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Learning Framework for Regression Systemx

m The data are represented by a random pair (X,Y) € X x Y where X is a vector
of descriptors for some variable of interest Y
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Learning Framework for Regression Systemx

m The data are represented by a random pair (X,Y) € X x Y where X is a vector
of descriptors for some variable of interest Y

m The objective is Prediction, i.e. to seek for a prediction function h : X — Y for
which ¥ = h(x) is a good approximation of the true output y

m In a regression problem : typically X € RP, Y € Y = R¢
— We will mainly focus on parametric probabilistic models of the form
Y =h(X)+ee~po

with the conditional distr. P(Y|X, h) can be computed in terms of Py(Y — h(X)).
P(X,Y|h) = P(Y|X, h)P(X|h)
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Learning Framework for Regression Systemx

m Data : a random sample (X;,Y;);_; with observed values D,, = (x;,y: )71
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Learning Framework for Regression Systemx

m Data : a random sample (X, Y;)i=, with observed values D,, = (s, ¥:)i=1

m Data-Scientist's role : given the data, choose a prediction function h that
attempts to “minimize” the prediction error for of all possible data (risk) R(h),
under a chosen loss function ¢ measuring the error of predicting Y by h(X).
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Learning Framework for Regression Systemx

m Data : a random sample (X, Y;)i=, with observed values D,, = (s, ¥:)i=1

m Data-Scientist's role : given the data, choose a prediction function h that
attempts to “minimize” the prediction error for of all possible data (risk) R(h),
under a chosen loss function ¢ measuring the error of predicting Y by h(X).

< minimize the empirical (data-D,-driven) risk R, (h)
< Minimizing R, (h) may require an optimization algorithm A
m Data-Scientist's “Toolbox” : {Data, hypothesis, loss, risk, algorithm}
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General regression form

Regression models the relationship between two variables X and Y

m Temperature (V') of some water source, given the air temperate (z)

m Price (Y) of an apartment given its surface (1) and number of rooms (z2)
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General regression form Systei”

Objective
Regression models the relationship between two variables X and Y
m Temperature (V') of some water source, given the air temperate (z)

m Price (Y) of an apartment given its surface (1) and number of rooms (z2)
Vocabulary :

m The z’s are called inputs/predictors/covariates/features/descriptors/
exogenous/Explanatory/independent variables

m The y's are called output/outcome/response/endogenous/variable of
interest/Explained /dependent variable

m Simple regression : x € R m Univariate regression : y € R

m Multiple regression : @ € R” m Multivariate regression : y € R?

m Functional regression : when x and/or y are functional data
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General regression form Systemx

m Consider the random pair (X,Y") where X € X C R” is the predictor and
Y € Y C R is the response.

m A regression model can be phrased as
Y=f(X)+e

where f: X — Y is the regression function (parametric or not, linear or not..)
¢ is a random variable : noise/residual /error
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General regression form Systei”

m Consider the random pair (X,Y") where X € X C R” is the predictor and
Y € Y C R is the response.

m A regression model can be phrased as
Y=fX)+e¢
where f: X — Y is the regression function (parametric or not, linear or not..)
¢ is a random variable : noise/residual/error
m Standard hypotheses : The error terms ¢ are
(i) centered : E(g;) = 0 (for all ¢)
(i) uncorrelated with the covariates : E(g;X;) = 0 (for all 4, 5)
(i) homoskedastic, with limited variance : E(¢7|X;) = 0® < oo (for all 4)
(iv) uncorrelated with each other : E[e;e;|X] = 0 (for all ¢ # j)
(

v) identically distributed : &; ~p (for all 7)

The caovariates X can be deterministic (fixed design) or random

The errors ¢; can be supposed normal for statistical inference
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Prediction/decision function

h: X CRP Y CR?

x — h(zx)

is a regression function, parametric or not, linear or not, ...
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Prediction/decision function

h: X CRP Y CR?

x — h(zx)

is a regression function, parametric or not, linear or not, ...

Example : Linear prediction functions : Consider H = {h(z) = (z,0) = 87z}, the set of
linear functions in X of the form h(z;0) = Eo[Y|X] = 8o + 87X and 8 = (8o, 87)7.

h:RF - R

z (z,0) =0"x
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Prediction/decision function Systemx

h: X CRP Y CR?

x — h(zx)

is a regression function, parametric or not, linear or not, ...

Example : Linear prediction functions : Consider H = {h(z) = (z,0) = 87z}, the set of
linear functions in X of the form h(z;0) = Eo[Y|X] = 8o + 87X and 8 = (8o, 87)7.

h:RF - R
z (z,0) =0"x
The predicted values of Y;'s for new covariates X; = x;s correspond to

Yi = h(w:)

Example : Linear prediction functions (cont.) : 7; = (z;,6) = 872,
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Prediction/decision function Systemx

h: X CRP Y CR?

x — h(zx)

is a regression function, parametric or not, linear or not, ...

Example : Linear prediction functions : Consider H = {h(z) = (z,0) = 87z}, the set of
linear functions in X of the form h(z;0) = Eo[Y|X] = 8o + 87X and 8 = (8o, 87)7.

h:RF - R
z (z,0) =0"x
The predicted values of Y;'s for new covariates X; = x;s correspond to
¥i = h(x:)
Example : Linear prediction functions (cont.) : 7; = (z;,6) = 872,

Q : How good we are in prediction on a particular pair (z,y)?
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Loss

: Y xY—R
(y, h(z)) — L(y, h(z))

It measures how good we are on a particular (z,y) pair.
(We assume that the distribution of the test data is the same as for the training data).
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Loss

: Y xY—R
(y, h(z)) — L(y, h(z))

It measures how good we are on a particular (z,y) pair.
(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in regression
m Square (£2)-loss : £o(y, h(x)) = (y — h(z))?
m Absolute (¢1)-loss : ¢1(y, h(z)) = |y — h(z)|
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Loss

: Y xY—R
(y, h(z)) — L(y, h(z))

It measures how good we are on a particular (z,y) pair.
(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in regression
m Square (£2)-loss : £o(y, h(x)) = (y — h(z))?
m Absolute (¢1)-loss : ¢1(y, h(z)) = |y — h(z)|

Ly —h(@)?if [y — f(z)] <0,

m Huber loss : 45(y, h(z)) =
5(y ( )) {5(|y _ h($)| _ %5),otherwise.
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Examples of loss functions Systemx

5 T

;Squaré Loss

— Absolute Loss
——Huber Loss (§ = 1)
~——Huber Loss (¢ = 5)

FIGURE — Some loss functions in regression : curves of {(u) for u =y — h(z); y € R.

m Square loss : £2(u) = (u)?

m Absolute loss : £1(u) = |u

w)? if Ju| <6,

|u| — 36), otherwise.

—~

m Huber loss : £5(u) = {
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Risk quté‘rﬁ;?

m Risk : the Expected loss :
R(8) = Eplf(Y (X = [ bty )Pz,

< the error of approximating Y by model/hypothesis h(X) as measured by a chosen
loss function (Y, h(X)) given the pair (X,Y") with (unknown) joint distribution P,

— prediction error : measures the generalization performance of the function h.
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RiSk qutemx

m Squared Risk : Under the squared loss £(y, h(z)) = (y — h(z))? :
RO = Eel(Y =00 = [y = h(a)*dPG).

— This is the most used risk in regression
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RiSk qutemx

Q : what is the best function h? or equivalently, when the risk R(h) is optimal ?
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Optimal prediction function
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Optimal prediction function Systemx

Consider the la-loss, £(Y,h(X)) = (h(X)) — Y)?, then, the Bayes rule minimizing the
corresponding regression risk (the best prediction function) of a regression function h(x)

R(h) =Ex((Y = h(X))*|X = 2)

is given by the conditional expectation

h*(z) = E(Y|X = x).
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Optimal prediction function System

Under the square loss, £(y, h(2)) = (h(z) — y)?, the best prediction function is

h'(z) = E[Y|X = x]

For X = z, consider the conditional risk :
E[L(Y, h(X))|X = 2] = Ey|x=[(M(X) = Y)?|X = a] = [}, (h(z) - y)*p(ylz)dy,
optimizing the Risk by differentiating w.r.t h(z) and setting the derivative to 0 :

% = 2/(h(m) —ypyle)dy = 2[h(r)/p(y|w)dy— /yP(W)dy]

= 2(h(z) —E[Y|X =z])
which is zero at h(z)* = E[Y|X = z]. Then

h*(x) = arg hgl)igyE[l(K X)X = z] = E[Y X = 7]

Goal : estimate h*, knowing only the data sample D,, = (X;,Y;)7_; and loss /.
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Empirical Risk Minimization & Ordinary Least Squares (OLS) Systemx

m Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y).
In real situations P is in unknown, as we only have a sample D,, = (X;,Y3)1<i<n,

< We attempt to minimize the Empirical Risk R, (h) = £ > " ((Y;, h(X;)) to
estimate h* (within a family H) :

ﬁn € arg irélql} Ry (h).
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Empirical Risk Minimization & Ordinary Least Squares (OLS) qutéﬁ;;t

MSE and Ordinary Least Squares (OLS) :

m Squared error : Under the squared loss (the standard in regression) :
L2(y, h(z)) = (y — h(x))?, the empirical risk Ry, (h) is the empirical square loss*

ZIIY — h(X)l3

m ERM : h, = argminpey Ry (h) is the Ordinary Least Squares Estimator of h

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum
(RSS) when the ML problem is phrased as an error model Y = h(X) +¢€, e ~p
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Empirical Risk Minimization & Ordinary Least Squares (OLS) Sl{stéﬁ;;‘;?

m Liner regression : Consider H = {ho(z) = o+ 37z}, the set of linear functions in
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Regression Systei”

Simple Linear Regression
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Simple Linear Regression Systemx

m We model the pair (X,Y’) where the predictor X € R and the response Y € R
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Simple Linear Regression Systemx

m We model the pair (X,Y’) where the predictor X € R and the response Y € R

m An observed Y given a single scalar predictor x, is said to satisfy the simple linear
regression model when

h(z) =E[Y|X =] = /y yp(y|z)dy = fo + frz
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Simple Linear Regression Systemx

m We model the pair (X,Y’) where the predictor X € R and the response Y € R

m An observed Y given a single scalar predictor x, is said to satisfy the simple linear
regression model when

h(z) =E[Y|X =] = /y yp(y|z)dy = fo + frz

i.e., equivalently

Y =Bo+ 51X +e,
Ele| X] = 0and V[e|X] = ¢*

Bo (the intercept) and S1 (the slope) : unknown regression coefficients

o2 an unknown noise variance
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Simple Linear Regression Systemx

m We model the pair (X,Y’) where the predictor X € R and the response Y € R

m An observed Y given a single scalar predictor x, is said to satisfy the simple linear
regression model when

h(z) =E[Y|X =] = /y yp(y|z)dy = fo + frz

i.e., equivalently

Y =Bo+ 51X +e,
Ele| X] = 0and V[e|X] = ¢*

Bo (the intercept) and S1 (the slope) : unknown regression coefficients

o2 an unknown noise variance

Bayes Risk
R* = R(6%) = E[(Y — h*(X))?] = ExBy(x[(Y — h*(X))*|X] = ExE[¢}|X]= 0*
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Ordinary Least Squares (OLS) for SLR Systeinx

Let X =15" X;andY =237 Vi be the empirical (sample) means.

(,BOLS BOLS) are the OLS Estimators of (5o, 31), then

5 =Y - BiX,
jois_ T =D =T)
' ?=I(Xi - X)2

m We have 5% = Sxy / S2% where Sxy =n"! 7 (X; — X)(Y; — V) is the

-1

sample covariance and S% =n (X - X)2 is the sample variance.
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Ordinary Least Squares (OLS) for SLR Systeinx
Let X = 235" X;and Y = 23" |V, be the empirical (sample) means.
Theorem (Ordinary Least Squares (OLS) for SLR)

If (BgLS, A10L$) are the OLS Estimators of (5o, 31), then

ﬂOLS Y BIX

EOLS _ Zi=1(Xi — Y)(Yz — ?) .
' L (X - X)?

= We have B2° = Sxy/S§( where Sxy =n" ' 3" (X; — X)(Y; —Y) is the

-1 n

sample covariance and S% =n L (X - X)? is the sample variance.

m An estimator 52 of the variance o2 can be taken as the empirical variance
~2 1 BOLs 4 oL
6°= -3 (Yi—h Z(Y (Bo X))*

We'll see its construction later in connection with Gaussian regression, as the
Maximum-Likelihood Estimator (MLE)
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Ordinary Least Squares (OLS) for SLR

The OLS estimates (Eo,fp’\l) are the ERM, i.e minimizing the residual squared sum (RSS)
n 2 . 5 5 .

Q(Bo, B1) = 31—y (yi — (Bo + Brzi) ), ie. (Bo, B1) = argming 5, )er2 Q(Bo, B1)-

F.O.C : Deriving Q w.r.t (8o, 81) we get

23y i—(Bo+B1x;4

g?QO = =1 (y BB(QO = )) 221 1 ( (130 +ﬁ1$1))
23y i—(Bo+B1x;4

gT% = = l(yaﬁ(lo 100)” =237 wi(yi — (Bo+ Biwi) ) -

and setting to zero we obtain

DY — i Bo— B wi
Soreimiyi — Bo i v — P

which gives the normal equations :

nﬁo = Sy -AYr
ﬁO S mit 51 i 1 Doy Ty
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Ordinary Least Squares (OLS) for SLR
Proof of the OLS for SLR (cont.)

The first normal equation one gives

nfo = D yi—B1y g ®
Bo = LYy ui-B(EYl ) =7 BT

n
The second gives

BoXl x4+ B> a2 Do iy
STy - B TPy = Y T,

. El — i TiYi— i ¥ e (2 —T) (yi—7) .

we finally obtain S o S (e-n)?
S.0.C:
9%Q 9%Q

82Bo 0BpoB1 | _ 2n 23 ®i\ _ =2 .
det 820 8°Q = det 2w 25 a2 =4ny  (x; —T)* >0

0B00p1 9%p1

This determinant is zero if all the z;’s take the same value. At least two distinct x;'s are
necessary to estimate the coefficients (8o, 31) (to fit the line).
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Statistical Properties of the OLS Estimator syt

Let S% = % S (X —X)? be the empirical variance of the n covariates X™ = (X1,..., Xy).

The OLS Estimators (30731) of (Bo, 1) are linear in Y; and unbiased, with

S o1 x* o2 x°
V(BolX™) =0 (n+2?=1(Xi—X)2> = <1+s§(

—~ o2 o2
ny _ —
V(ﬁ1|X )_ ZT‘L 1(Xi —Y)Q - nSg{
1=
Xo? Xo?

Cov(Bo, B1|X™) = —

"X —-X)2 nS%
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Statistical Properties of the OLS Estimator  systenx

Let S% = % S (X —X)? be the empirical variance of the n covariates X™ = (X1,..., Xy).

Theorem : Linearity, Unbiasedness and Variance of the OLS

The OLS Estimators (,73’\0,,73’\1) of (Bo, 1) are linear in Y; and unbiased, with

S o1 x* o2 x°
V(BolX™) =0 <n+2?=1(xi_x)2> = <1+s§(

~ o2 o2
ny _ —_
V(ﬁ1|X )_Zn 1(Xi_y)2 _nS§(
1=
Xo? Xo?

Cov(Bo, B1|X™) = —

?zl(Xi _Y)2 B nS§<

m Estimates of these statistics are obtained by replacing the variance o2 by its estimator 52
(eg., the corrected MLE). The estimated standard errors $é of By and 81 are given by

~ 2 ~ n 2
~ o) X o w1 X
S X)) = — 14+ ) = Lri=17"0
(Bl X™) n ( + S§(> V/nSx n
G — Xo?
Se X" = ;0 C B X)) = —
(BN = o CovBo X =~
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Statistical Properties of the OLS Estimator syt

Let S% = % S (X —X)? be the empirical variance of the n covariates X™ = (X1,..., Xy).

The OLS Estimators (50,31) of (Bo, B1) are linear in Y; and unbiased, with

<2 <2
= X a? X o?
VBl X")=0? |1+ ——————— | = 1 = i X?
(ol =2 <"+ ?_1(Xi—X)2> n ( +s2> nS% (I XD

—~ o2 o2
ny _ —_
i=
Xo? Xo?

Co A,A Xn = = — ——5
B > G ST

~ o~ 1 2
That is, Cov ((50,,31)T) - niszg (n _1X1X ?)
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Statistical Properties of the OLS Estimator  systenx

Let S% = % S (X —X)? be the empirical variance of the n covariates X™ = (X1,..., Xy).
Theorem : Linearity, Unbiasedness and Variance of the OLS

The OLS Estimators (50,51) of (Bo, B1) are linear in Y; and unbiased, with

=2 -2
—~ X 02 X o2
V(BolX") =c? (L4 ————— | = 1+ = 1 X2
(X —X)2 n 52 nS% (3 X X7)
~ o2 o2
VBAIX) = —————— = —
(X, —X)2  nS%
Xo? Xo?

Cov(Bo, 1| X") = ——— 2% —_2°_
ov(Bo, B1|X™) XX nSZ

: 2 5 2 (i o x2 X
That is, Cov ((BO,,Bl)T) = nch( (n _’_yl i :)

m Estimates of these statistics are obtained by replacing the variance o2 by its estimator 52
(eg., the corrected MLE). The estimated standard errors sé of Bo and Bl are given by

)
S

R(BolX™) = /2 X XE R(BUX™) = 755 Cov(Bo, Bilx™) = 25
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Statistical Properties of the OLS Estimator  systeinx

- . X -X
To simplify notation, let w; = ————=="
z:l(Xi - X)2
Then we have :
Xn: i1 X im1 X
w; = o — — — PR —
i=1 i:l(Xi - X)? Zi:l (Xi - m)Q
- nX nX
Zz 1(X X) Z?:l(xi - X)2
= 0
We can then write :
CEED R R WA § ST St
i=1 =1
. - o 1 n I n 1 o
= Y-fhX=—->YVi-X Y = ——Xw; | Y;
. N
who are linear in Y. O
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Statistical Properties of the OLS Estimator  systenx
Proof : Unbiasdness of the OLS.

We have Y; = Bo + B1.X; + €;, with E[e;|X] = Oand V]e; | X] = o2, then E[Y;|X;] = Bo + 81 X
Knowing that /3’1 =>" , w;Y; and /3’0 =>r, (l — le) Y;, we can then write

EBiX™ = S wi(Bo+frzi) =Po Y wi+ b1y wia
=1 i=1 =1
n n n L _ )2
= By wiwi—Tb1y w;= ﬁlzwz(xz—w M:&
i=1 i=1 iz1(zi —T)
BRI = 3 (5 - 7w o+ pro) = Z(ﬁowlmz —xzwz(ﬁo-i-&%)
=1
= Bo+PT—Thoy wi— B@wai =Bo
i=1 =
0 1

We used the fact that :

D wiw = 3 wizi =73 _wi =D wiles = W) = St P =1
i=1 i=1 i=1 i=1
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Statistical Properties of the OLS Estimator sy

X,-X
(X - X)?
Bl = Zini
=1
Var(B1|X™) = E[B}X"]-0
= E[TL,wYi X, wY;|X7]

= > Z?:l wiw;E [YzYJ Xn} =2 Z?:l wiw;o*1i—;

W; =

)2
= YLwie’ =Xl e
— 0'2
D eIt
p— 02
= =
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Statistical Properties of the OLS Estimator  systeinx

Bo = Z?l(l_mwl)yi
Var(Go|X™) = E[G|X"] -0
= B[S (2 -aw) VX, (2 - aw) Y]
= YL (7 —7wi) (7 — Twy) E[VY;]X7]
= g Zj:l (E - wwi) (% - :ij) o Liz;
= PYL (E-aw) =0 (T, b - EXL wi+ B T, w?)

_ 2 z2

=0 ( Ty (wz——fw)
2

- < (1 )
(1%

Since S% = 137 (i —2)° =1 3" 27 — 7, then

Var(Bo| X) = Zx (X, 27)

nSi. n 1=
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Statistical Properties of the OLS Estimator syt

COV(B‘O7B‘1’X") = COV (zn: (3—1 — jwz) YL)E’”’:U)JY]‘XTL>
=1 j=1
= Xn:i (% —o’nwz) w; Cov (Vi, ;| X"
i=1j=1
i=1 j=
- U2i(——xwl> wi = < sz—xsz>
_ zo?
iz (i — )
_ zo?
nS%
O
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Statistical Properties of the OLS Estimator syt

The OLS estimator is the unique linear unibiased estimator with minimum variance :
The OLS estimator is the Best Linear Unbiased Estimator (BLUE)

We give the proof of this result in the multiple regression part.
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Statistical Properties of the OLS Estimator  systenx

The OLS estimators Eg and 81 are consistent. l
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Statistical Properties of the OLS Estimator sy

The OLS estimators By and 1 are consistent.

Let (B\](."))neN*, j € {0,1}, be an estimator sequence derived from increasing sample
sizes. By Bienaymé-Tchebychev ineq.

VA >0, P (|8 ~ BB > ) < @.
5 (1)

Then P (|3 — 1] > 3) < 5 and P (|50 — 6| > 1) < 220

Thus 0 < limy oo P (|31 = 81| > ) < 582z limnosoe £ =0,
X

o2 (1-§—i2
and 0 < limp_yo0 P (\gg;w Bo ‘ > ,\) < — o dimy e 2 =0,

That is lim, o P ( A](") - ﬁj‘ > )\) = 0; Then the sequence (ﬁ;"))nEN* converges in

probability to 3; (plimn_,ooﬁj(."):ﬁj) : the OLS Estimators //B\j are consistent. O
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Statistical Properties of the OLS Estimator syt

The OLS estimators Eo and 23\1 are asymptotically normal.
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Statistical Properties of the OLS Estimator sy

The OLS estimators Eo and 23\1 are asymptotically normal.

By the Central Limit Theorem (CLT), the sequence (Z,)nen+ such that
5(n) _gra(n)
Lp = ﬁ’—\/%)] converges to a standard normal random variable.
v(B;™)
"(n) —B8;
Then the limit distribution of ~ is N(0,1) :
a/V(B(-"))
J
B - B £, \(0,1) and Bo— o £ N(0,1).
= Vg (B X2
nS% nS% \n i=1""1
Equlvalently
2
Vi = 815 N (0, 27 ) and Va(Bo — o) 55N (0.5 (2500, X2)). 0
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Statistical Properties of the OLS Estimator syt

The OLS estimators By and B, are efficient (achieve minimum variance (CRLB)).
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Statistical Properties of the OLS Estimator sy

The OLS estimators By and B, are efficient (achieve minimum variance (CRLB)).

Consider the SLR with normal errors €; oy N(0,5%). Then Y;|2; oy N(Bo + Bizi, 0?).

1
Then, the Fisher information matrix can be defined as

a2t
Zn(Bo, 1) = E[( Bi0B; )i j—on

with L(fo, 81) is the conditional log-likelihood function as given by

1 e_%(&—(%ﬂﬂﬁf

L(ﬁoaﬁl) = Ing(ylv'">yn|x17"'7xn;ﬁ07ﬁ1)IIOgH

= Zlog 0'\/_71' 2022 ,Bo+,81xz)) .

i=1
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Statistical Properties of the OLS Estimator syt

9L(Bo,B1)

n 2 n
98B0 = %{_# Dict (y¢—(,30+ﬁ193i)) b= Flfzm ( (B0+Blwl))
n 2
LB = B L (= (Bo+ Bux) )t = 0, (v — (Bo + Buxs) )i
92 s n n
—2—L§f;z B = 552 iy (i — (Bo + Brzi) )} = — 2%
92 s n n
Lg;z P = B {E T (v — (Bo+ Brm) )i} = = Y, 2f.
62 y n n n =
%%2 = gl Xy (i = (Bo + frxi) )i} = — 5 o, @i = — 5T

Then the Fisher information is (fixed design here)

n n_ » 1 T
T, =R L) =5
(Bo, Br) ( oy — Ly a2 o2 \z L Zz L
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Statistical Properties of the OLS Estimator syt

The Cramer-Rao Lower Bound is given by the inverse of the Fisher information matrix

-1
(8 ﬁ)—02 1 z _o 1 1 N
n e E e tyre?) T I o2\ -z 1

n =11

n

Since S% = 13" (zi—2)° =137 2 — 7z, finally we get

2 n 2 -
T (Bo, B1) U (5 =1 % _gc)

nS%

Cov ((Bo, B

The OLS Estimators Eo and 31 then achieve the Cramer-Rao Lower Bound. O
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quté‘rﬁ;v

Confidence Intervals |

Let se(B1) =,/ n‘f;g{ and se(fo) = /2 (1 + %) We then have

Bi = Bi 2, no,1).
se(3;)

is unknown, we use instead its best estimator

: the corrected MLE

Since the variance o
20LS | A0LS 2
—(Bo ~+Br X))

n—2

We then use instead the statistic
Bi — B
se(55)

T; =

where s’é(gj) corresponds to replacing o by ° in se(f;)

Statistical Learning
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Confidence Intervals Il Systemx

We know that

n —2)52
U= ( 02) ~ Xi—2
Then we finally have
T; = /Bi _Aﬂj _ Zj ~ Tres
se(B;) £

Let 7o =P(T; < ), i.e the quantile of order 5 of the Student’s law with n — 2

degrees of freedom. An approximate 1 — « confidence interval for Bj is then given by
P(—Th—2,e <Tj <Th2g)=1-qa
which corresponds to
P (Bj = Tn-2,95(B;) < B; < Bj + E-z,%s%(ﬂj)> =l-a
We finally obtain

Chia(B)) = [ﬁj — Ta_a.25e(B)), B; + 7272,%§(3j)} :
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Confidence Intervals |11 Systemx

Finally :

CLi—a(fo)

CIl—a(Bl) = |:31:|:7—1n_2
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Confidence Intervals |V

We can construct a confidence interval for ﬁ(acl) =E[Yi| X, = mi;,73’\0,,73’\1] = Bo + Bizs.
Since we have

Var(ﬁo + lez) = Var(fo) + Var(,@lcci)) +2 Cov(ﬂo, 1:@)
= (B

2 =2 2 2
o " 2 07 To
n x nS% nox

+f_2+w_?_gim.
X X nS% '

|
q
+
g
|
G
V)
N———

Il
q

+
Nz\
- |8
—~
81 |
<
|3
e
8
~
n
N——

1 (z; =)

We then obtain CIl,a(ao + lez) {B\ + Bixi + T 22\/02 (1 + En(x,—x)z )J
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Confidence Intervals Systemx

Given a new input ., the predicted output Y is given by
Y* = E(ZI}*) + €x = BO +B\117* + €«

Since €, is not observed, then independent from the training set, the variance of the
predicted value is then

Var(Y.) = Var(Bo+ Biz.) + Var(e.)

o (l + M) + o2
no Y (z —T)?

— 42 1 (zi —)°

(i)

and we have CI;_o(Y.) = [304_3155* T %2\/02 (1+ % + gw*—mzz )

This one (on Y.) is larger compared to the previous one (on ]E[Y*IX = z.]).
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EitleWhen OLS coincides with MLE Systemx

Regression with Gaussian errors
Let Y =R, y€Rand h: X - Y s.t z +— By + Six, and consider the following model

Y;'Z}L(Xi;ﬁmﬁl)—‘rsi with EilezN(070'2)

m Empirical Risk : under the square loss R, (B0, 1) = = 37 (yi — (o + B1x:))?

m Empirical Risk Minimizer : (B\O,B\l)n = arg mingg, g) Rn(fo, f1)

m Conditional Maximum Likelihood Risk

2 " _;(M)z
Data model : Y;|X; (_\J/\/(,Bo + Bixi, 0%) @ pe(yi|zi) = v o

n

log L(0) = 31" logpe(yilzi) = — 522 > (i — (Bo + B12:))* — % logo® — % log(27)

i=1

R"L (B)
= Conditional MLE : = (S, B{™) = arg maxg, ,) log L(8)
< Then we have : arg ming, gy Rn (B0, 1) = argmax g, g) log L(6).

m For both we can take the sample variance as an estimator of the variance o2 :
5> =135 (Yi — (Bo, Brzi))? which is the Maximum-Likelihood Estimator
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SLR illustration

qutéfﬁ;?

4 T
— By + By x //J
3 O (XY)~p, i
——OLS Line -7
Cl_95% ~
2t -
-7 o
-0 o O
-10 - 7
2| -7 1
3+ o .
4 ‘ ‘ ‘ ‘
0 0.2 0.4 06 08 1
X
Yi = —2 +2x + €, ¢, ~N(0,1) and z;'s are n values from a uniform grid in [0, 1]
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qutéfﬁ;?

Practical work: Coding session to implement from the scratch the
confidence interval calculation for regression

yi=—3 + 2z + €,
e; ~N(0,1) and z;'s are values from a uniform grid in [0, 1]
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https://chamroukhi.com/Teaching/StatisticalLearning-MS-IAC/Notebooks/Regression/html-Regression/Script_SLR.html
https://chamroukhi.com/Teaching/StatisticalLearning-MS-IAC/Notebooks/Regression/html-Regression/Script_SLR.html

quté‘rﬁ;v

Practical work session : Confidence intervals and prediction using linear
regression

m Simulated data
m Appart data prediction

Python, R, and MATLAB code provided during the session and
accessible here on the course’s page :
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SLR qutéfﬁ;?

Goodness of Fit
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Correlation coefficient Systei”

. - XY
Correlation coefficient pxy = ——XXY) . IX¥ o [-1,1].
v/ Var(X) Var(Y) IXOY
n . _F )
Sample Correlation coefficient : rxy = SSXSY = n21=1(9_612 r)(y; 5) —
XSy R (@i—2)2 /T (vi— D)
B PR T SR B °

. . b Xt

: : Ribteo

. . Fro

: " Ry,

e Bm'&u 5,
2 : °‘?%;é§w;ﬁ :

6 4 2 o 2 0 © £ " 2 o 2 ¥ g s 4 2 0 2 4 [ s =2 o 2 3 s
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Coefficient of determination R* Syste

Measures the quality of fit

SST =", (Y; —Y)? : sum of the squares of the deviations around Y :
a measure of the total variability for the n given observations, Y;'s.
SSE=>",(Vi— Y:)? : The sum of the squares of the deviations around the Y;'s :
A measure of the variability in Y that remains after the regression is fitted.
gg—g = % : proportion of the total variability unexplained by the fitted
regression
R? : proportion of the total variability accounted for by the regression :

S, (i-Y)? | ssE
S (i-v)e  SST

| =

R*=1-

For Simple Linear Regression, i.e. Y = Bo + lei cR? =77
R? is the correlation coefficient (squared)

NB : In the general case, R? is not a coefficient correlation (and should not be
confused with).
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Coefficient of determination R* Systei”

m In simple linear regression : R? ~ 1 indicates that the empirical correlation
coefficient between the response y and the predictor x is close to 1, so that a
modeling by a line is satisfactory

m In general : High value of R? indicates that the regression model is well fitted to
the data. However, it is not an indicator of how good the prediction capability of
the fitted model is. For example, a model with R* ~ 1 will have high variance (and
hence over-fits the data)

FIGURE — Sample (o), True function (--), realizations of the fitted prediction function (—)
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