefully good enough, and in some cases, \tilde{h}_n may generalize better than \hat{h}_n (i.e., achieves a lower true risk $R(\tilde{h}_n) < R(\hat{h}_n)$) due to regularization or improved numerical stability, early stopping, etc

- Given a loss function ℓ .
- Choose a hypothesis space \mathcal{H} .
- Use an optimization method to find the Empirical Risk Minimizer (ERM) :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)).$$

- $\hookrightarrow\,$ Data Scientist's Role : Choose ${\cal H}$ to balance approximation and estimation error.
- $\,\hookrightarrow\,$ As we get more training data, we can use a larger $\mathcal{H}.$

Optimization Error :

In practice, we very often need an **optimization method** to find $\hat{h}_n \in \mathcal{H}$.

However, we may not find the exact ERM \hat{h}_n . Instead, we find an approximation $\tilde{h}_n \in \mathcal{H}$ that is hopefully good enough, and in some cases, \tilde{h}_n may generalize better than \hat{h}_n (i.e., achieves a lower true risk $R(\tilde{h}_n) < R(\hat{h}_n)$) due to regularization or improved numerical stability, early stopping, etc

- Given a loss function ℓ .
- Choose a hypothesis space \mathcal{H} .
- Use an optimization method to find the Empirical Risk Minimizer (ERM) :

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)).$$

- \hookrightarrow Data Scientist's Role : Choose ${\mathcal H}$ to balance approximation and estimation error.
- $\,\hookrightarrow\,$ As we get more training data, we can use a larger $\mathcal{H}.$

- In practice, we very often need an **optimization method** to find $\hat{h}_n \in \mathcal{H}$.
- However, we may not find the exact ERM \hat{h}_n . Instead, we find an approximation $\tilde{h}_n \in \mathcal{H}$ that is hopefully good enough, and in some cases, \tilde{h}_n may generalize better than \hat{h}_n (i.e., achieves a lower true risk $R(\tilde{h}_n) < R(\hat{h}_n)$) due to regularization or improved numerical stability, early stopping, etc

Decomposition

Optimization Error :

- Measures the difference in true risk between the empirical risk minimizer \hat{h}_n and the function \tilde{h}_n returned by the *optimization algorithm*.
- Optimization error is defined as :

Optimization Error = $R(\tilde{h}_n) - R(\hat{h}_n)$.

This error can be negative (if optimization finds a better function than ĥ_n due to regularization or numerical properties as explained in the previous slide).

Excess Risk Decomposition :

• The excess risk of \tilde{h}_n can be decomposed as :

Excess
$$\operatorname{Risk}(\widetilde{h}_n) = R(\widetilde{h}_n) - R(h^*)$$

= $\underbrace{R(\widetilde{h}_n) - R(\widehat{h}_n)}_{\operatorname{Originizing Excess}} + \underbrace{R(\widehat{h}_n) - R(h_{\mathcal{H}})}_{\operatorname{Excess}} + \underbrace{R(h_{\mathcal{H}}) - R(h^*)}_{\operatorname{Accessing Excess}}.$

Decomposition

Optimization Error :

- Measures the difference in true risk between the empirical risk minimizer \hat{h}_n and the function \tilde{h}_n returned by the *optimization algorithm*.
- Optimization error is defined as :

Optimization Error = $R(\tilde{h}_n) - R(\hat{h}_n)$.

This error can be negative (if optimization finds a better function than \hat{h}_n due to regularization or numerical properties as explained in the previous slide).

Excess Risk Decomposition :

The excess risk of \tilde{h}_n can be decomposed as :

Excess
$$\operatorname{Risk}(\widetilde{h}_n) = R(\widetilde{h}_n) - R(h^*)$$

= $\underbrace{R(\widetilde{h}_n) - R(\widehat{h}_n)}_{\operatorname{Ortinization Error}} + \underbrace{R(\widehat{h}_n) - R(h_{\mathcal{H}})}_{\operatorname{Ertinution Error}} + \underbrace{R(h_{\mathcal{H}}) - R(h^*)}_{\operatorname{Approximation Error}}.$

Decomposition

Optimization Error :

- Measures the difference in true risk between the empirical risk minimizer \hat{h}_n and the function \tilde{h}_n returned by the *optimization algorithm*.
- Optimization error is defined as :

Optimization Error = $R(\tilde{h}_n) - R(\hat{h}_n)$.

This error can be negative (if optimization finds a better function than ĥ_n due to regularization or numerical properties as explained in the previous slide).

Excess Risk Decomposition :

• The excess risk of \tilde{h}_n can be decomposed as :

Excess
$$\operatorname{Risk}(\widetilde{h}_n) = R(\widetilde{h}_n) - R(h^*)$$

= $\underbrace{R(\widetilde{h}_n) - R(\widehat{h}_n)}_{\operatorname{Optimization Error}} + \underbrace{R(\widehat{h}_n) - R(h_{\mathcal{H}})}_{\operatorname{Estimation Error}} + \underbrace{R(h_{\mathcal{H}}) - R(h^*)}_{\operatorname{Approximation Error}}.$

- System×
- Optimization error can be negative (but the excess risk is always non-negative) : Optimization does not always return the ERM h
 _n, but sometimes finds a better function h
 _n that generalizes better (achieving smaller true risk R).
- Example : by **Regularization.** Regularization prevents overfitting and can improve generalization, resulting in a lower true risk *R*.
- **Example :** We train a **logistic regression** classifier with the log loss :

$$\widehat{h}_n = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$$

Instead of attempting to solve this exactly, we use ℓ_2 -regularization (Ridge penalty) : $\tilde{h}_n = \arg \min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)) + \lambda ||h||^2$. Then we can get

 $R(\widetilde{h}_n) \leq R(\widehat{h}_n)$ (if λ is well-chosen, avoiding underfitting or overfitting)

- This leads to an apparent negative optimization error, but it is due to regularization : Regularization Effect = $R(\tilde{h}_n) R(\hat{h}_n) \le 0$
- However, this is not always due to optimization it is due to regularization.

- Example : by **Regularization.** Regularization prevents overfitting and can improve generalization, resulting in a lower true risk *R*.
- **Example :** We train a **logistic regression** classifier with the log loss :

$$\widehat{h}_n = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$$

Instead of attempting to solve this exactly, we use ℓ_2 -regularization (Ridge penalty) : $\tilde{h}_n = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)) + \lambda \|h\|^2$. Then we can get

 $R(\widetilde{h}_n) \leq R(\widehat{h}_n)$ (if λ is well-chosen, avoiding underfitting or overfitting)

- This leads to an apparent negative optimization error, but it is due to regularization : Regularization Effect $= R(\tilde{h}_n) R(\hat{h}_n) \le 0$
- However, this is not always due to optimization it is due to regularization.

- Example : by **Regularization.** Regularization prevents overfitting and can improve generalization, resulting in a lower true risk *R*.
- **Example :** We train a **logistic regression** classifier with the log loss :

$$\widehat{h}_n = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$$

Instead of attempting to solve this exactly, we use ℓ_2 -regularization (Ridge penalty) : $\tilde{h}_n = \arg\min_{h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i)) + \lambda \|h\|^2$. Then we can get

 $R(\widetilde{h}_n) \leq R(\widehat{h}_n) \quad \text{(if λ is well-chosen, avoiding underfitting or overfitting)}$

- This leads to an apparent negative optimization error, but it is due to regularization : Regularization Effect = $R(\tilde{h}_n) R(\hat{h}_n) \le 0$
- However, this is not always due to optimization it is due to regularization.

Why can regularization improve true risk R?

- Regularization improves generalization by reducing variance.
- Logistic regression without regularization can produce very large coefficients, leading to poor generalization.
- Avoiding poorly conditioned solutions helps in optimization stability.
- SGD/momentum methods can converge to flatter (less-sharp) minima thus more stable (to small data deviations) that generalize better.
- Early stopping in neural networks prevents overfitting by stopping training when validation error increases.

For a reminder on optimization principles and algorithms, see my course : *Optimization for Machine Learning* available at : https://chamroukhi.com/teaching.php

Excess Risk and Kullback-Leibler Divergence

- Consider the log-loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$
- The risk under this loss is $R(\theta) = \mathbb{E}_P[\ell(Y, h_{\theta}(X))] = \mathbb{E}_P[-\log p_{\theta}(X, Y)]$

• The excess risk of θ

$$\begin{aligned} R(\theta) - R^* &= \mathbb{E}_P[-\log p_{\theta}(X, Y) + \log p_{\theta^*}(X, Y)] \\ &= \mathbb{E}_P[\log \frac{p_{\theta^*}(X, Y)}{p_{\theta}(X, Y)}] \\ &= \int \log \frac{p_{\theta^*}(x, y)}{p_{\theta}(x, y)} p_{\theta^*}(x, y) \, dP(x, y) \\ &= \mathrm{KL}(p_{\theta^*} \| p_{\theta}) \\ &\geq 0: \end{aligned}$$

which is equal to $\mathrm{KL}(p_{ heta*}\|p_ heta)$, the Kullback-Leibler divergence between $p_ heta$ and $p_{ heta*}$

- Note : $KL(p_{\theta^*}||p_{\theta}) = 0$ holds if and only if $p_{\theta^*} = p_{\theta}$.
- Although not a distance measure (not symmetric), the KL-divergence measures the discrepancy between two distributions.

Excess Risk and Kullback-Leibler Divergence

• Consider the log-loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$

- The risk under this loss is $R(\theta) = \mathbb{E}_P[\ell(Y, h_{\theta}(X))] = \mathbb{E}_P[-\log p_{\theta}(X, Y)]$
- The excess risk of θ

$$R(\theta) - R^* = \mathbb{E}_P[-\log p_{\theta}(X, Y) + \log p_{\theta^*}(X, Y)]$$

$$= \mathbb{E}_P[\log \frac{p_{\theta^*}(X, Y)}{p_{\theta}(X, Y)}]$$

$$= \int \log \frac{p_{\theta^*}(x, y)}{p_{\theta}(x, y)} p_{\theta^*}(x, y) dP(x, y)$$

$$= \mathsf{KL}(p_{\theta^*} || p_{\theta})$$

$$\geq 0:$$

which is equal to $KL(p_{\theta^*}||p_{\theta})$, the Kullback-Leibler divergence between p_{θ} and p_{θ^*}

- Note : $\operatorname{KL}(p_{\theta*}||p_{\theta}) = 0$ holds if and only if $p_{\theta*} = p_{\theta}$.
- Although not a distance measure (not symmetric), the KL-divergence measures the discrepancy between two distributions.

Excess Risk and Kullback-Leibler Divergence

- Consider the log-loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$
- The risk under this loss is $R(\theta) = \mathbb{E}_P[\ell(Y, h_\theta(X))] = \mathbb{E}_P[-\log p_\theta(X, Y)]$
- The excess risk of θ

$$R(\theta) - R^* = \mathbb{E}_P[-\log p_{\theta}(X, Y) + \log p_{\theta^*}(X, Y)]$$

$$= \mathbb{E}_P[\log \frac{p_{\theta^*}(X, Y)}{p_{\theta}(X, Y)}]$$

$$= \int \log \frac{p_{\theta^*}(x, y)}{p_{\theta}(x, y)} p_{\theta^*}(x, y) dP(x, y)$$

$$= \mathrm{KL}(p_{\theta^*} \| p_{\theta})$$

$$\geq 0:$$

which is equal to $KL(p_{\theta*}||p_{\theta})$, the Kullback-Leibler divergence between p_{θ} and $p_{\theta*}$

- Note : KL(p_{θ*}||p_θ) = 0 holds if and only if p_{θ*} = p_θ.
- Although not a distance measure (not symmetric), the KL-divergence measures the discrepancy between two distributions.

 \blacksquare Def. Likelihood function : The likelihood function for model h is the joint pdf of the observed data given h

$$L(h) = P(\mathcal{D}|h) = P(\{(x_i, y_i)_{i=1}^n\}|h)$$

Def. The Maximum Likelihood Estimator : Maximum likelihood estimation seeks for the model h
 that fits best the data : The Maximum Likelihood Estimator (MLE) is then a maximizer of the likelihood function, i.e :

$$\widehat{h}_n \in \arg\max_{h \in \mathcal{H}} L(h).$$

Note : Since the log function is strictly increasing, then, the MLE is preferentially performed (for notably numerical reasons, and sums are easier to work with than products) by maximizing the log-likelihood :

$$\widehat{h}_n \in \arg\max_{h \in \mathcal{H}} \log L(h).$$

• Def. Likelihood function : The likelihood function for model h is the joint pdf of the observed data given h

$$L(h) = P(\mathcal{D}|h) = P(\{(x_i, y_i)_{i=1}^n\}|h)$$

Def. The Maximum Likelihood Estimator : Maximum likelihood estimation seeks for the model h
 that fits best the data : The Maximum Likelihood Estimator (MLE) is then a maximizer of the likelihood function, i.e :

$$\widehat{h}_n \in \arg\max_{h \in \mathcal{H}} L(h).$$

Note : Since the log function is strictly increasing, then, the MLE is preferentially performed (for notably numerical reasons, and sums are easier to work with than products) by maximizing the log-likelihood :

$$\widehat{h}_n \in \arg\max_{h \in \mathcal{H}} \log L(h).$$

• Def. Likelihood function : The likelihood function for model h is the joint pdf of the observed data given h

$$L(h) = P(\mathcal{D}|h) = P(\{(x_i, y_i)_{i=1}^n\}|h)$$

Def. The Maximum Likelihood Estimator : Maximum likelihood estimation seeks for the model h
 that fits best the data : The Maximum Likelihood Estimator (MLE) is then a maximizer of the likelihood function, i.e :

$$\widehat{h}_n \in \arg\max_{h \in \mathcal{H}} L(h).$$

• Note : Since the log function is strictly increasing, then, the MLE is preferentially performed (for notably numerical reasons, and sums are easier to work with than products) by maximizing the log-likelihood :

$$\widehat{h}_n \in \arg\max_{h \in \mathcal{H}} \log L(h).$$

Parametric models

Def. Parametric model of distributions

A probabilistic model on a data space \mathcal{X} is a family of probability distributions indexed by $\theta \in \Theta$. We denote this as

$$P = \{p_{\theta}(x); \theta \in \Theta\}$$

where θ is the (vector of) parameter(s) and Θ is the parameter space.

- Bernoulli : $p_{\theta}(x) = \mathbb{P}_{\theta}(X = x) = \theta^{x}(1 \theta)^{1 x}$ with $\mathcal{X} = \{0, 1\}$ and $\theta \in \Theta = [0, 1]$
- Binomial : $p_{\theta}(x) = \mathbb{P}_{\theta}(X = x) = \binom{N}{x} \nu^x (1 \nu)^{1-x}$ with $\mathcal{X} = \{0, 1, ..., N\}$ and $\theta = (N, \nu) \in \Theta = \mathbb{N} \times [0, 1]$
- Univariate Gaussian : $p_{\theta}(x) = \varphi(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$ with $\mathcal{X} = \mathbb{R}$ and $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+$
- multivariate Gaussian : $\phi_d(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$ with $\mathcal{X} = \mathbb{R}^d$ and $\boldsymbol{\theta} = (\boldsymbol{\mu}', \operatorname{vech}(\boldsymbol{\Sigma})')' \in \Theta = \mathbb{R} \times S^d_{++}$; The set of symmetric positive definite matrices on $\mathbb{R}^d : S^d_{++} = \{\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d} : \boldsymbol{\Sigma} = \boldsymbol{\Sigma}' \text{ and } \boldsymbol{\Sigma} \succ 0\}$

Parametric models

Def. Parametric model of distributions

A probabilistic model on a data space \mathcal{X} is a family of probability distributions indexed by $\theta \in \Theta$. We denote this as

$$P = \{p_{\theta}(x); \theta \in \Theta\}$$

where θ is the (vector of) parameter(s) and Θ is the parameter space.

- Bernoulli : $p_{\theta}(x) = \mathbb{P}_{\theta}(X = x) = \theta^{x}(1 \theta)^{1-x}$ with $\mathcal{X} = \{0, 1\}$ and $\theta \in \Theta = [0, 1]$
- Binomial : $p_{\theta}(x) = \mathbb{P}_{\theta}(X = x) = \binom{N}{x} \nu^x (1 \nu)^{1-x}$ with $\mathcal{X} = \{0, 1, ..., N\}$ and $\theta = (N, \nu) \in \Theta = \mathbb{N} \times [0, 1]$
- Univariate Gaussian : $p_{\theta}(x) = \varphi(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$ with $\mathcal{X} = \mathbb{R}$ and $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+$
- multivariate Gaussian : $\phi_d(\boldsymbol{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{\frac{d}{2}} |\boldsymbol{\Sigma}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$ with $\mathcal{X} = \mathbb{R}^d$ and $\boldsymbol{\theta} = (\boldsymbol{\mu}', \operatorname{vech}(\boldsymbol{\Sigma})')' \in \Theta = \mathbb{R} \times S^d_{++}$; The set of symmetric positive definite matrices on $\mathbb{R}^d : S^d_{++} = \{\boldsymbol{\Sigma} \in \mathbb{R}^{d \times d} : \boldsymbol{\Sigma} = \boldsymbol{\Sigma}' \text{ and } \boldsymbol{\Sigma} \succ 0\}$

Examples of MLE

Example : MLE for the Bernoulli

- Bernoulli : $p_{\theta}(x) = \mathbb{P}(X = x | \theta) = \theta^x (1 \theta)^{1-x}$ with $\mathcal{X} = \{0, 1\}$ and $\theta \in \Theta = [0, 1]$
- MLE : $\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$.

MLE : $\hat{\theta} = \arg \max_{\theta} \log L(\theta)$. By independence and identical distribution, we have

$$\begin{split} \log L(\theta) &= \log \mathbb{P}(X_1 = x_1, \dots, X_n = x_n; \theta) = \log \prod_{i=1}^n \mathbb{P}(X_i = x_i; \theta) \\ &= \log \prod_{i=1}^n \theta^{x_i} (1-\theta)^{1-x_i} \\ &= \sum_{i=1}^n x_i \log \theta + \sum_{i=1}^n (1-x_i) \log(1-\theta) \\ \frac{\partial \log L(\theta)}{\partial \theta} &= \frac{1}{\theta} \sum_{i=1}^n x_i - \frac{1}{1-\theta} \sum_{i=1}^n (1-x_i), \text{ which is zero at} \end{split}$$

$$\frac{1}{\hat{\theta}} \sum_{i=1}^{n} x_i - \frac{1}{1-\hat{\theta}} \sum_{i=1}^{n} (1-x_i) = 0$$

$$(1-\hat{\theta}) \sum_{i=1}^{n} x_i - \hat{\theta} \sum_{i=1}^{n} (1-x_i) = 0$$

$$\sum_{i=1}^{n} x_i - n\hat{\theta} = 0$$

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

Examples of MLE

Example : MLE for the Gaussian mean

- Univariate Gaussian : $p_{\theta}(x) = \phi_1(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}(\frac{x-\mu}{\sigma})^2\right)$ with $\mathcal{X} = \mathbb{R}$ and $\theta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times \mathbb{R}_+$
- MLE : $\hat{\theta} = (\hat{\mu}, \hat{\sigma}^2)$ with $\hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \hat{\mu})^2$.

 $\mathsf{MLE}: \widehat{\theta} = \arg \max_{\theta} \log L(\theta).$

$$\log L(\mu, \sigma^2) = \log p(X_1 = x_1, \dots, X_n = x_n; \mu, \sigma^2) = \log \prod_{i=1}^n \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x_i - \mu}{\sigma}\right)^2}$$
$$= \sum_{i=1}^n \log \frac{1}{\sigma\sqrt{2\pi}} - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 = -\frac{n}{2} \log 2\pi - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2.$$

We have $\frac{\partial L(\mu,\sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu)$ and $\frac{\partial L(\mu,\sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2$. which are zero at

$$\frac{\partial L(\hat{\mu}, \sigma^2)}{\partial \mu} = 0 \Longrightarrow \sum_{i=1}^n (X_i - \hat{\mu}) = 0 \Longrightarrow \hat{\mu} = \frac{1}{n} \sum_{i=1}^n X_i$$
$$\frac{\partial L(\mu, \hat{\sigma}^2)}{\partial \sigma^2} = 0 \Longrightarrow -n\hat{\sigma}^2 + \sum_{i=1}^n (x_i - \mu)^2 \Longrightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^2.$$

When MLE coincides with ERM I

- Consider the parametric setting :
- MLE (density estimation framework) : We seek for an esitmator of the parameters θ of the joint distribution p_θ(x, y). For an independent and identically distributed (iid) sample {(x_i, y_i)ⁿ_{i=1}}, the log-likelihood function of θ is :

$$\log L(\theta) = \sum_{i=1}^{n} \log p_{\theta}(x_i, y_i).$$

ERM : We seek for a predictor h_θ given a training set {(x_i, y_i)ⁿ_{i=1}} from p_θ(x, y).
 Consider the log-loss :

$$\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y)).$$

The corresponding empirical risk is by definition

$$R_n(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, h_\theta(x_i)) = -\frac{1}{n} \sum_{i=1}^n \log p_\theta(x_i, y_i) = -\frac{1}{n} \log L(\theta)$$

 \hookrightarrow With the log-loss, ERM coincides with MLE.

Examples :

MLE coincides with OLS (ERM) in Gaussian regression (see later) MLE coincides with ERM in Logistic regression (see later)

In some situations, we are interested in estimating the conditional distribution P(Y|X), rather than the joint distribution P(X,Y).

- As we'll see it later, this is the case for example in discriminative learning (eg. logistic regression for classification, or Gaussian linear regression with non-random predictors) where we do not need to define a distribution of X.
- In the parametric setting, we therefore have the conditional log-likehood risk

$$R(\theta) = -\mathbb{E}[\log p_{\theta}(Y|X)]$$

and the corresponding conditional empirical risk

$$R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log p_\theta(y_i | x_i)$$

which coincides with the conditional log-likehood.

- In some situations, we are interested in estimating the conditional distribution P(Y|X), rather than the joint distribution P(X,Y).
- As we'll see it later, this is the case for example in discriminative learning (eg. logistic regression for classification, or Gaussian linear regression with non-random predictors) where we do not need to define a distribution of X.

In the parametric setting, we therefore have the conditional log-likehood risk

$$R(\theta) = -\mathbb{E}[\log p_{\theta}(Y|X)]$$

and the corresponding conditional empirical risk

$$R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log p_\theta(y_i | x_i)$$

which coincides with the conditional log-likehood.

- In some situations, we are interested in estimating the conditional distribution P(Y|X), rather than the joint distribution P(X,Y).
- As we'll see it later, this is the case for example in discriminative learning (eg. logistic regression for classification, or Gaussian linear regression with non-random predictors) where we do not need to define a distribution of X.
- In the parametric setting, we therefore have the conditional log-likehood risk

$$R(\theta) = -\mathbb{E}[\log p_{\theta}(Y|X)]$$

and the corresponding conditional empirical risk

$$R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log p_\theta(y_i | x_i)$$

which coincides with the conditional log-likehood.

Example : Logistic Regression :

• Logistic Regression model : $p_{\theta}(y|\boldsymbol{x}) = \pi_{\theta}(\boldsymbol{x})^{y}(1-\pi_{\theta}(\boldsymbol{x}))^{1-y}$ with $y \in \{0,1\}$,

and $\pi_{\boldsymbol{\theta}}(\boldsymbol{x}) = \sigma(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x}) = \frac{\exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}{1 + \exp(\beta_0 + \boldsymbol{\beta}^T \boldsymbol{x})}$ is the logistic function.

Empirical risk :

$$\begin{aligned} n(\theta) &= -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(y_i | x_i) \\ &= -\frac{1}{n} \sum_{i=1}^{n} \log [\pi_{\theta}(x_i)^{y_i} (1 - \pi_{\theta}(x_i))^{1 - y_i}] \\ &= \sum_{i=1}^{n} y_i \log \pi(x_i; \theta) + (1 - y_i) \log (1 - \pi(x_i; \theta)) \\ &= -\frac{1}{n} \sum_{i=1}^{n} y_i (\beta_0 + \beta^{\top} x_i) - \log (1 + \exp(\beta_0 + \beta^{\top} x_i)) \end{aligned}$$

Conditional log-likelihood L(heta)

Example : Logistic Regression :

ŀ

- Logistic Regression model : $p_{\theta}(y|\boldsymbol{x}) = \pi_{\theta}(\boldsymbol{x})^{y}(1 \pi_{\theta}(\boldsymbol{x}))^{1-y}$ with $y \in \{0, 1\}$, and $\pi_{\theta}(\boldsymbol{x}) = \sigma(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x}) = \frac{\exp(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x})}{1 + \exp(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x})}$ is the logistic function.
- Empirical risk :

$$\begin{aligned} R_n(\theta) &= -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(y_i | x_i) \\ &= -\frac{1}{n} \sum_{i=1}^n \log[\pi_{\theta}(x_i)^{y_i} (1 - \pi_{\theta}(x_i))^{1 - y_i}] \\ &= \sum_{i=1}^n y_i \log \pi(x_i; \theta) + (1 - y_i) \log (1 - \pi(x_i; \theta)) \\ &= -\frac{1}{n} \sum_{i=1}^n y_i (\beta_0 + \beta^{\mathsf{T}} x_i) - \log(1 + \exp(\beta_0 + \beta^{\mathsf{T}} x_i)) \end{aligned}$$

Conditional log-likelihood L(heta)

Example : Logistic Regression :

- Logistic Regression model : $p_{\theta}(y|\boldsymbol{x}) = \pi_{\theta}(\boldsymbol{x})^{y}(1 \pi_{\theta}(\boldsymbol{x}))^{1-y}$ with $y \in \{0, 1\}$, and $\pi_{\theta}(\boldsymbol{x}) = \sigma(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x}) = \frac{\exp(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x})}{1 + \exp(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x})}$ is the logistic function.
- Empirical risk :

$$R_{n}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(y_{i}|x_{i})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \log[\pi_{\theta}(x_{i})^{y_{i}}(1 - \pi_{\theta}(x_{i}))^{1-y_{i}}]$$

$$= \sum_{i=1}^{n} y_{i} \log \pi(x_{i};\theta) + (1 - y_{i}) \log (1 - \pi(x_{i};\theta))$$

$$= -\frac{1}{n} \sum_{i=1}^{n} y_{i}(\beta_{0} + \beta^{\top}x_{i}) - \log(1 + \exp(\beta_{0} + \beta^{\top}x_{i}))$$

Conditional log-likelihood L(heta)

Example : Logistic Regression :

- Logistic Regression model : $p_{\theta}(y|\boldsymbol{x}) = \pi_{\theta}(\boldsymbol{x})^{y}(1 \pi_{\theta}(\boldsymbol{x}))^{1-y}$ with $y \in \{0, 1\}$, and $\pi_{\theta}(\boldsymbol{x}) = \sigma(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x}) = \frac{\exp(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x})}{1 + \exp(\beta_{0} + \boldsymbol{\beta}^{T}\boldsymbol{x})}$ is the logistic function.
- Empirical risk :

$$R_{n}(\theta) = -\frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(y_{i}|x_{i})$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \log[\pi_{\theta}(x_{i})^{y_{i}}(1 - \pi_{\theta}(x_{i}))^{1-y_{i}}]$$

$$= \sum_{i=1}^{n} y_{i} \log \pi(x_{i};\theta) + (1 - y_{i}) \log (1 - \pi(x_{i};\theta))$$

$$= -\frac{1}{n} \sum_{i=1}^{n} y_{i}(\beta_{0} + \beta^{\mathsf{T}} x_{i}) - \log(1 + \exp(\beta_{0} + \beta^{\mathsf{T}} x_{i}))$$

Conditional log-likelihood $L(\theta)$

Regression with Gaussian errors

Let $y \in \mathbb{R}$ and $\mathcal{X} = \mathbb{R}^p$ and onsider the following model

$$Y_i = h(\boldsymbol{X}_i; \boldsymbol{\beta}) + \varepsilon_i \quad \text{with} \quad \varepsilon_i | \boldsymbol{X} \underset{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

- Empirical Squared Risk : under the square loss, R_n(β) = ¹/_n Σⁿ_{i=1}(y_i h(x_i; β))²
 Empirical Risk Minimizer : β_n = arg min_β R_n(β)
- Conditional Maximum Likelihood Risk

Data model : $Y_i | \boldsymbol{X}_i \underset{\text{iid}}{\sim} \mathcal{N}(h(\boldsymbol{X}_i; \boldsymbol{\beta}), \sigma^2) : p_{\boldsymbol{\theta}}(y_i | \boldsymbol{x}_i) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y - h(\boldsymbol{x}_i; \boldsymbol{\beta})}{\sigma} \right)^2}$

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(y_i | x_i) = -\frac{1}{2\sigma^2} \underbrace{\sum_{i=1}^{n} (y_i - h(\boldsymbol{x}_i; \boldsymbol{\beta}))^2}_{\propto R_n(\boldsymbol{\beta})} - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$$

• Conditional MLE : = $\hat{\beta}_n = \arg \max_{\beta} \log L(\theta)$

- $\hookrightarrow \text{ Then we have } : \arg\min_{\beta} R_n(\beta) = \arg\max_{\beta} \log L(\theta).$
 - Remark : For both we can take the sample variance as an estimator of the variance $\sigma^2 : \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i h(\mathbf{X}_i, \hat{\boldsymbol{\beta}}))^2$ which is the Maximum-Likelihood Estimator

Regression with Gaussian errors

Let $y \in \mathbb{R}$ and $\mathcal{X} = \mathbb{R}^p$ and onsider the following model

$$Y_i = h(\boldsymbol{X}_i; \boldsymbol{\beta}) + \varepsilon_i \quad \text{with} \quad \varepsilon_i | \boldsymbol{X} \underset{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

Empirical Squared Risk : under the square loss, R_n(β) = ¹/_n Σⁿ_{i=1}(y_i - h(x_i; β))²
 Empirical Risk Minimizer : β_n = arg min_β R_n(β)

Conditional Maximum Likelihood Risk

Data model : $Y_i | \mathbf{X}_i \underset{\text{iid}}{\sim} \mathcal{N}(h(\mathbf{X}_i; \boldsymbol{\beta}), \sigma^2) : p_{\theta}(y_i | \mathbf{x}_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-h(\mathbf{x}_i; \boldsymbol{\beta})}{\sigma}\right)^2}$ log $L(\boldsymbol{\theta}) = \sum_{i=1}^n \log p_{\theta}(y_i | \mathbf{x}_i) = -\frac{1}{2} \sum_{i=1}^n (y_i - h(\mathbf{x}_i; \boldsymbol{\beta}))^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log \sigma^2$

$$\log L(\theta) = \sum_{i=1}^{n} \log p_{\theta}(y_i | x_i) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - h(\boldsymbol{x}_i; \boldsymbol{\beta}))^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$$

• Conditional MLE : = $\widehat{\beta}_n = \arg \max_{\beta} \log L(\theta)$

- $\hookrightarrow \text{ Then we have } : \arg\min_{\beta} R_n(\beta) = \arg\max_{\beta} \log L(\theta).$
 - Remark : For both we can take the sample variance as an estimator of the variance $\sigma^2 : \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i h(\mathbf{X}_i, \hat{\boldsymbol{\beta}}))^2$ which is the Maximum-Likelihood Estimator

Regression with Gaussian errors

$$Y_i = h(\boldsymbol{X}_i; \boldsymbol{\beta}) + \varepsilon_i \quad \text{with} \quad \varepsilon_i | \boldsymbol{X} \underset{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

- Empirical Squared Risk : under the square loss, R_n(β) = ¹/_n Σⁿ_{i=1}(y_i h(x_i; β))²
 Empirical Risk Minimizer : β̂_n = arg min_β R_n(β)
- Conditional Maximum Likelihood Risk Data model : $Y_i | \mathbf{X}_i \underset{\text{iid}}{\sim} \mathcal{N}(h(\mathbf{X}_i; \boldsymbol{\beta}), \sigma^2) : p_{\boldsymbol{\theta}}(y_i | \mathbf{x}_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-h(\boldsymbol{x}_i; \boldsymbol{\beta})}{\sigma}\right)^2}$ $\log L(\boldsymbol{\theta}) = \sum_{i=1}^n \log p_{\boldsymbol{\theta}}(y_i | x_i) = -\frac{1}{2\sigma^2} \underbrace{\sum_{i=1}^n (y_i - h(\boldsymbol{x}_i; \boldsymbol{\beta}))^2}_{\propto R_n(\boldsymbol{\beta})} - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$
- Conditional MLE : = $\hat{\beta}_n = \arg \max_{\beta} \log L(\theta)$
- \hookrightarrow Then we have : $\arg \min_{\beta} R_n(\beta) = \arg \max_{\beta} \log L(\theta)$.
 - Remark : For both we can take the sample variance as an estimator of the variance $\sigma^2 : \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i h(\mathbf{X}_i, \hat{\boldsymbol{\beta}}))^2$ which is the Maximum-Likelihood Estimator

Regression with Gaussian errors

$$Y_i = h(\boldsymbol{X}_i; \boldsymbol{\beta}) + \varepsilon_i \quad \text{with} \quad \varepsilon_i | \boldsymbol{X} \underset{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

- Empirical Squared Risk : under the square loss, R_n(β) = ¹/_n Σⁿ_{i=1}(y_i h(x_i; β))²
 Empirical Risk Minimizer : β̂_n = arg min_β R_n(β)
- Conditional Maximum Likelihood Risk Data model : $Y_i | \mathbf{X}_i \underset{\text{iid}}{\sim} \mathcal{N}(h(\mathbf{X}_i; \boldsymbol{\beta}), \sigma^2) : p_{\boldsymbol{\theta}}(y_i | \mathbf{x}_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-h(\mathbf{x}_i; \boldsymbol{\beta})}{\sigma}\right)^2}$ $\log L(\boldsymbol{\theta}) = \sum_{i=1}^n \log p_{\boldsymbol{\theta}}(y_i | x_i) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - h(\mathbf{x}_i; \boldsymbol{\beta}))^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$
- Conditional MLE : = $\hat{\beta}_n = \arg \max_{\beta} \log L(\theta)$
- $\hookrightarrow \text{ Then we have }: \arg\min_{\beta} R_n(\beta) = \arg\max_{\beta} \log L(\theta).$
 - Remark : For both we can take the sample variance as an estimator of the variance $\sigma^2 : \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i h(\mathbf{X}_i, \hat{\boldsymbol{\beta}}))^2$ which is the Maximum-Likelihood Estimator

Regression with Gaussian errors

$$Y_i = h(\boldsymbol{X}_i; \boldsymbol{\beta}) + \varepsilon_i \quad \text{with} \quad \varepsilon_i | \boldsymbol{X} \underset{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

- Empirical Squared Risk : under the square loss, R_n(β) = ¹/_n Σⁿ_{i=1}(y_i h(x_i; β))²
 Empirical Risk Minimizer : β̂_n = arg min_β R_n(β)
- Conditional Maximum Likelihood Risk Data model : $Y_i | \mathbf{X}_i \underset{iid}{\sim} \mathcal{N}(h(\mathbf{X}_i; \boldsymbol{\beta}), \sigma^2) : p_{\boldsymbol{\theta}}(y_i | \mathbf{x}_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-h(\mathbf{x}_i; \boldsymbol{\beta})}{\sigma}\right)^2}$ $\log L(\boldsymbol{\theta}) = \sum_{i=1}^n \log p_{\boldsymbol{\theta}}(y_i | x_i) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - h(\mathbf{x}_i; \boldsymbol{\beta}))^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$
- Conditional MLE : = $\hat{\beta}_n = \arg \max_{\beta} \log L(\theta)$
- \hookrightarrow Then we have : $\arg \min_{\beta} R_n(\beta) = \arg \max_{\beta} \log L(\theta)$.
 - Remark : For both we can take the sample variance as an estimator of the variance σ^2 : $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i h(\mathbf{X}_i, \hat{\boldsymbol{\beta}}))^2$ which is the Maximum-Likelihood Estimator

Regression with Gaussian errors

$$Y_i = h(\boldsymbol{X}_i; \boldsymbol{\beta}) + \varepsilon_i \quad \text{with} \quad \varepsilon_i | \boldsymbol{X} \underset{\text{iid}}{\sim} \mathcal{N}(0, \sigma^2)$$

- Empirical Squared Risk : under the square loss, R_n(β) = ¹/_n Σⁿ_{i=1}(y_i h(x_i; β))²
 Empirical Risk Minimizer : β̂_n = arg min_β R_n(β)
- Conditional Maximum Likelihood Risk Data model : $Y_i | \mathbf{X}_i \underset{\text{iid}}{\sim} \mathcal{N}(h(\mathbf{X}_i; \boldsymbol{\beta}), \sigma^2) : p_{\boldsymbol{\theta}}(y_i | \mathbf{x}_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-h(\mathbf{x}_i; \boldsymbol{\beta})}{\sigma}\right)^2}$ $\log L(\boldsymbol{\theta}) = \sum_{i=1}^n \log p_{\boldsymbol{\theta}}(y_i | x_i) = -\frac{1}{2\sigma^2} \underbrace{\sum_{i=1}^n (y_i - h(\mathbf{x}_i; \boldsymbol{\beta}))^2}_{\propto R_n(\boldsymbol{\beta})} - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$
- Conditional MLE : = $\hat{\beta}_n = \arg \max_{\beta} \log L(\theta)$
- \hookrightarrow Then we have : $\arg \min_{\beta} R_n(\beta) = \arg \max_{\beta} \log L(\theta)$.
 - Remark : For both we can take the sample variance as an estimator of the variance $\sigma^2 : \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i h(\boldsymbol{X}_i, \hat{\boldsymbol{\beta}}))^2$ which is the Maximum-Likelihood Estimator

Overview

- **Data Representation** : A random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$, where X contains input features and Y is the target output.
- Supervised learning aims to find a **prediction function** *h* : *X* → *Y* that provides a good approximation of the true output *y*.
- **Loss Function** $\ell(y, h(x))$: Measures the error in predicting Y using h(X).
- **Risk Function** $R(h) = \mathbb{E}[\ell(Y, h(X))]$: Expected loss over the data distribution. It measures the generalization performance of h.
- **Bayes Risk** : The lowest achievable risk, attained by the optimal prediction function *h*^{*}. **Optimal Decision Rules :**
 - ▶ Bayes Classifier : $h^*(x) = \arg \max_{y \in \mathcal{Y}} \mathbb{P}(Y = y | X = x)$ minimizes classification error under 0-1 loss.
 - ▶ Optimal Regression Function : h*(x) = E[Y|X = x] provides the best prediction error under the squared loss.
- **Empirical Risk Minimization (ERM)** finds *h* by minimizing the empirical risk : $R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, h(x_i))$ using an optimization method.
- The Excess Risk $R(\tilde{h}_n) R(h^*)$ of a learned model \tilde{h}_n , can be decomposed as sum of an approximation error, anestimation error, and an optimization error.

Overview

Data Scientist's Role :

- Choose a hypothesis space \mathcal{H} that balances approximation and estimation error.
- \blacksquare Adjust ${\mathcal H}$ as more data becomes available to improve approximation.
- More data implies a larger hypothesis space *H*, reducing approximation error.
- Use optimization algorithms to minimize empirical risk $R_n(h)$.
- **Regularization and optimization** impact the final model ?s performance.
- Regularization (e.g., in logistic regression) prevents overfitting and improves generalization.
- Optimization can sometimes outperform ERM, e.g., regularized logistic regression may yield a lower true risk.

Next slides topics

See Later :

- Bias-Variance Decomposition
- Practical illustrations (Risks, Bayes Risk, Bias-Variance Tradeoff, etc)