Statistical Learning

Master Spécialisé Intelligence Artificielle de Confiance (IAC)

@ Centrale Supélec en partenariat avec l'IRT SystemX

2024/2025.

Faïcel Chamroukhi

Supervised Learning

■ Regression

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- lacksquare In a regression problem : typically $oldsymbol{X} \in \mathbb{R}^p$, $Y \in \mathcal{Y} = \mathbb{R}^d$
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a chosen loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the empirical (data- \mathcal{D}_n -driven) risk $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm $\mathcal A$
- Data-Scientist's "Toolbox" : {Data, hypothesis, loss, risk, algorithm}

Objective

Regression models the relationship between two variables X and Y

- Temperature (Y) of some water source, given the air temperate (x)
- Price (Y) of an apartment given its surface (x_1) and number of rooms (x_2)

Vocabulary:

- The x's are called inputs/predictors/covariates/features/descriptors/ exogenous/Explanatory/independent variables
- The y's are called output/outcome/response/endogenous/variable of interest/Explained/dependent variable
- **Simple** regression : $x \in \mathbb{R}$

■ Univariate regression : $y \in \mathbb{R}$

■ Multiple regression : $x \in \mathbb{R}^p$

- Multivariate regression : $y \in \mathbb{R}^d$
- **Functional** regression : when x and/or y are functional data

Objective

Regression models the relationship between two variables X and Y

- \blacksquare Temperature (Y) of some water source, given the air temperate (x)
- Price (Y) of an apartment given its surface (x_1) and number of rooms (x_2)

Vocabulary:

- The x's are called inputs/predictors/covariates/features/descriptors/ exogenous/Explanatory/independent variables
- The y's are called output/outcome/response/endogenous/variable of interest/Explained/dependent variable
- **Simple** regression : $x \in \mathbb{R}$
- Multiple regression : $x \in \mathbb{R}^p$

- Univariate regression : $y \in \mathbb{R}$
- Multivariate regression : $y \in \mathbb{R}^d$
- **Functional** regression : when x and/or y are functional data

- Consider the random pair (X,Y) where $X \in \mathcal{X} \subset \mathbb{R}^p$ is the predictor and $Y \in \mathcal{Y} \subset \mathbb{R}^d$ is the response.
- A regression model can be phrased as

$$Y = f(X) + \varepsilon$$

where $f:\mathcal{X}\to\mathcal{Y}$ is the regression function (parametric or not, linear or not..) ε is a random variable : noise/residual/error

- **Standard** hypotheses : The error terms ε are
 - (i) centered : $\mathbb{E}(\varepsilon_i) = 0$ (for all i)
 - (ii) uncorrelated with the covariates : $\mathbb{E}(arepsilon_i X_j) = 0$ (for all i,j)
 - (iii) homoskedastic, with limited variance : $\mathbb{E}(arepsilon_i^2|X_i)=\sigma^2<\infty$ (for all i)
 - (iv) uncorrelated with each other : $\mathbb{E}[\varepsilon_i \varepsilon_j | X] = 0$ (for all $i \neq j$)
 - (v) identically distributed : $\varepsilon_i \sim p$ (for all i)

The caovariates X can be deterministic (fixed design) or random

The errors ε_i can be supposed normal for statistical inference

- Consider the random pair (X,Y) where $X \in \mathcal{X} \subset \mathbb{R}^p$ is the predictor and $Y \in \mathcal{Y} \subset \mathbb{R}^d$ is the response.
- A regression model can be phrased as

$$Y = f(X) + \varepsilon$$

where $f:\mathcal{X}\to\mathcal{Y}$ is the regression function (parametric or not, linear or not..) ε is a random variable : noise/residual/error

- lacktriangle Standard hypotheses : The error terms arepsilon are
 - (i) centered : $\mathbb{E}(\varepsilon_i) = 0$ (for all i)
 - (ii) uncorrelated with the covariates : $\mathbb{E}(\varepsilon_i X_j) = 0$ (for all i, j)
 - (iii) homoskedastic, with limited variance : $\mathbb{E}(\varepsilon_i^2|X_i)=\sigma^2<\infty$ (for all i)
 - (iv) uncorrelated with each other : $\mathbb{E}[\varepsilon_i \varepsilon_j | X] = 0$ (for all $i \neq j$)
 - (v) identically distributed : $\varepsilon_i \underset{\mathrm{id}}{\sim} p$ (for all i)

The caovariates X can be deterministic (fixed design) or random

The errors ε_i can be supposed normal for statistical inference

Def. Regression function

$$h: \mathcal{X} \subset \mathbb{R}^p \to \mathcal{Y} \subset \mathbb{R}^d$$

 $x \mapsto h(x)$

is a regression function, parametric or not, linear or not, ...

Example : Linear prediction functions : Consider $\mathcal{H} = \{h(x) = \langle x, \theta \rangle = \theta^T x\}$, the set of linear functions in X of the form $h(x; \theta) = \mathbb{E}_{\theta}[Y|X] = \beta_0 + \beta^T X$ and $\theta = (\beta_0, \beta^T)^T$.

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear prediction functions (cont.) : $\widehat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Def. Regression function

$$h: \mathcal{X} \subset \mathbb{R}^p \to \mathcal{Y} \subset \mathbb{R}^d$$

 $x \mapsto h(x)$

is a regression function, parametric or not, linear or not, ...

Example : Linear prediction functions : Consider $\mathcal{H} = \{h(x) = \langle x, \theta \rangle = \theta^T x\}$, the set of linear functions in X of the form $h(x; \theta) = \mathbb{E}_{\theta}[Y|X] = \beta_0 + \beta^T X$ and $\theta = (\beta_0, \beta^T)^T$.

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear prediction functions (cont.) : $\hat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Def. Regression function

$$h: \mathcal{X} \subset \mathbb{R}^p \to \mathcal{Y} \subset \mathbb{R}^d$$

 $x \mapsto h(x)$

is a regression function, parametric or not, linear or not, ...

Example : Linear prediction functions : Consider $\mathcal{H} = \{h(x) = \langle x, \theta \rangle = \theta^T x\}$, the set of linear functions in X of the form $h(x; \theta) = \mathbb{E}_{\theta}[Y|X] = \beta_0 + \beta^T X$ and $\theta = (\beta_0, \beta^T)^T$.

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear prediction functions (cont.) : $\hat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Def. Regression function

$$h \colon \mathcal{X} \subset \mathbb{R}^p \to \mathcal{Y} \subset \mathbb{R}^d$$

 $x \mapsto h(x)$

is a regression function, parametric or not, linear or not, ...

Example : Linear prediction functions : Consider $\mathcal{H} = \{h(x) = \langle x, \theta \rangle = \theta^T x\}$, the set of linear functions in X of the form $h(x; \theta) = \mathbb{E}_{\theta}[Y|X] = \beta_0 + \beta^T X$ and $\theta = (\beta_0, \beta^T)^T$.

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear prediction functions (cont.) : $\hat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Def. Loss function

$$\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $(y, h(x)) \mapsto \ell(y, h(x))$

It measures how good we are on a particular (x,y) pair.

(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in regression

- Square (ℓ_2) -loss : $\ell_2(y, h(x)) = (y h(x))^2$
- Absolute (ℓ_1) -loss : $\ell_1(y, h(x)) = |y h(x)|$
- Huber loss : $\ell_{\delta}(y, h(x)) = \begin{cases} \frac{1}{2}(y h(x))^2 \text{ if } |y f(x)| \leq \delta, \\ \delta(|y h(x)| \frac{1}{2}\delta), \text{ otherwise.} \end{cases}$

F. CHAMROUKHI Statistical Learning 7/44

Def. Loss function

$$\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $(y, h(x)) \mapsto \ell(y, h(x))$

It measures how good we are on a particular (x,y) pair.

(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in regression

- Square (ℓ_2) -loss : $\ell_2(y, h(x)) = (y h(x))^2$
- Absolute (ℓ_1) -loss : $\ell_1(y, h(x)) = |y h(x)|$
- Huber loss : $\ell_{\delta}(y, h(x)) = \begin{cases} \frac{1}{2}(y h(x))^2 & \text{if } |y f(x)| \leq \delta \\ \delta(|y h(x)| \frac{1}{2}\delta), & \text{otherwise.} \end{cases}$

Loss

Def. Loss function

$$\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $(y, h(x)) \mapsto \ell(y, h(x))$

It measures how good we are on a particular (x,y) pair.

(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in regression

- Square (ℓ_2) -loss : $\ell_2(y, h(x)) = (y h(x))^2$
- Absolute (ℓ_1) -loss : $\ell_1(y, h(x)) = |y h(x)|$
- Huber loss : $\ell_{\delta}(y, h(x)) = \begin{cases} \frac{1}{2}(y h(x))^2 \text{ if } |y f(x)| \leq \delta, \\ \delta(|y h(x)| \frac{1}{2}\delta), \text{ otherwise.} \end{cases}$

Examples of loss functions

FIGURE – Some loss functions in regression : curves of $\ell(u)$ for u = y - h(x); $y \in \mathbb{R}$.

- Square loss : $\ell_2(u) = (u)^2$
- Absolute loss : $\ell_1(u) = |u|$
- $\qquad \text{Huber loss}: \ell_{\delta}(u) = \begin{cases} \frac{1}{2}(u)^2 \text{ if } |u| \leq \delta, \\ \delta\left(|u| \frac{1}{2}\delta\right), \text{ otherwise}. \end{cases}$

Risk

■ **Risk**: the *Expected loss*:

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y)$$

- \hookrightarrow the error of approximating Y by model/hypothesis h(X) as measured by a chosen loss function $\ell(Y,h(X))$ given the pair (X,Y) with (unknown) joint distribution P,
- \rightarrow prediction error : measures the generalization performance of the function h.
 - Squared Risk : Under the squared loss $\ell(y,h(x)) = (y-h(x))^2$:

$$R(h) = \mathbb{E}_P[(Y - h(X))^2] = \int_{\mathcal{X} \times \mathcal{Y}} (y - h(x))^2 dP(x, y)$$

- → This is the most used risk in regression
- ${f Q}$: what is the best function h? or equivalently, when the risk R(h) is optimal?

Risk

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y)$$

- - **Squared Risk**: Under the squared loss $\ell(y, h(x)) = (y h(x))^2$:

$$R(h) = \mathbb{E}_P[(Y - h(X))^2] = \int_{\mathcal{X} \times \mathcal{Y}} (y - h(x))^2 dP(x, y).$$

- This is the most used risk in regression

Risk

■ **Risk**: the *Expected loss*:

$$R(h) = \mathbb{E}_{P}[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y)$$

- \hookrightarrow the error of approximating Y by model/hypothesis h(X) as measured by a chosen loss function $\ell(Y,h(X))$ given the pair (X,Y) with (unknown) joint distribution P,
- \rightarrow prediction error : measures the generalization performance of the function h.
 - Squared Risk : Under the squared loss $\ell(y,h(x)) = (y-h(x))^2$:

$$R(h) = \mathbb{E}_P[(Y - h(X))^2] = \int_{\mathcal{X} \times \mathcal{Y}} (y - h(x))^2 dP(x, y)$$

- ${\bf Q}$: what is the best function h? or equivalently, when the risk R(h) is optimal?

Optimal prediction function

Def. regression function

$$h: \mathcal{X} \to \mathcal{Y}$$

 $x \mapsto h(x)$

$$R(h) = \mathbb{E}_X((Y - h(X))^2 | X = x)$$

$$h^*(x) = \mathbb{E}(Y|X=x)$$

Optimal prediction function

$$h \colon \mathcal{X} \to \mathcal{Y}$$

 $x \mapsto h(x)$

Theorem (Bayes regression function under the square loss)

Consider the ℓ_2 -loss, $\ell(Y, h(X)) = (h(X)) - Y)^2$, then, the Bayes rule minimizing the corresponding regression risk (the best prediction function) of a regression function h(x)

$$R(h) = \mathbb{E}_X((Y - h(X))^2 | X = x)$$

is given by the conditional expectation

$$h^*(x) = \mathbb{E}(Y|X=x).$$

Optimal prediction function

Proof: Bayes predictor under the squared loss.

Under the square loss, $\ell(y, h(x)) = (h(x) - y)^2$, the best prediction function is

$$h^*(x) = \mathbb{E}[Y|X=x]$$

For X = x, consider the conditional risk :

 $\mathbb{E}[\ell(Y,h(X))|X=x]=\mathbb{E}_{Y|X=x}[(h(X)-Y)^2|X=x]=\int_{\mathcal{Y}}(h(x)-y)^2p(y|x)dy,$ optimizing the Risk by differentiating w.r.t h(x) and setting the derivative to 0:

$$\begin{split} \frac{\partial R(h(x))}{\partial h(x)} &= 2 \int (h(x) - y) p(y|x) dy &= 2 \left[h(x) \int p(y|x) dy - \int y p(y|x) dy \right] \\ &= 2 \left(h(x) - \mathbb{E}[Y|X = x] \right) \end{split}$$

which is zero at $h(x)^* = \mathbb{E}[Y|X=x]$. Then

$$h^*(x) = \arg\min_{h(x) \in \mathcal{V}} \mathbb{E}[l(Y, h(X))|X = x] = \mathbb{E}[Y|X = x]$$

Goal: estimate h^* , knowing only the data sample $D_n = (X_i, Y_i)_{i=1}^n$ and loss ℓ .

Empirical Risk Minimization & Ordinary Least Squares (OLS)

- Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y). In real situations P is in unknown, as we only have a sample $D_n = (X_i,Y_i)_{1 \le i \le n}$,
- \hookrightarrow We attempt to minimize the **Empirical Risk** $R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$ to estimate h^* (within a family \mathcal{H}):

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h).$$

MSE and Ordinary Least Squares (OLS):

Squared error : Under the squared loss (the standard in regression) : $\ell_2(y, h(x)) = (y - h(x))^2$, the empirical risk $R_n(h)$ is the empirical square loss ¹

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n ||Y_i - h(X_i)||_2^2$$

- ERM : $\widehat{h}_n = \arg\min_{h \in \mathcal{H}} R_n(h)$ is the Ordinary Least Squares Estimator of h
- Liner regression : Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum RSS) when the ML problem is phrased as an error model $Y=h(X)+\epsilon,\,\epsilon\sim p$

F. CHAMROUKHI Statistical Learning 12/44

Empirical Risk Minimization & Ordinary Least Squares (OLS)

- Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y). In real situations P is in unknown, as we only have a sample $D_n = (X_i,Y_i)_{1 \le i \le n}$,
- \rightarrow We attempt to minimize the **Empirical Risk** $R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$ to estimate h^* (within a family \mathcal{H}):

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h).$$

MSE and Ordinary Least Squares (OLS):

■ Squared error : Under the squared loss (the standard in regression) : $\ell_2(y, h(x)) = (y - h(x))^2$, the empirical risk $R_n(h)$ is the empirical square loss ¹

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n ||Y_i - h(X_i)||_2^2$$

- ERM : $\widehat{h}_n = \arg\min_{h \in \mathcal{H}} R_n(h)$ is the Ordinary Least Squares Estimator of h
- Liner regression : Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum (RSS) when the ML problem is phrased as an error model $Y=h(X)+\epsilon,\,\epsilon\sim p$

Empirical Risk Minimization & Ordinary Least Squares (OLS)

- Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y). In real situations P is in unknown, as we only have a sample $D_n = (X_i,Y_i)_{1 \le i \le n}$,
- \hookrightarrow We attempt to minimize the **Empirical Risk** $R_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(Y_i, h(X_i))$ to estimate h^* (within a family \mathcal{H}):

$$\widehat{h}_n \in \arg\min_{h \in \mathcal{H}} R_n(h).$$

MSE and Ordinary Least Squares (OLS)

Squared error : Under the squared loss (the standard in regression) : $\ell_2(y, h(x)) = (y - h(x))^2$, the empirical risk $R_n(h)$ is the empirical square loss $\ell_2(y, h(x)) = (y - h(x))^2$.

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n ||Y_i - h(X_i)||_2^2$$

- ERM : $\widehat{h}_n = \arg\min_{h \in \mathcal{H}} R_n(h)$ is the Ordinary Least Squares Estimator of h
- Liner regression : Consider $\mathcal{H} = \{h_{\theta}(x) = \alpha + \beta^T x\}$, the set of linear functions in x

1. also called the Mean Squared Error (MSE), or the mean Residual Squared Sum RSS) when the ML problem is phrased as an error model $Y=h(X)+\epsilon,\ \epsilon\sim p$

Regression

Simple Linear Regression

Simple Linear Regression

- lacksquare We model the pair (X,Y) where the predictor $X\in\mathbb{R}$ and the response $Y\in\mathbb{R}$
- An observed Y given a single scalar predictor x, is said to satisfy the simple linear regression model when

$$h(x) = \mathbb{E}[Y|X = x] = \int_{\mathcal{Y}} yp(y|x)dy = \beta_0 + \beta_1 x$$

i.e., equivalently

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

$$\mathbb{E}[\epsilon|X] = 0 \text{ and } \mathbb{V}[\epsilon|X] = \sigma^2$$

 eta_0 (the intercept) and eta_1 (the slope) : unknown regression coefficients σ^2 an unknown noise variance

Bayes Risk

$$R^* = R(\theta^*) = \mathbb{E}[(Y - h^*(X))^2] = \mathbb{E}_X \mathbb{E}_{Y|X}[(Y - h^*(X))^2|X] = \mathbb{E}_X \mathbb{E}[\epsilon^2|X] = \sigma^2$$

F. CHAMROUKHI Statistical Learning 14/44

Simple Linear Regression

- lacktriangle We model the pair (X,Y) where the predictor $X\in\mathbb{R}$ and the response $Y\in\mathbb{R}$
- lacktriangle An observed Y given a single scalar predictor x, is said to satisfy the simple linear regression model when

$$h(x) = \mathbb{E}[Y|X = x] = \int_{\mathcal{Y}} yp(y|x)dy = \beta_0 + \beta_1 x$$

i.e., equivalently

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

$$\mathbb{E}[\epsilon|X] = 0 \text{ and } \mathbb{V}[\epsilon|X] = \sigma^2$$

 β_0 (the intercept) and β_1 (the slope) : unknown regression coefficients σ^2 an unknown noise variance

Bayes Risk

$$R^* = R(\theta^*) = \mathbb{E}[(Y - h^*(X))^2] = \mathbb{E}_X \mathbb{E}_{Y|X}[(Y - h^*(X))^2 | X] = \mathbb{E}_X \mathbb{E}[\epsilon^2 | X] = \sigma^2$$

F. CHAMROUKHI Statistical Learning 14/44

Simple Linear Regression

- lacktriangle We model the pair (X,Y) where the predictor $X\in\mathbb{R}$ and the response $Y\in\mathbb{R}$
- lacktriangle An observed Y given a single scalar predictor x, is said to satisfy the simple linear regression model when

$$h(x) = \mathbb{E}[Y|X = x] = \int_{\mathcal{Y}} yp(y|x)dy = \beta_0 + \beta_1 x$$

i.e., equivalently

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

$$\mathbb{E}[\epsilon|X] = 0 \text{ and } \mathbb{V}[\epsilon|X] = \sigma^2$$

 β_0 (the intercept) and β_1 (the slope) : unknown regression coefficients σ^2 an unknown noise variance

Bayes Risk

$$R^* = R(\theta^*) = \mathbb{E}[(Y - h^*(X))^2] = \mathbb{E}_X \mathbb{E}_{Y|X}[(Y - h^*(X))^2|X] = \mathbb{E}_X \mathbb{E}[\epsilon^2|X] = \sigma^2$$

Simple Linear Regression

- lacktriangle We model the pair (X,Y) where the predictor $X\in\mathbb{R}$ and the response $Y\in\mathbb{R}$
- lacktriangle An observed Y given a single scalar predictor x, is said to satisfy the simple linear regression model when

$$h(x) = \mathbb{E}[Y|X = x] = \int_{\mathcal{Y}} yp(y|x)dy = \beta_0 + \beta_1 x$$

i.e., equivalently

$$Y = \beta_0 + \beta_1 X + \epsilon,$$

$$\mathbb{E}[\epsilon|X] = 0 \text{ and } \mathbb{V}[\epsilon|X] = \sigma^2$$

 β_0 (the intercept) and β_1 (the slope) : unknown regression coefficients σ^2 an unknown noise variance

Bayes Risk

$$R^* = R(\theta^*) = \mathbb{E}[(Y - h^*(X))^2] = \mathbb{E}_X \mathbb{E}_{Y|X}[(Y - h^*(X))^2|X] = \mathbb{E}_X \mathbb{E}[\epsilon^2|X] = \sigma^2$$

7. CHAMROUKHI Statistical Learning 14/44

Let $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ and $\overline{Y}=\frac{1}{n}\sum_{i=1}^n Y_i$ be the empirical (sample) means.

Theorem (Ordinary Least Squares (OLS) for SLR)

If $(\widehat{\beta}_0^{\text{OLS}}, \widehat{\beta}_1^{\text{OLS}})$ are the OLS Estimators of (β_0, β_1) , then

$$\begin{split} \widehat{\beta}_0^{OLS} &= \overline{Y} - \widehat{\beta}_1 \overline{X}, \\ \widehat{\beta}_1^{OLS} &= \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} \; . \end{split}$$

- We have $\widehat{\beta}_1^{\text{OLS}} = S_{XY} \Big/ S_X^2$ where $S_{XY} = n^{-1} \sum_{i=1}^n (X_i \overline{X}) (Y_i \overline{Y})$ is the sample covariance and $S_X^2 = n^{-1} \sum_{i=1}^n (X_i \overline{X})^2$ is the sample variance.
- lacksquare An estimator $\widehat{\sigma}^2$ of the variance σ^2 can be taken as the empirical variance

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{h}(X_i))^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - (\widehat{\beta}_0^{\mathsf{OLS}} + \widehat{\beta}_1^{\mathsf{OLS}} X_i))^2$$

We'll see its construction later in connection with Gaussian regression, as the Maximum-Likelihood Estimator (MLE)

Let $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ and $\overline{Y}=\frac{1}{n}\sum_{i=1}^n Y_i$ be the empirical (sample) means.

Theorem (Ordinary Least Squares (OLS) for SLR)

If $(\widehat{\beta}_0^{\text{OLS}}, \widehat{\beta}_1^{\text{OLS}})$ are the OLS Estimators of (β_0, β_1) , then

$$\begin{split} \widehat{\beta}_0^{\text{OLS}} &= \overline{Y} - \widehat{\beta}_1 \overline{X}, \\ \widehat{\beta}_1^{\text{OLS}} &= \frac{\sum_{i=1}^n (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^n (X_i - \overline{X})^2} \; . \end{split}$$

- We have $\widehat{\beta}_1^{\text{OLS}} = S_{XY} \Big/ S_X^2$ where $S_{XY} = n^{-1} \sum_{i=1}^n (X_i \overline{X})(Y_i \overline{Y})$ is the sample covariance and $S_X^2 = n^{-1} \sum_{i=1}^n (X_i \overline{X})^2$ is the sample variance.
- An estimator $\hat{\sigma}^2$ of the variance σ^2 can be taken as the empirical variance

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \widehat{h}(X_i))^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - (\widehat{\beta}_0^{\mathsf{OLS}} + \widehat{\beta}_1^{\mathsf{OLS}} X_i))^2$$

We'll see its construction later in connection with Gaussian regression, as the Maximum-Likelihood Estimator (MLE)

Proof of the OLS for SLR.

The OLS estimates $(\widehat{eta}_0,\widehat{eta}_1)$ are the ERM, i.e minimizing the residual squared sum (RSS) $Q(eta_0,eta_1)=\sum_{i=1}^n \left(y_i-(eta_0+eta_1x_i)\right)^2$, i.e. $(\widehat{eta}_0,\widehat{eta}_1)=\arg\min_{(eta_0,eta_1)\in\mathbb{R}^2}Q(eta_0,eta_1)$. F.O.C: Deriving Q w.r.t (eta_0,eta_1) we get

$$\frac{\partial Q}{\partial \beta_0} = \frac{\partial \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2}{\partial \beta_0} = -2 \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)
\frac{\partial Q}{\partial \beta_1} = \frac{\partial \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2}{\partial \beta_1} = -2 \sum_{i=1}^n x_i \left(y_i - (\beta_0 + \beta_1 x_i) \right).$$

and setting to zero we obtain

$$\begin{array}{rcl} \sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \widehat{\beta}_{0} - \widehat{\beta}_{1} \sum_{i=1}^{n} x_{i} & = & 0 \\ \sum_{i=1}^{n} x_{i} y_{i} - \widehat{\beta}_{0} \sum_{i=1}^{n} x_{i} - \widehat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} & = & 0 \end{array}$$

which gives the normal equations:

$$n\hat{\beta}_{0} = \sum_{i=1}^{n} y_{i} - \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}$$
$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}^{2} = \sum_{i=1}^{n} x_{i} y_{i}$$

16/44

Proof of the OLS for SLR (cont.)

The first normal equation one gives

$$n\widehat{\beta}_0 = \sum_{i=1}^n y_i - \widehat{\beta}_1 \sum_{i=1}^n x_i$$

$$\widehat{\beta}_0 = \frac{1}{n} \sum_{i=1}^n y_i - \widehat{\beta}_1 \left(\frac{1}{n} \sum_{i=1}^n x_i \right) = \overline{y} - \widehat{\beta}_1 \overline{x}.$$

The second gives

$$\begin{array}{rcl} \widehat{\beta}_0 \sum_{i=1}^n x_i + \widehat{\beta}_1 \sum_{i=1}^n x_i^2 &=& \sum_{i=1}^n x_i y_i \\ \sum_{i=1}^n x_i \overline{y} - \widehat{\beta}_1 \sum_{i=1}^n x_i \overline{x} + \widehat{\beta}_1 \sum_{i=1}^n x_i^2 &=& \sum_{i=1}^n x_i y_i \,, \end{array}$$

we finally obtain : $\widehat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \overline{y}}{\sum_{i=1}^n x_i^2 - \sum_{i=1}^n x_i \overline{x}} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} \cdot \text{S.O.C}:$

$$\det \begin{pmatrix} \frac{\partial^2 Q}{\partial^2 \beta_0} & \frac{\partial^2 Q}{\partial \beta_0 \partial \beta_1} \\ \frac{\partial^2 Q}{\partial \beta_0 \partial \beta_1} & \frac{\partial^2 Q}{\partial^2 \beta_1} \end{pmatrix} = \det \begin{pmatrix} 2n & 2\sum_i x_i \\ 2\sum_i x_i & 2\sum_i x_i^2 \end{pmatrix} = 4n\sum_i (x_i - \overline{x})^2 > 0.$$

This determinant is zero if all the x_i 's take the same value. At least two distinct x_i 's are necessary to estimate the coefficients (β_0, β_1) (to fit the line).

Let $S_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ be the empirical variance of the n covariates $X^n = (X_1, \dots, X_n)$.

Theorem: Linearity, Unbiasedness and Variance of the OLS

The OLS Estimators $(\widehat{\beta}_0, \widehat{\beta}_1)$ of (β_0, β_1) are linear in Y_i and unbiased, with

$$\begin{split} \mathbb{V}(\widehat{\beta}_0|X^n) &= \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right) = \frac{\sigma^2}{n} \left(1 + \frac{\overline{X}^2}{S_X^2}\right) \\ \mathbb{V}(\widehat{\beta}_1|X^n) &= \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sigma^2}{nS_X^2} \\ \operatorname{Cov}(\widehat{\beta}_0, \widehat{\beta}_1|X^n) &= -\frac{\overline{X}\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = -\frac{\overline{X}\sigma^2}{nS_X^2} \end{split}$$

■ Estimates of these statistics are obtained by replacing the variance σ^2 by its estimator $\widehat{\sigma}^2$ (eg., the corrected MLE). The estimated standard errors $\widehat{\mathfrak{se}}$ of $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are given by

$$\widehat{\operatorname{se}}(\widehat{\beta}_0|X^n) = \frac{\widehat{\sigma}}{\sqrt{n}} \sqrt{\left(1 + \frac{\overline{X}^2}{S_X^2}\right)} = \frac{\widehat{\sigma}}{\sqrt{n}S_X} \sqrt{\frac{\sum_{i=1}^n X_i^2}{n}}$$

$$\widehat{\operatorname{se}}(\beta_1|X^n) = \frac{\widehat{\sigma}}{\sqrt{n}S_X}; \quad \widehat{\operatorname{Cov}}(\widehat{\beta}_0, \widehat{\beta}_1|X^n) = -\frac{\overline{X}\widehat{\sigma}^2}{nS_X^2}$$

F. Chamroukhi Statistical Learning 18/44

Let $S_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ be the empirical variance of the n covariates $X^n = (X_1, \dots, X_n)$.

Theorem: Linearity, Unbiasedness and Variance of the OLS

The OLS Estimators $(\widehat{\beta}_0, \widehat{\beta}_1)$ of (β_0, β_1) are linear in Y_i and unbiased, with

$$\begin{split} \mathbb{V}(\widehat{\beta}_0|X^n) &= \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right) = \frac{\sigma^2}{n} \left(1 + \frac{\overline{X}^2}{S_X^2}\right) \\ \mathbb{V}(\widehat{\beta}_1|X^n) &= \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sigma^2}{nS_X^2} \\ \operatorname{Cov}(\widehat{\beta}_0, \widehat{\beta}_1|X^n) &= -\frac{\overline{X}\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = -\frac{\overline{X}\sigma^2}{nS_X^2} \end{split}$$

■ Estimates of these statistics are obtained by replacing the variance σ^2 by its estimator $\widehat{\sigma}^2$ (eg., the corrected MLE). The estimated standard errors $\widehat{\text{se}}$ of $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are given by

$$\begin{split} \widehat{\operatorname{se}}(\widehat{\beta}_0|X^n) &= \frac{\widehat{\sigma}}{\sqrt{n}} \sqrt{\left(1 + \frac{\overline{X}^2}{S_X^2}\right)} = \frac{\widehat{\sigma}}{\sqrt{n}S_X} \sqrt{\frac{\sum_{i=1}^n X_i^2}{n}} \\ \widehat{\operatorname{se}}(\beta_1|X^n) &= \frac{\widehat{\sigma}}{\sqrt{n}S_X}; \quad \widehat{\operatorname{Cov}}(\widehat{\beta}_0, \widehat{\beta}_1|X^n) = -\frac{\overline{X}\widehat{\sigma}^2}{nS_X^2} \end{split}$$

F. CHAMROUKHI Statistical Learning 18/44

Let $S_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ be the empirical variance of the n covariates $X^n = (X_1, \dots, X_n)$.

Theorem: Linearity, Unbiasedness and Variance of the OLS

The OLS Estimators $(\widehat{\beta}_0, \widehat{\beta}_1)$ of (β_0, β_1) are linear in Y_i and unbiased, with

$$\mathbb{V}(\widehat{\beta}_0|X^n) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right) = \frac{\sigma^2}{n} \left(1 + \frac{\overline{X}^2}{S_X^2}\right) = \frac{\sigma^2}{nS_X^2} \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)$$

$$\mathbb{V}(\widehat{\beta}_1|X^n) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sigma^2}{nS_X^2}$$

$$\operatorname{Cov}(\widehat{\beta}_0, \widehat{\beta}_1|X^n) = -\frac{\overline{X}\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = -\frac{\overline{X}\sigma^2}{nS_X^2}$$

That is,
$$\operatorname{Cov}\left((\widehat{\beta}_0, \widehat{\beta}_1)^T\right) = \frac{\sigma^2}{nS_X^2} \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n X_i^2 & -\overline{X} \\ -\overline{X} & 1 \end{pmatrix}$$

■ Estimates of these statistics are obtained by replacing the variance σ^2 by its estimator $\widehat{\sigma}^2$ (eg., the corrected MLE). The estimated standard errors $\widehat{\text{se}}$ of $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are given by

$$\widehat{\operatorname{se}}(\widehat{\beta}_0|X^n) = \frac{\widehat{\sigma}}{\sqrt{n}S_X}\sqrt{\frac{1}{n}\sum_{i=1}^n X_i^2}; \quad \widehat{\operatorname{se}}(\beta_1|X^n) = \frac{\widehat{\sigma}}{\sqrt{n}S_X}; \quad \widehat{\operatorname{Cov}}(\widehat{\beta}_0,\widehat{\beta}_1|X^n) = -\frac{\overline{X}\widehat{\sigma}^2}{nS_X^2}$$

F. CHAMROUKHI Statistical Learning 19/44

Let $S_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ be the empirical variance of the *n* covariates $X^n = (X_1, \dots, X_n)$.

Theorem: Linearity, Unbiasedness and Variance of the OLS

The OLS Estimators $(\widehat{\beta}_0,\widehat{\beta}_1)$ of (β_0,β_1) are linear in Y_i and unbiased, with

$$\mathbb{V}(\widehat{\beta}_0|X^n) = \sigma^2 \left(\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}\right) = \frac{\sigma^2}{n} \left(1 + \frac{\overline{X}^2}{S_X^2}\right) = \frac{\sigma^2}{nS_X^2} \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)$$

$$\mathbb{V}(\widehat{\beta}_1|X^n) = \frac{\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = \frac{\sigma^2}{nS_X^2}$$

$$\operatorname{Cov}(\widehat{\beta}_0, \widehat{\beta}_1|X^n) = -\frac{\overline{X}\sigma^2}{\sum_{i=1}^n (X_i - \overline{X})^2} = -\frac{\overline{X}\sigma^2}{nS_X^2}$$

That is,
$$\operatorname{Cov}\left((\widehat{\beta}_0,\widehat{\beta}_1)^T\right) = \frac{\sigma^2}{nS_X^2} \begin{pmatrix} \frac{1}{n} \sum_{i=1}^n X_i^2 & -\overline{X} \\ -\overline{X} & 1 \end{pmatrix}$$

lacktriangle Estimates of these statistics are obtained by replacing the variance σ^2 by its estimator $\hat{\sigma}^2$ (eg., the corrected MLE). The estimated standard errors \widehat{se} of $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are given by

$$\widehat{\operatorname{se}}(\widehat{\beta}_0|X^n) = \frac{\widehat{\sigma}}{\sqrt{n}S_X} \sqrt{\frac{1}{n}\sum_{i=1}^n X_i^2}; \quad \widehat{\operatorname{se}}(\beta_1|X^n) = \frac{\widehat{\sigma}}{\sqrt{n}S_X}; \quad \widehat{\operatorname{Cov}}(\widehat{\beta}_0,\widehat{\beta}_1|X^n) = -\frac{\overline{X}\widehat{\sigma}^2}{nS_X^2}$$

Proof: Linearity of the OLS.

To simplify notation, let
$$w_i = \frac{X_i - \overline{X}}{\sum_{i=1}^n (X_i - \overline{X})^2} \cdot$$

Then we have:

$$\sum_{i=1}^{n} w_{i} = \frac{\sum_{i=1}^{n} X_{i}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} - \frac{\sum_{i=1}^{n} \overline{X}}{\sum_{i=1}^{n} (X_{i} - \overline{x})^{2}}$$

$$= \frac{n\overline{X}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}} - \frac{n\overline{X}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= 0$$

We can then write:

$$\widehat{\beta}_1 = \sum_{i=1}^n w_i (Y_i - \overline{Y}) = \sum_{i=1}^n w_i Y_i - \overline{Y} \sum_{i=1}^n w_i = \sum_{i=1}^n w_i Y_i$$

$$\widehat{\beta}_0 = \overline{Y} - \widehat{\beta}_1 \overline{X} = \frac{1}{n} \sum_{i=1}^n Y_i - \overline{X} \sum_{i=1}^n w_i Y_i = \sum_{i=1}^n \left(\frac{1}{n} - \overline{X} w_i \right) Y_i$$

who are **linear** in Y.

Proof: Unbiasdness of the OLS.

We have $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, with $\mathbb{E}[\epsilon_i | X] = 0$ and $\mathbb{V}[\epsilon_i | X] = \sigma^2$, then $\mathbb{E}[Y_i | X_i] = \beta_0 + \beta_1 X_i$. Knowing that $\widehat{\beta}_1 = \sum_{i=1}^n w_i Y_i$ and $\widehat{\beta}_0 = \sum_{i=1}^n \left(\frac{1}{n} - \overline{X}w_i\right) Y_i$, we can then write

$$\mathbb{E}[\widehat{\beta}_{1}|X^{n}] = \sum_{i=1}^{n} w_{i}(\beta_{0} + \beta_{1}x_{i}) = \beta_{0} \sum_{i=1}^{n} w_{i} + \beta_{1} \sum_{i=1}^{n} w_{i}x_{i}$$

$$= \beta_{1} \sum_{i=1}^{n} w_{i}x_{i} - \overline{x}\beta_{1} \sum_{i=1}^{n} w_{i} = \beta_{1} \sum_{i=1}^{n} w_{i}(x_{i} - \overline{x}) = \beta_{1} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \beta_{1}$$

$$\mathbb{E}[\widehat{\beta}_0|X^n] = \sum_{i=1}^n \left(\frac{1}{n} - \overline{x}w_i\right) (\beta_0 + \beta_1 x_i) = \frac{1}{n} \sum_{i=1}^n (\beta_0 + \beta_1 x_i) - \overline{x} \sum_{i=1}^n w_i (\beta_0 + \beta_1 x_i)$$

$$= \beta_0 + \beta_1 \overline{x} - \overline{x} \beta_0 \sum_{i=1}^n w_i - \beta_1 \overline{x} \sum_{i=1}^n w_i x_i = \beta_0$$

We used the fact that :

$$\sum_{i=1}^{n} w_i x_i = \sum_{i=1}^{n} w_i x_i - \overline{x} \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} w_i (x_i - \overline{x}) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = 1$$

Proof: Variance of the OLS.

$$w_{i} = \frac{X_{i} - \overline{X}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$\hat{\beta}_{1} = \sum_{i=1}^{n} w_{i} Y_{i}$$

$$\operatorname{Var}(\hat{\beta}_{1} | X^{n}) = \mathbb{E}[\hat{\beta}_{1}^{2} | X^{n}] - 0$$

$$= \mathbb{E}\left[\sum_{i=1}^{n} w_{i} Y_{i} \sum_{j=1}^{n} w_{j} Y_{j} | X^{n}\right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \mathbb{E}\left[Y_{i} Y_{j} | X^{n}\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \sigma^{2} \mathbb{1}_{i=j}$$

$$= \sum_{i=1}^{n} w_{i}^{2} \sigma^{2} = \sum_{i=1}^{n} \frac{(X_{i} - \overline{X})^{2}}{(\sum_{i=1}^{n} (X_{i} - \overline{X})^{2})^{2}} \sigma^{2}$$

$$= \frac{\sigma^{2}}{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}$$

$$= \frac{\sigma^{2}}{nS_{X}^{2}}$$

Proof: Variance of the OLS.

$$\hat{\beta}_{0} = \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x}w_{i}\right) Y_{i}
\operatorname{Var}(\hat{\beta}_{0}|X^{n}) = \mathbb{E}[\hat{\beta}_{0}^{2}|X^{n}] - 0
= \mathbb{E}\left[\sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x}w_{i}\right) Y_{i} \sum_{j=1}^{n} \left(\frac{1}{n} - \bar{x}w_{j}\right) Y_{j}\right]
= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{1}{n} - \bar{x}w_{i}\right) \left(\frac{1}{n} - \bar{x}w_{j}\right) \mathbb{E}[Y_{i}Y_{j}|X^{n}]
= \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\frac{1}{n} - \bar{x}w_{i}\right) \left(\frac{1}{n} - \bar{x}w_{j}\right) \sigma^{2} \mathbb{1}_{i=j}
= \sigma^{2} \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x}w_{i}\right)^{2} = \sigma^{2} \left(\sum_{i=1}^{n} \frac{1}{n^{2}} - \frac{2\bar{x}}{n} \sum_{i=1}^{n} w_{i} + \bar{x}^{2} \sum_{i=1}^{n} w_{i}^{2}\right)
= \sigma^{2} \left(\frac{1}{n} + \frac{\bar{x}^{2}}{S_{X}^{n}}\right)
= \frac{\sigma^{2}}{n} \left(1 + \frac{\bar{x}}{S_{X}^{2}}\right)$$

Since $S_X^2=\frac{1}{n}\sum_{i=1}^n(x_i-\bar{x})^2=\frac{1}{n}\sum_{i=1}^nx_i^2-\bar{x}$, then

$$\operatorname{Var}(\hat{\beta}_0 | X^n) = \frac{\sigma^2}{nS_X^2} \left(\frac{1}{n} \sum_{i=1}^n x_i^2 \right)$$

Proof: Variance of the OLS.

$$\operatorname{Cov}(\hat{\beta_0}, \hat{\beta_1} | X^n) = \operatorname{Cov}\left(\sum_{i=1}^n \left(\frac{1}{n} - \bar{x}w_i\right) Y_i, \sum_{j=1}^n w_j Y_j | X^n\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \left(\frac{1}{n} - \bar{x}w_i\right) w_j \operatorname{Cov}\left(Y_i, Y_j | X^n\right)$$

$$= \sum_{i=1}^n \sum_{j=1}^n \left(\frac{1}{n} - \bar{x}w_i\right) w_j \sigma^2 \mathbb{1}_{i=j}$$

$$= \sigma^2 \sum_{i=1}^n \left(\frac{1}{n} - \bar{x}w_i\right) w_i = \sigma^2 \left(\frac{1}{n} \sum_{i=1}^n w_i - \bar{x} \sum_{i=1}^n w_i^2\right)$$

$$= -\frac{\bar{x}\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$= -\frac{\bar{x}\sigma^2}{nS_X^2}$$

__

Theorem (Gauss-Markov)

The OLS estimator is the unique linear unibiased estimator with minimum variance : The OLS estimator is the Best Linear Unbiased Estimator (BLUE)

We give the proof of this result in the multiple regression part.

Theorem (Consistency)

The OLS estimators $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are consistent.

$$\forall \lambda > 0, \, \mathbb{P}\left(\left|\widehat{\beta}_{j}^{(n)} - \mathbb{E}[\widehat{\beta}_{j}^{(n)}]\right| \geqslant \lambda\right) \leqslant \frac{\mathbb{V}\left(\widehat{\beta}_{j}^{(n)}\right)}{\lambda^{2}} \cdot$$

$$\begin{split} & \text{Then } \mathbb{P}\left(\left|\widehat{\beta}_1^{(n)} - \beta_1\right| \geqslant \lambda\right) \leqslant \frac{\frac{\sigma^2}{nS_X^2}}{\lambda^2} \text{ and } \mathbb{P}\left(\left|\widehat{\beta}_0^{(n)} - \beta_0\right| \geqslant \lambda\right) \leqslant \frac{\frac{\sigma^2}{n}\left(1 + \frac{\tilde{x}}{S_X^2}\right)}{\lambda^2} \cdot \\ & \text{Thus } 0 \leqslant \lim_{n \to \infty} \mathbb{P}\left(\left|\widehat{\beta}_1^{(n)} - \beta_1\right| \geqslant \lambda\right) \leqslant \frac{\sigma^2}{\lambda^2 S_X^2} \lim_{n \to \infty} \frac{1}{n} = 0, \end{split}$$

and
$$0 \leqslant \lim_{n \to \infty} \mathbb{P}\left(\left|\widehat{\beta}_0^{(n)} - \beta_0\right| \geqslant \lambda\right) \leqslant \frac{\sigma^2\left(1 + \frac{\widehat{x}}{S_X^2}\right)}{\lambda^2} \lim_{n \to \infty} \frac{1}{n} = 0,$$

Theorem (Consistency)

The OLS estimators $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are consistent.

Proof: Consistency.

Let $(\widehat{\beta}_j^{(n)})_{n\in\mathbb{N}^*}$, $j\in\{0,1\}$, be an estimator sequence derived from increasing sample sizes. By Bienaymé-Tchebychev ineq.

$$\forall \lambda > 0, \, \mathbb{P}\left(\left|\widehat{\beta}_{j}^{(n)} - \mathbb{E}[\widehat{\beta}_{j}^{(n)}]\right| \geqslant \lambda\right) \leqslant \frac{\mathbb{V}\left(\widehat{\beta}_{j}^{(n)}\right)}{\lambda^{2}}.$$

$$\begin{split} & \text{Then } \mathbb{P}\left(\left|\widehat{\beta}_1^{(n)} - \beta_1\right| \geqslant \lambda\right) \leqslant \frac{\frac{\sigma^2}{nS_X^2}}{\lambda^2} \text{ and } \mathbb{P}\left(\left|\widehat{\beta}_0^{(n)} - \beta_0\right| \geqslant \lambda\right) \leqslant \frac{\frac{\sigma^2}{n}\left(1 + \frac{\bar{x}}{S_X^2}\right)}{\lambda^2} \cdot \\ & \text{Thus } 0 \leqslant \lim_{n \to \infty} \mathbb{P}\left(\left|\widehat{\beta}_1^{(n)} - \beta_1\right| \geqslant \lambda\right) \leqslant \frac{\sigma^2}{\lambda^2 S_X^2} \lim_{n \to \infty} \frac{1}{n} = 0, \end{split}$$

and
$$0 \leqslant \lim_{n \to \infty} \mathbb{P}\left(\left|\widehat{\beta}_0^{(n)} - \beta_0\right| \geqslant \lambda\right) \leqslant \frac{\sigma^2\left(1 + \frac{\bar{x}}{S_X^2}\right)}{\lambda^2} \lim_{n \to \infty} \frac{1}{n} = 0,$$

That is $\lim_{n\to\infty}\mathbb{P}\left(\left|\widehat{\beta}_j^{(n)}-\beta_j\right|\geqslant\lambda\right)=0$; Then the sequence $(\widehat{\beta}_j^{(n)})_{n\in\mathbb{N}^*}$ converges in probability to β_j (plim $_{n\to\infty}\widehat{\beta}_i^{(n)}=\beta_j$): the OLS Estimators $\widehat{\beta}_i$ are consistent.

Theorem (Asymptotic normality)

The OLS estimators $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are asymptotically normal.

Then the limit distribution of
$$\frac{\widehat{\beta}_j^{(n)}-\beta_j}{\sqrt{\mathbb{V}(\widehat{\beta}_j^{(n)})}}$$
 is $\mathcal{N}(0,1)$:

$$\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{\sigma^2}{nS_X^2}}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1) \text{ and } \frac{\widehat{\beta}_0 - \beta_0}{\sqrt{\frac{\sigma^2}{nS_X^2} \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

$$\sqrt{n}(\widehat{\beta}_1 - \beta_1) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2}{S_X^2}\right) \text{ and } \sqrt{n}(\widehat{\beta}_0 - \beta_0) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2}{S_X^2} \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)\right).$$

Theorem (Asymptotic normality)

The OLS estimators $\widehat{\beta}_0$ and $\widehat{\beta}_1$ are asymptotically normal.

Proof: Asymptotic normality.

By the Central Limit Theorem (CLT), the sequence $(Z_n)_{n\in\mathbb{N}^*}$ such that

 $Z_n = \frac{\widehat{\beta}_j^{(n)} - \mathbb{E}[\widehat{\beta}_j^{(n)}]}{\sqrt{\mathbb{V}(\widehat{\beta}^{(n)})}} \text{ converges to a standard normal random variable.}$

Then the limit distribution of $\frac{\hat{eta}_j^{(n)}-eta_j}{\sqrt{\mathbb{V}(\hat{eta}_j^{(n)})}}$ is $\mathcal{N}(0,1)$:

$$\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\frac{\sigma^2}{nS_X^2}}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1) \text{ and } \frac{\widehat{\beta}_0 - \beta_0}{\sqrt{\frac{\sigma^2}{nS_X^2} \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)}} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1).$$

Equivalently:

Equivalently :
$$\sqrt{n}(\widehat{\beta}_1 - \beta_1) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2}{S_X^2}\right) \text{ and } \sqrt{n}(\widehat{\beta}_0 - \beta_0) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, \frac{\sigma^2}{S_X^2} \left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)\right).$$

Theorem (Efficiency)

The OLS estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ are efficient (achieve minimum variance (CRLB)).

Proof: Efficiency.

Consider the SLR with normal errors $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. Then $Y_i | x_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$. Then the Fisher information matrix can be defined as

$$\mathcal{I}_n(\beta_0, \beta_1) = -\mathbb{E}\left[\left(\frac{\partial^2 L(\beta_0, \beta_1)}{\partial \beta_i \partial \beta_j}\right)_{i,j=0,1}\right]$$

with $L(\beta_0,\beta_1)$ is the conditional log-likelihood function as given by

$$L(\beta_0, \beta_1) = \log p(y_1, \dots, y_n | x_1, \dots, x_n; \beta_0, \beta_1) = \log \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y_i - (\beta_0 + \beta_1 x_i)}{\sigma}\right)^2}$$
$$= \sum_{i=1}^n \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2.$$

Theorem (Efficiency)

The OLS estimators \widehat{eta}_0 and \widehat{eta}_1 are efficient (achieve minimum variance (CRLB)).

Proof: Efficiency.

Consider the SLR with normal errors $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. Then $Y_i | x_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$. Then, the Fisher information matrix can be defined as

$$\mathcal{I}_n(\beta_0, \beta_1) = -\mathbb{E}\left[\left(\frac{\partial^2 L(\beta_0, \beta_1)}{\partial \beta_i \partial \beta_j}\right)_{i,j=0,1}\right]$$

with $L(eta_0,eta_1)$ is the conditional log-likelihood function as given by

$$L(\beta_0, \beta_1) = \log p(y_1, \dots, y_n | x_1, \dots, x_n; \beta_0, \beta_1) = \log \prod_{i=1}^n \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y_i - (\beta_0 + \beta_1 x_i)}{\sigma}\right)^2}$$
$$= \sum_{i=1}^n \log \frac{1}{\sigma \sqrt{2\pi}} - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - (\beta_0 + \beta_1 x_i))^2.$$

إد

Proof: Efficiency (cont.)

$$\frac{\partial L(\beta_0, \beta_1)}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 \right\} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right) \\
\frac{\partial L(\beta_0, \beta_1)}{\partial \beta_1} = \frac{\partial}{\partial \beta_1} \left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right)^2 \right\} = \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right) x_i$$

$$\frac{\partial^2 L(\beta_0, \beta_1)}{\partial \beta_0^2} = \frac{\partial}{\partial \beta_0} \left\{ \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right) \right\} = -\frac{n}{\sigma^2}$$

$$\frac{\partial^2 L(\beta_0, \beta_1)}{\partial \beta_1^2} = \frac{\partial}{\partial \beta_1} \left\{ \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right) x_i \right\} = -\frac{1}{\sigma^2} \sum_{i=1}^n x_i^2.$$

$$\frac{\partial^2 L(\beta_0, \beta_1)}{\partial \beta_0 \partial \beta_1} = \frac{\partial}{\partial \beta_0} \left\{ \frac{1}{\sigma^2} \sum_{i=1}^n \left(y_i - (\beta_0 + \beta_1 x_i) \right) x_i \right\} = -\frac{1}{\sigma^2} \sum_{i=1}^n x_i = -\frac{n}{\sigma^2} \bar{x}.$$

Then the Fisher information is (fixed design here)

$$\mathcal{I}_{n}(\beta_{0}, \beta_{1}) = -\mathbb{E}\begin{pmatrix} -\frac{n}{\sigma^{2}} & -\frac{n}{\sigma^{2}}\bar{x} \\ -\frac{n}{\sigma^{2}}\bar{x} & -\frac{1}{\sigma^{2}}\sum_{i=1}^{n}x_{i}^{2} \end{pmatrix} = \frac{n}{\sigma^{2}}\begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \frac{1}{n}\sum_{i=1}^{n}x_{i}^{2} \end{pmatrix}$$

Proof: Efficiency (cont.)

The Cramer-Rao Lower Bound is given by the inverse of the Fisher information matrix

$$\mathcal{I}_{n}^{-1}(\beta_{0},\beta_{1}) = \frac{\sigma^{2}}{n} \begin{pmatrix} 1 & \bar{x} \\ \bar{x} & \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} \end{pmatrix}^{-1} = \frac{\sigma^{2}}{n} \times \frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \bar{x}^{2}} \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} & -\bar{x} \\ -\bar{x} & 1 \end{pmatrix}$$

Since $S_X^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \bar{x}$, finally we get

$$\mathcal{I}_{n}^{-1}(\beta_{0}, \beta_{1}) = \frac{\sigma^{2}}{nS_{X}^{2}} \begin{pmatrix} \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} & -\bar{x} \\ -\bar{x} & 1 \end{pmatrix}$$
$$= \operatorname{Cov}\left((\widehat{\beta}_{0}, \widehat{\beta}_{1})^{T} \right)$$

The OLS Estimators $\widehat{\beta}_0$ and $\widehat{\beta}_1$ then achieve the Cramer-Rao Lower Bound.

Confidence Intervals I

Let $\operatorname{se}(\widehat{\beta}_1) = \sqrt{\frac{\sigma^2}{nS_X^2}}$ and $\operatorname{se}(\widehat{\beta}_0) = \sqrt{\frac{\sigma^2}{n}\left(1 + \frac{\bar{x}}{S_X^2}\right)}$. We then have

$$Z_j = \frac{\widehat{\beta}_j - \beta_j}{\operatorname{se}(\widehat{\beta}_j)} \xrightarrow{\mathcal{L}} \mathcal{N}(0, 1).$$

Since the variance σ^2 is unknown, we use instead its best estimator : the corrected MLE

$$\widehat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - (\widehat{\beta}_0^{\mathsf{OLS}} + \widehat{\beta}_1^{\mathsf{OLS}} X_i))^2$$

We then use instead the statistic

$$T_j = \frac{\widehat{\beta}_j - \beta_j}{\widehat{\operatorname{se}}(\widehat{\beta}_j)}$$

where $\widehat{se}(\widehat{\beta}_j)$ corresponds to replacing σ^2 by $\widehat{\sigma}^2$ in $se(\widehat{\beta}_j)$.

Confidence Intervals II

We know that

$$U = \frac{(n-2)\widehat{\sigma}^2}{\sigma^2} \sim \chi_{n-2}^2$$

Then we finally have

$$T_j = \frac{\widehat{\beta}_j - \beta_j}{\widehat{\operatorname{se}}(\widehat{\beta}_j)} = \frac{Z_j}{\sqrt{\frac{U}{n-2}}} \sim \mathcal{T}_{n-2}$$

Let $\mathcal{T}_{1-\frac{\alpha}{2}}=\mathbb{P}(T_j\leq \frac{\alpha}{2})$, i.e the quantile of order $\frac{\alpha}{2}$ of the Student's law with n-2 degrees of freedom. An approximate $1-\alpha$ confidence interval for $\widehat{\beta}_j$ is then given by

$$\mathbb{P}(-\mathcal{T}_{n-2,\frac{\alpha}{2}} \le T_j \le \mathcal{T}_{n-2,\frac{\alpha}{2}}) = 1 - \alpha$$

which corresponds to

$$\mathbb{P}\left(\beta_j - \mathcal{T}_{n-2,\frac{\alpha}{2}}\widehat{\operatorname{se}}(\widehat{\beta}_j) \leq \widehat{\beta}_j \leq \beta_j + \mathcal{T}_{n-2,\frac{\alpha}{2}}\widehat{\operatorname{se}}(\widehat{\beta}_j)\right) = 1 - \alpha.$$

We finally obtain

$$\mathsf{Cl}_{1-\alpha}(\widehat{\beta}_j) = \left[\beta_j - \mathcal{T}_{n-2,\frac{\alpha}{2}}\widehat{\mathrm{se}}(\widehat{\beta}_j)\,,\,\beta_j + \mathcal{T}_{n-2,\frac{\alpha}{2}}\widehat{\mathrm{se}}(\widehat{\beta}_j)\right].$$

Confidence Intervals III

Finally:

$$CI_{1-\alpha}(\widehat{\beta}_{0}) = \left[\widehat{\beta}_{0} \pm \mathcal{T}_{1-\frac{\alpha}{2}}^{n-2} \sqrt{\sigma^{2} \left(\frac{1}{n} + \frac{\overline{x}^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}\right)}\right]$$

$$CI_{1-\alpha}(\widehat{\beta}_{1}) = \left[\widehat{\beta}_{1} \pm \mathcal{T}_{1-\frac{\alpha}{2}}^{n-2} \sqrt{\frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}}\right]$$

Confidence Intervals IV

Confidence interval for the regression line

We can construct a confidence interval for $\widehat{h}(x_i) = \mathbb{E}[Y_i|X_i = x_i; \widehat{\beta}_0, \widehat{\beta}_1] = \widehat{\beta}_0 + \widehat{\beta}_1 x_i$. Since we have

$$\operatorname{Var}(\widehat{\beta}_{0} + \widehat{\beta}_{1}x_{i}) = \operatorname{Var}(\widehat{\beta}_{0}) + \operatorname{Var}(\widehat{\beta}_{1}x_{i}) + 2\operatorname{Cov}(\widehat{\beta}_{0}, \widehat{\beta}_{1}x_{i})$$

$$= \operatorname{Var}(\widehat{\beta}_{0}) + x_{i}^{2}\operatorname{Var}(\widehat{\beta}_{1}) + 2\operatorname{Cov}(\widehat{\beta}_{0}, \widehat{\beta}_{1})x_{i}$$

$$= \frac{\sigma^{2}}{n}\left(1 + \frac{\overline{x}^{2}}{S_{X}^{2}}\right) + x_{i}^{2}\frac{\sigma^{2}}{nS_{X}^{2}} - 2\frac{\overline{x}\sigma^{2}}{nS_{X}^{2}}x_{i}$$

$$= \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{S_{X}^{2}} + \frac{x_{i}^{2}}{nS_{X}^{2}} - 2\frac{\overline{x}}{nS_{X}^{2}}x_{i}\right)$$

$$= \sigma^{2}\left(\frac{1}{n} + \frac{(x_{i} - \overline{x})^{2}}{nS_{X}^{2}}\right)$$

$$= \sigma^{2}\left(\frac{1}{n} + \frac{(x_{i} - \overline{x})^{2}}{\sum_{j=1}^{n}(x_{j} - \overline{x})^{2}}\right)$$

We then obtain $CI_{1-\alpha}(\widehat{\beta}_0 + \widehat{\beta}_1 x_i) = \left[\widehat{\beta}_0 + \widehat{\beta}_1 x_i \pm \mathcal{T}_{1-\frac{\alpha}{2}}^{n-2} \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2}\right)}\right]$

Confidence Intervals

Prediction interval

Given a new input x_* , the predicted output Y_* is given by

$$Y_* = \widehat{h}(x_*) + \epsilon_* = \widehat{\beta}_0 + \widehat{\beta}_1 x_* + \epsilon_*$$

Since ϵ_* is not observed, then independent from the training set, the variance of the predicted value is then

$$Var(Y_*) = Var(\widehat{\beta}_0 + \widehat{\beta}_1 x_*) + Var(\epsilon_*)$$

$$= \sigma^2 \left(\frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2} \right) + \sigma^2$$

$$= \sigma^2 \left(\frac{1}{n} + \frac{1}{n} + \frac{(x_i - \overline{x})^2}{\sum_{j=1}^n (x_j - \overline{x})^2} \right)$$

and we have $\operatorname{CI}_{1-\alpha}(Y_*) = \left[\widehat{\beta}_0 + \widehat{\beta}_1 x_* \pm \mathcal{T}_{1-\frac{\alpha}{2}}^{n-2} \sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{n} + \frac{(x_* - \overline{x})^2}{\sum_{j=1}^n (x_* - \overline{x})^2}\right)}\right]$. This one (on Y_*) is larger compared to the previous one (on $\mathbb{E}[Y_*|X = x_*]$).

F. CHAMROUKHI Statistical Learning 35/44

Regression with Gaussian errors

Let $\mathcal{X}=\mathbb{R}$, $y\in\mathbb{R}$ and $h\colon\mathcal{X}\to\mathcal{Y}$ s.t $x\mapsto\beta_0+\beta_1x$, and consider the following model

$$Y_i = h(X_i; \beta_0, \beta_1) + \varepsilon_i \quad \text{with} \quad \varepsilon_i | X \sim_{\text{iid}} \mathcal{N}(0, \sigma^2)$$

- Empirical Risk : under the square loss $R_n(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^n (y_i (\beta_0 + \beta_1 x_i))^2$
- Empirical Risk Minimizer : $(\widehat{\beta}_0, \widehat{\beta}_1)_n = \arg\min_{(\beta_0, \beta)} R_n(\beta_0, \beta_1)$
- Conditional Maximum Likelihood Risk

Data model :
$$Y_i|X_i \underset{\text{iid}}{\sim} \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2) : p_{\theta}(y_i|x_i) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{y - (\beta_0 + \beta_1 x_i)}{\sigma}\right)^2}$$

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log p_{\boldsymbol{\theta}}(y_i|x_i) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2 - \frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi)$$

- Conditional MLE : = $(\widehat{\beta}_0^{(n)}, \widehat{\beta}_1^{(n)}) = \arg \max_{(\beta_0, \beta_1)} \log L(\boldsymbol{\theta})$
- \hookrightarrow Then we have : $\arg\min_{(\beta_0,\beta)} R_n(\beta_0,\beta_1) = \arg\max_{(\beta_0,\beta)} \log L(\boldsymbol{\theta}).$
 - For both we can take the sample variance as an estimator of the variance σ^2 : $\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i (\widehat{\beta}_0, \widehat{\beta}_1 x_i))^2$ which is the Maximum-Likelihood Estimator

SLR illustration

 $y_i = -\frac{1}{2} + 2x_i + \epsilon_i$, $\epsilon_i \sim \mathcal{N}(0,1)$ and x_i 's are n values from a uniform grid in [0,1]

Practical work: Coding session to implement from the scratch the confidence interval calculation for regression

$$y_i = -\frac{1}{2} + 2x_i + \epsilon_i$$
, $\epsilon_i \sim \mathcal{N}(0,1)$ and x_i 's are values from a uniform grid in $[0,1]$

Practical work session: Confidence intervals and prediction using linear regression

- Simulated data
- Appart data prediction

Python, R, and MATLAB code provided during the session and accessible here on the course's page:

Goodness of Fit

Correlation coefficient

Correlation coefficient
$$\rho_{XY} = \frac{\operatorname{Cov}(X,Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}} = \frac{\sigma_{X,Y}}{\sigma_{X}\sigma_{Y}} \in [-1,1].$$
 Sample Correlation coefficient :
$$r_{XY} = \frac{S_{XY}}{S_{X}S_{Y}} = \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})(y_{i}-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}\sqrt{\sum_{i=1}^{n}(y_{i}-\bar{y})^{2}}}.$$

Coefficient of determination R^2

Measures the quality of fit

- $SST = \sum_{i=1}^{n} (Y_i \overline{Y})^2$: sum of the squares of the deviations around \overline{Y} : a measure of the total variability for the n given observations, Y_i 's.
- $SSE = \sum_{i=1}^{n} (Y_i \widehat{Y}_i)^2$: The sum of the squares of the deviations around the \widehat{Y}_i 's: A measure of the variability in Y that remains after the regression is fitted.
- $\frac{\text{SSE}}{\text{SST}} = \frac{\sum_{i=1}^{n} (Y_i \hat{Y}_i)^2}{\sum_{i=1}^{n} (Y_i \overline{Y}_i)^2}$: proportion of the total variability unexplained by the fitted regression
- lacksquare R^2 : proportion of the total variability accounted for by the regression :

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\text{SSE}}{\text{SST}}$$

- For Simple Linear Regression, i.e. $\widehat{Y}_i = \widehat{\beta}_0 + \widehat{\beta}_1 x_i : R^2 = r^2$ R^2 is the correlation coefficient (squared)
- lacktriangle NB : In the general case, R^2 is not a coefficient correlation (and should not be confused with).

Coefficient of determination R^2

- In simple linear regression : $R^2 \simeq 1$ indicates that the empirical correlation coefficient between the response y and the predictor x is close to 1, so that a modeling by a line is satisfactory
- In general : High value of R^2 indicates that the regression model is well fitted to the data. However, it is not an indicator of how good the prediction capability of the fitted model is. For example, a model with $R^2 \approx 1$ will have high variance (and hence over-fits the data)

FIGURE – Sample (o), True function (--), realizations of the fitted prediction function (—)

