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Risk Decomposition (Continued)
Bias-Variance Decomposition
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Bias-Variance Decomposition

Setting : Prediction under the squared loss

Prediction function

h : Rp → Rd

x 7→ h(x)

Squared (`2)-loss function :

` : Rd × Rd → R

(h(x), y) 7→ `(y, h(x)) = (y − h(x))2

Expected Risk

Consider the Risk :

Rx(h) = EP [`(Y, h(X))|X = x] = EY |X=x((Y − h(X))2|X = x)

Best prediction function (Bayes predictor) : h∗(x) = E(Y |X = x).

Bayes Risk : R(h∗)

Excess Risk : R(h)−R(h∗)

E
[
(Y − h(X))2] = E

[
(Y − E[Y |X] + E[Y |X]− h(X))2]

= E
[
(Y − E[Y |X])2]+ 2E

[
(Y − E[Y |X])(E[Y |X]− h(X))

]
+ E

[
(E[Y |X]− h(X))2]

= E
[
(Y − E[Y |X])2]︸ ︷︷ ︸

Irreducible Error (Noise)

+E
[
(E[Y |X]− h(X))2]︸ ︷︷ ︸

Bias2

+ Var(h(X))︸ ︷︷ ︸
Variance

.
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Bias-Variance Decomposition

Bias-Variance Decomposition

E[(h(X)− h∗(X))2] = E[(h(X)−E[h(X)] + E[h(X)]− h∗(X))
2
]

= E[(h(X)− E[h(X)])2] + E[(E[h(X)]− h∗(X))
2
]

+2E[(h(X)− E[h(X)]) (E[h(X)]− h∗(X))]︸ ︷︷ ︸
=0

= E[(h(X)− E[h(X)])2]︸ ︷︷ ︸
Variance(h(X))

+E[(E[h(X)]− h∗(X))
2
]︸ ︷︷ ︸

Bias2(h(X),h∗(X))

Bias : Systematic deviation of the average prediction from the true value.

Variance : Amount of variability in the predictions for different training sets.

Bayes Error : Intrinsic randomness in the target variable that no model can

eliminate.
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Bias-Variance Decomposition

The third term in the previous step vanishes because

by conditioning on X and using the law of total expectations we get :

E
[
(h(X)−E[h(X)])(E[h(X)]−h∗(X))

]
= E

[
E[(h(X)−E[h(X)])|X]·(E[h(X)]−h∗(X))

]
.

and

E[h(X)− E[h(X)]|X] = EX [E[h(X)− E[h(X)]|X]]

= E[E[h(X)|X]− E[E[h(X)]|X]]

= E[h(X)− E[h(X)]]

= E[h(X)]− E[h(X)]

= 0.
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More complex models overfit while the simplest models underfit.

If H has a large number of parameters, training a function h ∈ H can closely

approximate h∗, thereby reducing bias. However, it becomes sensitive to variations

in the training set, leading to increased variance.

If H has a small number of parameters, any function h ∈ H deviates from h∗,

increasing bias. However, it is less sensitive to fluctuations across different training

sets, which results in lower variance.

↪→ increasing model complexity reduces squared bias but increases variance.

Conversely, decreasing model complexity raises bias while reducing variance.

↪→ The goal is to find an optimal balance that minimizes the generalization error,

which includes both bias and variance components.
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Risk decomposition for linear models

Consider the statistical model Y = f(X) + ε, with f the true function

εi’s are independent with E[ε|X] = 0 and E[ε2|X] = σ2

Linear model : Consider H = {hθ(x) = α+βTx}, the set of linear functions in x of

the form θT x̃ with x̃ = (1, xT )T , and θ = (α, βT )T . (denote x̃ by x for simplicity)

Bayes predictor h∗ : for the squared loss : h∗(x) = E[Y |X = x] = f(x)

Let θ∗ = (α∗, β∗T )T be the optimal parameter. Then h∗(x; θ∗) = θ∗Tx = f(x)

Assume a fixed design, i.e. the x’s are deterministic

Bayes Risk R∗ = R(h∗) = R(θ∗) = E[(Y − h∗(X))2|X = x] = E[ε2|X = x]= σ2

Risk for any non-random θ : R(θ) = E[(Y − h(X; θ))2|X] = σ2 + ‖θ − θ∗‖2
Σ̂

:

Excess risk of θ : R(θ)−R∗ = ‖θ − θ∗‖2
Σ̂

where Σ̂ = 1
n

∑n
i=1 xix

T
i and ‖u‖2A = uTAu.

see proof in the next slide

ERM : Solution : θ̂n = (XTX)−1XTY , whenever XTX has full rank.

(X = (x1, . . . ,xn)T and Y = (Y1, . . . , Yn)T )
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Risk of any h (under the square loss) :

r(h(x)|X = x) = EY |X [`(Y, h(X))|X = x] = EY |X [(Y − h(X))2|X = x]

= E[(f(X) + ε− h(X))2]

= E[(f(x)− h(x))2] + 2E[ε(f(x)− h(x))] + E[ε2]

= E[(f(x)− h(x))2]︸ ︷︷ ︸
Bias-Variance

+2 E[ε]︸︷︷︸
0

E[(f(x)− h(x))] + E[ε2]︸ ︷︷ ︸
Irreducible Error:σ2

= Excess Risk + Bayes Risk
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Risk decomposition in linear regression

(cont.)

Proof

R(θ) = EY EX [(Y − h(X))2|x1, . . . , xn] = EY

[
1

n

n∑
i=1

(Yi − hθ(xi))2
∣∣x1, . . . , xn

]

=
1

n

n∑
i=1

Eε[(xTi θ + εi − xTi θ∗)2|xi]

=
1

n

n∑
i=1

Eε[ε2
i |xi]︸ ︷︷ ︸
σ2

+(xTi (θ − θ∗))2 + 2Eε[εi|xi]︸ ︷︷ ︸
0

xTi (θ − θ∗)


= σ2︸︷︷︸

R∗

+
1

n

n∑
i=1

[xTi (θ − θ∗)]2︸ ︷︷ ︸
Excess Risk

= R∗ + ‖θ − θ∗‖2
Σ̂

where Σ̂ =
1

n

n∑
i=1

xix
T
i and ‖u‖2A = uTAu.
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Risk decomposition in linear regression

(cont.)

Random θ (and fixed design) : R(θ) = R∗ + Var(θ) + (Bias(θ, θ∗))2

R(θ) = EY EX [(Y − h(X))2|x1, . . . , xn] = EY

[
1

n

n∑
i=1

(Yi − hθ(xi))2
∣∣x1, . . . , xn

]

=
1

n

n∑
i=1

Eε[ε2
i |xi]︸ ︷︷ ︸
σ2

+EY [(xTi (θ − θ∗))2] + 2Eε[εi|xi]︸ ︷︷ ︸
0

EY [xTi (θ − θ∗)]


= σ2︸︷︷︸

R∗

+EY [
1

n

n∑
i=1

[xTi (θ − θ∗)]2]︸ ︷︷ ︸
Excess Risk

= R∗ + EY ‖θ − θ∗‖2Σ̂
= R∗ + E‖θ − E[θ] + E[θ]− θ∗‖2

Σ̂

= R∗ + E
[
‖θ − E[θ]‖2

Σ̂

]
+ 2E

[
(θ − E[θ])Σ̂(E[θ]− θ∗)

]
+ E

[
‖E[θ]− θ∗‖2

Σ̂

]
= R∗ + Var(θ) + 0 + (Bias(θ, θ∗))2
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MSE and Ordinary Least Squares (OLS)

Empirical Risk : Under the squared loss the empirical risk Rn(h) is

Rn(θ) =
1

n

n∑
i=1

||yi − h(xi; θ)||22 =
1

n

n∑
i=1

||yi − θTxi)||22

=
1

n
||Y −Xθ||22 =

1

n
(Y −Xθ)T (Y −Xθ)

with X = (x1, . . . ,xn)T and Y = (Y1, . . . , Yn)T

ERM : θ̂nRn(θ) = arg minθ∈Θ = (XTX)−1XTY (whenever XTX is positive

definite) is the Ordinary Least Squares Estimator of θ

Calculation detail :

∇Rn(θ̂) = 0 (FOC)

−2XTY + 2XTXθ̂ = 0

XTXθ̂ = XTY Normal equations

(XTX)−1XTXθ̂ = (XTX)−1XTY

θ̂ = (XTX)−1XTY

θ̂OLS = (XTX)−1XTY whenever XTX is invertible.
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Figure on Bias-Variance Tradeoff/Underfitting and Overfitting
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Setup to estimate the risk

Repeat :

Fix an input x (or sample it from P (X) in cas of random design)

Sample the (true) target y from the conditional distribution P (Y |x).
Repeat :

I Sample a training dataset Dn = {(xi, yi)}ni=1 i.i.d. from P (x, Y ).
I Run the learning algorithm on Dn to obtain a predictor ĥn.
I Compute the prediction ŷ = ĥn(x).
I Compute the loss `(ŷ, y).
I Average the losses.

Average the losses.

Notice : ŷ depends on Dn, but y is sampled independently from Dn.
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Illustrations

Statistical learning of linear (polynomial) models

True target function : f(x) = 10 + 5x2 sin(2πx).

The function is evaluated in the range x ∈ [0, 1].

Observations are generated as :

Yi|xi ∼ f(xi) + εi, i = 1, . . . , n.

I The dataset consists of n = 20 points.
I The xi values are either fixed or randomly sampled in [0, 1].
I The noise εi follows a Gaussian distribution :

εi ∼ N (µe, σ
2
e), where µe = 0, σe = 1.

N = 100 replicates (samples) for averaging
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Polynomial regression

Consider the class of polynomial models

H = {hθ(x) = θ0 + θ1x+ θ2x
2 + . . .+ θpx

p}

the set of polynomials with p the polynomial degree

p is ranging from 0 to 14

ERM : θ̂n = (XTX)−1XTy

with

I X = (x1, . . . ,xn)
T ,

I xi = (1, xi, x
2
i , . . . , x

p
i )

T , and
I y = (y1, . . . , yn)

T

F. Chamroukhi Statistical Learning 17/40



Polynomial regression

Consider the class of polynomial models

H = {hθ(x) = θ0 + θ1x+ θ2x
2 + . . .+ θpx

p}

the set of polynomials with p the polynomial degree

p is ranging from 0 to 14

ERM : θ̂n = (XTX)−1XTy

with

I X = (x1, . . . ,xn)
T ,

I xi = (1, xi, x
2
i , . . . , x

p
i )

T , and
I y = (y1, . . . , yn)

T

F. Chamroukhi Statistical Learning 17/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=0

F. Chamroukhi Statistical Learning 18/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=1

F. Chamroukhi Statistical Learning 19/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=2

F. Chamroukhi Statistical Learning 20/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=3

F. Chamroukhi Statistical Learning 21/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=4

F. Chamroukhi Statistical Learning 22/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=5

F. Chamroukhi Statistical Learning 23/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=6

F. Chamroukhi Statistical Learning 24/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=7

F. Chamroukhi Statistical Learning 25/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=8

F. Chamroukhi Statistical Learning 26/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=9

F. Chamroukhi Statistical Learning 27/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=10

F. Chamroukhi Statistical Learning 28/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=11

F. Chamroukhi Statistical Learning 29/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=12

F. Chamroukhi Statistical Learning 30/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=13

F. Chamroukhi Statistical Learning 31/40



0 0.2 0.4 0.6 0.8 1

x

7

8

9

10

11

12

y

True f(x)

Observations (x
i
,y

i
)

Fitted f(x): Polynomial of order p=14

F. Chamroukhi Statistical Learning 32/40



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model complexity ($p$)

0

1

2

3

4

5

6

7

T
ra

in
in

g
 E

rr
o

r 
(s

q
u

a
re

 l
o

s
s
)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Model complexity ($p$)

0

1

2

3

4

5

6

7

P
re

d
ic

ti
o

n
 E

rr
o

r 
(s

q
u

a
re

 l
o

s
s
)

F. Chamroukhi Statistical Learning 33/40



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Model complexity ($p$)

0

1

2

3

4

5

6

7

E
rr

o
r 

(s
q
u
a
re

 l
o
s
s
)

Mean Training Error

Mean Test Error

F. Chamroukhi Statistical Learning 34/40



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Model complexity ($p$)

0

1

2

3

4

5

6

7

E
rr

o
r 

(s
q
u
a
re

 l
o
s
s
)

Training Error

Prediction Error

F. Chamroukhi Statistical Learning 35/40



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0

1

2

3

4

5

6

7

F. Chamroukhi Statistical Learning 36/40



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Model complexity ($p$)

0

1

2

3

4

5

6

7

B
ia

s
 -

 V
a
ri
a
n
c
e

Bias2

Variance

F. Chamroukhi Statistical Learning 37/40



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Model complexity ($p$)

0

1

2

3

4

5

6

7

E
rr

o
rs

 |
 B

ia
s
-V

a
ri
a
n
c
e

Bias2

Variance

Bias2 + Variance + Bayes Error

Prediction Error

F. Chamroukhi Statistical Learning 38/40



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Model complexity ($p$)

0

1

2

3

4

5

6

7

E
rr

o
rs

 |
 B

ia
s
-V

a
ri
a
n
c
e

Bias2

Variance

Bias2 + Variance + Bayes Error

Prediction Error

Bayes Error

F. Chamroukhi Statistical Learning 39/40



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Model complexity ($p$)

0

1

2

3

4

5

6

7

E
rr

o
rs

Bayes Error

Prediction Error

F. Chamroukhi Statistical Learning 40/40


	Bias-Variance Decomposition

