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Classification

Logistic Regression

m teratively Reweighted Least Squares (IRLS)
Multi-class logistic regression

m |IRLS for Multi-class logistic regression

Multi-class Logistic Regression
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Learning Framework for Classification Systemx

m The data are represented by a random pair (X,Y) € X x ) where X is a vector
of descriptors for some variable of interest Y
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Learning Framework for Classification Systemx

m The objective is Prediction, i.e. to seek for a prediction function h : X — Y for
which ¥ = h(x) is a good approximation of the true output y
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m The objective is Prediction, i.e. to seek for a prediction function h : X — Y for
which ¥ = h(x) is a good approximation of the true output y

m In a classification problem : typically X ¢ X CR? and Y € Y = {0,1},{-1,+1}
(binary classification) or {1,--- , K} (multiclass classification)
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Learning Framework for Classification Systemx

m The objective is Prediction, i.e. to seek for a prediction function h : X — Y for
which ¥ = h(x) is a good approximation of the true output y

m In a classification problem : typically X ¢ X CR? and Y € Y = {0,1},{-1,+1}
(binary classification) or {1,--- , K} (multiclass classification)

— We will mainly focus on parametric probabilistic models of the form
Y =h(X)+ee~po
with the conditional distr. P(Y|X, h) can be computed in terms of Py(Y — h(X)).
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Learning Framework for Classification Systemx

m Data : a random sample (X, Y;)i= with observed values D,, = (s, ¥:)i=;
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Learning Framework for Classification Systemx

m Data : a random sample (X, Y;)i= with observed values D,, = (s, ¥:)i=;

m Data-Scientist’s role : given the data, choose a prediction function h from a
class H that attempts to “minimize” the prediction error for of all possible data
(risk) R(h), under a loss function £ measuring the error of predicting Y by h(X).
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Learning Framework for Classification Systemx

m Data : a random sample (X, Y;)i= with observed values D,, = (s, ¥:)i=;

m Data-Scientist’s role : given the data, choose a prediction function h from a
class H that attempts to “minimize” the prediction error for of all possible data
(risk) R(h), under a loss function £ measuring the error of predicting Y by h(X).

< minimize the empirical risk (data-D,-driven) R, (h)
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Learning Framework for Classification Systemx

m Data : a random sample (X, Y;)i= with observed values D,, = (s, ¥:)i=;

m Data-Scientist’s role : given the data, choose a prediction function h from a
class H that attempts to “minimize” the prediction error for of all possible data
(risk) R(h), under a loss function £ measuring the error of predicting Y by h(X).

< minimize the empirical risk (data-D,-driven) R, (h)

< Minimizing R, (h) may require an optimization algorithm A
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Learning Framework for Classification Systemx

m Data-Scientist’s “Toolbox” : {Data, loss, hypothesis, algorithm}
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Prediction/decision function

h: X =Y

z — h(x)

is a decision/prediction function, parametric or not, linear or not, ...
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Prediction/decision function

h: X =Y

z — h(x)

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear predictors
h: R - R

z (z,0) =0"x
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Prediction/decision function

h: X =Y

z — h(x)

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear predictors
h: R - R

z (z,0) =0"x
The predicted values of Y;'s for new covariates X; = x;s correspond to

Yi = h(x:)

Example : Linear predictors (cont.) : §i = (x,60) = 87z,
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Prediction/decision function System

h: X =Y

z — h(x)

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear predictors
h:RF - R
z (z,0) =0"x
The predicted values of Y;'s for new covariates X; = x;s correspond to
Yi = h(x:)
Example : Linear predictors (cont.) : §i = (x,60) = 87z,

Q : How good we are in prediction on a particular pair (z,y)?
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Loss

0:YxY—R
(y, h(z)) = L(y, h(z))

It measures how good we are on a particular (z,y) pair.
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Loss

0:YxY—R
(y, h(z)) = L(y, h(z))

It measures how good we are on a particular (z,y) pair.

Examples of loss functions in classification

m “0-1" loss : £(y, h(z)) = Lp(z)zy
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Loss

0:YxY—R
(y, h(z)) = L(y, h(z))

It measures how good we are on a particular (z,y) pair.

Examples of loss functions in classification
m “0-1" loss : £(y, h(x)) = Lp(a)zy
m logarithmic loss : £(y, ho(x)) = —log(pe(z,y))
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Loss

0:YxY—R
(y, h(z)) = L(y, h(z))

It measures how good we are on a particular (z,y) pair.

Examples of loss functions in classification
m “0-1" loss : £(y, h(x)) = Lp(a)zy
m logarithmic loss : £(y, ho(x)) = —log(pe(z,y))
Denoting £(y, h(z)) = ¢(yh(x))
m Hinge l0ss dninge(u) = (1 —u)+
m Logistic loss ¢rogistic(u) = log(1 + exp(—u))

m Exponential loss ¢exp(u) = exp(—u)
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Examples of loss functions in classification Systemx
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FIGURE — Some loss functions in classification : curves of £(u) for u = yh(z); y € {—1,1}.
[plot_losses_classification.m]

For y € {—1,1}, with u = yh(z) :
m “0-1" loss : £(u) = Lggn(u)-1
m Hinge loss £(hinge(u) = (1 —u)+
m Logistic loss £(iogistic(u) = log(1 4 exp(—u))

m Exponential loss £(exp(u) = exp(—u)
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plot_losses_regression.m

Risk quté‘rﬁ;?

m Risk : the Expected loss :

R(h) = Ep[£(Y, h(X))] = / 0y, h(z))dP(z, y)

XXy

< the error of approximating Y by model/hypothesis h(X) as measured by a chosen
loss function (Y, h(X)) given the pair (X,Y") with (unknown) joint distribution P,

< prediction error : measures the generalization performance of the function h.
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RiSk qutemx

m “0-1” Risk : Under the “0-1"-loss £(y, h(x)) = L)y :

R(h) = Ep[Lyg)sy] = P(W(X) #Y). = /

]lh(z)¢ydp($7 y)
XXy

< This is the most used risk in classification
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RiSk qutemx

Q : what is the best function h? or equivalently, when the risk R(h) is optimal ?
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Optimal prediction function | Systemx

Under the (0-1)-loss, £(Y,h(X)) = 1(x)2y, the classification function h™(x)
minimizing the risk (the Bayes classifier)

R() = P(Y # 1(X)) = [ P(Y £ h(X)IX = 2)aPx ()

is given by
Vre X, h'(z)= argrglg)))dP(Y =k|X =z).

Def. Decision boundaries
The decision bounadry between each pair of classes k and ¢, (k,£) € Y x Y is defined by

Mie(z) ={z:PY =k|X =2) =P =X =2)}
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Optimal prediction function Il System

Given X = z, the conditional risk under the 0-1 loss is

r(h|X = x) = Ey|X=x[€(Y, h(X))IX = m] = ]EY\X:x[]]-Y;éh(X)|X = J}]
= PY #h(X)|X =2
= 1-PY = (X)X = a].

By noting that

minr(h|X =2) = —-1+maxP(Y =k|X =x)
key kEY
arg gleigr(h|X =z) = argrgleali(IF’(Y =k|X =x)

we see that h*(z) = argllgleaﬁ(IP’(Y = k|X = x) achieves the minimized risk 7(h|X = z).
Then the risk R(h*) = Ex[-1+ rlz%)}dP’(Y = k|X = )] is Bayes. O

Goal : estimate h*, knowing only the data sample D,, = (X;,Y;)j=; and loss Z.
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Empirical Risk Minimization & MLE | Systemx

m Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y).
In real situations P is in unknown, as we only have a sample D,, = (Xz',Yz')1§ign,

— We attempt to minimize the Empirical Risk

Ru(h) = %Zz(Yi, (X))

=1

to estimate h* (within a family H)

m MLE (density estimation framework) : We seek for an esitmator of the parameters
0 of the joint distribution pe(z,y).
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Empirical Risk Minimization & MLE || Systemx

m In discriminative learning (eg. logistic regression), we are interested in estimating
the conditional distribution P(Y|X), rather than the joint distribution P(X,Y).

m Consider the log-loss : £(y, ho(x)) = —log(pe(y|z)). We therefore have the
conditional log-likehood risks

1 n
R(0) = ~Ellog po(Y|X)] and Rn(0) = —— > logpe(yilz:)-
i=1
m For an i.i.d sample {(z;, yi)i—1}, the conditional log-likelihood function of @ is :
log L(0) = > _ log pa(yi|x:)
i=1

Then
1 <& 1
R, (0) = - Zlogpe(yikti) = log L(0)
i—1

— With this log-loss, ERM coincides with conditional MLE.

m Liner classifier : Consider H = {hg(x) = a + 87 x}, the set of linear functions in x
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Logistic Regression

Multi-class Logistic Regression
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Logistic Regression Systeinx

m We model the random pair (X,Y) where X; € X C R? is the predictor and the
response Y € ) = {0,1} is the class label of X
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Logistic Regression Systemx

m We model the random pair (X,Y) where X; € X C R? is the predictor and the
response Y € ) = {0,1} is the class label of X

m Logistic Regression : Probabilistic Discriminative approach to model P(Y|X) as

exp(fo+B'®)
1+ exp(Bo + B )

P(Y = 1|X = z) = Logistic(z" §) =
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Logistic Regression Systemx

m We model the random pair (X,Y) where X; € X C R? is the predictor and the
response Y € ) = {0,1} is the class label of X

m Logistic Regression : Probabilistic Discriminative approach to model P(Y|X) as

exp(fo+B'®)
1+ exp(Bo + B )

P(Y = 1|X = z) = Logistic(z" §) =

m Y|X = z is Bernoulli with probability of success mo (), i.e.
vy € {0,1}, Po(Y = y|X = z) = mo(2)" (1 — mo(x))" ™"

where 7(x;0) = P(Y = 1|X = «;0) is the sigmoid function.
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Logistic Regression Systei”

m We model the random pair (X,Y) where X; € X C R? is the predictor and the
response Y € ) = {0,1} is the class label of X

m Logistic Regression : Probabilistic Discriminative approach to model P(Y|X) as

P(Y = 1|X = z) = Logistic(z" §) = n ixf}fsﬁﬁjf;ﬁ)w) .

m Y|X = z is Bernoulli with probability of success mo (), i.e.
vy € {0,1}, Po(Y = y|X = z) = mo(2)" (1 — mo(x))" ™"
where 7(x;0) = P(Y = 1|X = «;0) is the sigmoid function.
m Classification rule : We have h(z) is defined as

Lif P(Y = 1|X = z) = Logistic(z70) > 1
hg((l,‘)—{ if P( | x) ogistic(z* 0) > 3,

0, otherwise.

1if 0Tz > 0,

0, otherwise.

Eq. : hg(z) = {

m The latter comes from the linear bounadry {z : log % = Bo+ Tz =0}
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Logistic Regression Systei”

We model the random pair (X,Y) where X; € X C R? is the predictor and the
response Y € ) = {0,1} is the class label of X

Logistic Regression : Probabilistic Discriminative approach to model P(Y|X) as

.
P(Y = 1|X = z) = Logistic(z" §) = n iX§>£§?B—£fﬂﬁ)w) .

Y|X = x is Bernoulli with probability of success mg(x), i.e.

vy € {0,1}, Po(Y = y|X = z) = mo(2)" (1 — mo(x))" ™"
where 7(x;0) = P(Y = 1|X = «;0) is the sigmoid function.
Classification rule : We have h(z) is defined as

Lif P(Y = 1|X = z) = Logistic(z70) > 1
hg(l‘)—{ if P( | x) ogistic(z* 0) > 3,

0, otherwise.

1if 0Tz > 0,
0, otherwise.

Eq.: hy(z) = {

The latter comes from the linear bounadry {z : log % = Bo+ Tz =0}
The parameter vector of the model 8 = (8, 37)"T € R*H!

Q : Fit @ from the training data.
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Linear decision boundary :

exp(ﬁoﬂff)
1+exp(Bo+8 " x)

={z:fy+B x=0}
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Logistic Regression | Systemx

— Maximum conditional likelihood.

m The conditional log-likelihood function :

L(9)

IOgP(Y].:yl,...7Yn:yn|X1 :wh...,Xn:a:n;O)

log [ [PV = vs| Xi = @:;0)
1=1

= log[[P(Vi =1|X; = @:;0)"P(Y; = 0|X; = x:;0)' ¥

i=1

= > yilogm(ai;0) + (1 - y;)log (1 — 7(x;0))

= Zyi(BO + ﬂchi) —log(1 + exp(Bo + ﬂT:ci))
im1

= Z yi(1,2:) "0 —log{1 + exp((1,2;) " 6)}.

= Z yﬁ:;re —log{1 + exp(:iiTG)}.
i=1
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Logistic Regression |l Systeinx

m A concave function in @ — Global maximization
m However, it does not admit a closed-form solution

< Numerical optimization : Iterative Reweighted Least Squares (IRLS) Algorithm.
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ERM for logistic regression Systemx

m Conditional log-likelihood
log L(6) = Zyl (1,2:) "0 —log{1 + exp((1,x;) " 8)}.

m Conditional ERM : Consider the log-loss :

Uy, ho(x)) = —log(pe (y|x))
and the hypothesis

hy (X:6) = Po(Y|X) = m0(X)" (1 - ma(X))' ¥

m The corresponding conditional empirical risk is by definition
1 n
n ] = - iy i
Ru(8) = 0> s ho(w)
- 2 anlogpe(yilwi)
i

1
- —“logL(8
- log (9)

— With the log-loss, the conditional ERM coincides with conditional MLE.
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Iteratively Reweighted Least Squares (IRLS) Systemx

-1
Newton-Raphson iteration : (1) = () — [VQL(O(t))] VL(OWY)
m Letz; = (1,z])7, then: L(8) = 37, vi@, 0 — log{1 + exp(z, 0)}.

m Gradient vector :

OLO) _ N~ 0 —Te O TN NS~
20 = ; [80 i, 0 — 50 log(1 + exp(x; 0))] = Zyzwz — z;7(xs; 0)
= Zwl yi — m(x;0)) - (1)
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Iteratively Reweighted Least Squares (IRLS) Systemx

—1
Newton-Raphson iteration : (1) = () — [VQL(O(t))] VLOM)
m Letz; = (1,z])7, then: L(8) = 37, vi@, 0 — log{1 + exp(z, 0)}.

m Gradient vector :

3;71(99) - ;[8‘99 & 19—%1%( +exp(@] 0)] = >y~ Eir(wi0)
= sz yi — m(x;0)) - (1)

m Hessian matrix :
9%L(0 - exp(@; 0 _ oz exp(x; 7o
808592 - _Z ' } Z ' )
i=1 (1+exp(:c 9))

aeT 1+ exp(z

—Ziiijﬂ(wi;a)(l — (i 0)) )
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Iteratively Reweighted Least Squares (IRLS) qute‘&&m

—1
Newton-Raphson iteration : (1) = () — [VzL(O(t))] VLOM)

Let z; = (1,2)7, then : L(0) = S0, i@, 6 — log{1 + exp(Z; 0)}.
m Gradient vector :

agi(:) = Zﬁ; [880 v, 0 — % log(1 + exp(:EiTO))] = zj:yzféz —z;m(xi; 0)
- sz yi — m(x;0)) - (1)
m Hessian matrix :
0°L(6 ~ 1 0) ~ 0
aoagT) - _Z 'T 1?15 } Z; .(19::»}:(:9)))
= _iziajﬂ(mi;e)a—ﬂ(mi;e)) (2)
i=1

m The Newton-Raphson iterative update of @ has therefore the following expression :

plt+1) — g + Z"B %, w(wz (t>)(1 — (i g(t —1 Zml yi — m( ml,o(w))

i=1
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Iteratively Reweighted Least Squares (IRLS) Systemx

Uty — g 4 Zw ml (45 O(t))(l — 7(xs; O(t) - Zml Yi — Tr(a:i;O(t)))

i=1
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Iteratively Reweighted Least Squares (IRLS) Systemx

o4t = G(t)—}- Zw z; m(xi;0)(1 — 7(2i;07)) _12:131 yi — m(xi;09))

i=1

Matrix form the NR iteration update :

Let
s X = (Z1,...,2n) " matrix whose rows are the augmented input vectors (1, x; )
my=(n ...,yn) the vector on binary labels y;
m p=(m(x1;0),...,m(x,;0))" the vector of logistic probabilities
m W = diag(p @ (1, — p)) diagonal matrix with (W);; = w(x;0) (1 — w(x4;0))

By =X0" 4+ (W) (y — p®) the current approximate response
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Iteratively Reweighted Least Squares (IRLS) qute‘&&m

o4t = H(t)—}- Za: z; m(xi;0)(1 — 7(2i;07)) _12@ yi — m(xi;09))

i=1

Matrix form the NR iteration update :

Let
m X = (Z1,...,2n) " matrix whose rows are the augmented input vectors (1, x; )
my=(y1,... ,yn) the vector on binary labels y;
mp=(m (:nl, 0),...,m(x,;0))" the vector of logistic probabilities
m W = diag(p ® (1, — p)) diagonal matrix with (W);; = w(x;;0) (1 — 7(x; 0))

By =X0" 4+ (W) (y — p®) the current approximate response

Then
< Vectorial form of the Gradient : 25(&) = X (y — p®)
< Vectorial form of the Hessian matrix : 3951(9 -XTwWX
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Iteratively Reweighted Least Squares (IRLS) qute‘&&m

o4t = H(t)—}- Za: z; m(xi;0)(1 — 7(2i;07)) _12@ yi — m(xi;09))

i=1

Matrix form the NR iteration update :

Let
m X = (Z1,...,2n) " matrix whose rows are the augmented input vectors (1, x; )
my=(y1,... ,yn) the vector on binary labels y;
mp=(m (:nl, 0),...,m(x,;0))" the vector of logistic probabilities
m W = diag(p ® (1, — p)) diagonal matrix with (W);; = w(x;;0) (1 — 7(x; 0))

By =X0" 4+ (W) (y — p®) the current approximate response

Then
< Vectorial form of the Gradient : 25(&) = X (y — p®)
< Vectorial form of the Hessian matrix : 3951(9 -XTwWX
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Iteratively Reweighted Least Squares (IRLS) Systemx

Then we get the Matrix form :

Pt _ g+l _ g(t) _ {vz L(g(t))}_l VLEOD) (3)
— 80 4 (iTWX)_l XT(y — p®)
= 0+ X"WOX)'X"(y — p) 4)
- XTWOX)! [iTw<t>ie<t> +XT(y - p<t>)} (5)
= XTWOX)TIXT [WOX0O + (y — p)] (6)
= (X'WOX)"IXTwhy (7)
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Algorithm 1 Pseudo Code for Training Logistic Regression IRLS.

Inputs : n sample (x;, ;)7 arranged as X = (x1,...,@,) " and y = (y1,...,yn)"
Construct X = [1,, X]
Initialization : 8 ; set ¢ < 0 (IRLS iteration)
while increment in log-likelihood > € (eg. 1e-6) do
pY = (m(x1;0Y),. .., 7(2n;01)) T = exp(XOD) @ (1, + exp(X01))
W = diag(p” © (1, — p'"))
= X6 1+ (W) (y — p®)
o(t+1) (iTw(t)f{)—liTw(t)g
% Convergence test
log-lik = Y {y ® (X0®) —log(1, + exp(X0®))}. % log-likelihood.
end
Result: § = §*) the MLE of 8

Algorithm 2 Pseudo Code for Predicting with Logistic Regression.

Inputs : Test sample (x;)7; arranged as X = (x1,...,@,) ', and parameter vector 6
Construct X = [1,,, X]

probs = exp(f(@) @ (1, + exp(i@)) % Conditional probabilities

Y = 1probs>1/2 % Predicted labels using Bayes rule (argmax)

Result: y the predicted class labels
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“Optimal” decision boundaries Systern”

The decision bounadry between each pair of classes k and ¢, (k,¢) € Y x Y is defined by

Mee(x) ={x:P(Y =k X =2)=P(Y =/{(X =x)}
m Plugin classifier : Prediction by the Bayes' decision rule
h(x) = P(Y = k|X = ;0
(#) = argmax P( | X =0) (8)

m Plugin Decision boundaries : The decision bounadry between each pair of classes k
and £ is defined by
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quté'rii;...‘

ERM vs MLE : Logistic Regression : y € {0, 1} with pe(y|x) = me(x)¥(1 — To(x))* 7Y,

and 7e(x) = o(Bo + BT x) = %m is the logistic function.

Ra(0) = == > logpo(uilai) = = 3" (o + 8" w) — log(1 + exp(fo + 87 1))
i=1 i=1

Conditional log-likelihood
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ERM for logistic regression / Logistic Loss Systemx

m Conditional log-likelihood (y; € {0,1})
log L(8) = 7, i (1,:) "6 — log{1 + exp((1,,) T0)}.

m Conditional ERM : Consider the logistic loss : £(y, hg(z)) = log(1 + exp(—yiho(zi))),
yi € {—1,+1} and the hypothesis hg(X) = o + BT X

m The corresponding conditional empirical risk is by definition

Rn(h)

1< 1 <
=S Ui ho(x:) = — Y log(1+ e vilo (@)
ni:l =1

n =
1 1+ eviho(zi) 1 evihe (i)
- n210g< evihe(z;) __ﬁZIOg 1+ evihe(zs)
=1 =1
1 n
= - Z {yihe(aci) — log (1 + eyihe(zi)) } sy € {—1,+1}
nist

13 {yihe(zi) —log (1 +ete@)} sy =1
n A {—he(.’ti) —log (1 + e_hB(xi))} sy = —1
L { 1 {yihe(zi) —log (1 +eto(=))} 5y, =1

Sy {—log (1+eel=))} jyi=—1

1
= ——logL(0)
n

n

—  With the logistic loss, the conditional ERM coincides with conditional MLE.
F. CHAMROUKHI Statistical Learning 24/33



Multi-class logistic regression

Multi-class Logistic Regression
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Multi-class logistic regression | Systemx

m XcX=R'andVieY={1, - ,K}

m Conditional (Discriminative) model : for k =1,--- | K — 1

exp(ay + fo)
1+ 215(:_11 exp(ap + ,fo)

P(Y = k|x;0) = = m(x;6)

mfork=K,P(Y=Kx;0)=1-Yr 'P(Y = k|x;0) =

1= explar+BT %)

This is equivalent to setting (arx,B%)T = 0.
m Link function : for k=1,--- | K

P(Y = k|x; 0)

1 P S inbnt S
By = K|x;0)

= ag +fo
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Multi-class logistic regression Il Systei”

m The model parameter : @ = (81,...,0x) with 8, = (o, BE)T (k=1,--- ,K—1)

m Maximum conditional likelihood estimation :The conditional log-likelihood of @

n n K
log [ [ P(Yilxi;0) =log [ [ [] P(V: = klxi; 0)¥

=1 1=1k=1

n K
Z Z yar log k(245 )

i=1 k=1

L(6)

where we have used the notation y;x = Ly, 2k, i.e. yar = 1 iff y; =k
m This log-likelihood is convex but can not be maximized in a closed form.
m The Newton-Raphson (NR) algorithm :

(t4+1) _ p(t) a2c]17t  ac(e)
@ =6" - [aeasT] 260 ’9:9(\5)

0=0(t)
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Newton-Raphson for Multi-class LR Systemx

m The Newton-Raphson algorithm is an iterative numerical optimization algorithm
m starts from an initial arbitrary solution 8(*), and updates the estimation of 8
m A single NR update is given by :

9°L(0)] " aL(0)
(t+1) _ g(t) _
0 =0 [aoaoT] 00 ®)

where the Hessian and the gradient of £(6) (which are respectively the second and
first derivative of £(8)) are evaluated at 8 = 8.

m NR can be stopped when the relative variation of £(8) is below a prefixed
threshold.
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IRLS for Multi-class logistic regression | Systei”

T
m Gradient vector : %(:) = ((%@)T, ce (%@)T) where Vk € [K — 1] :

n

oL(6
ank) =3 (o — mixi;0)) s = X" (yi — pi)
i=1
i) X =(x1,...,2,)T : n x (d+ 1) matrix whose rows are the inputs x;,
i) yi = (yik,---,ynk) T : m x 1 vector of indicator variables ;s
i) pr = (me(x1;0),...,7k(xn;0))T : n x 1 vector of logistic probabilities

m Vectorized form of the gradient of £(8) for all the logistic components :

X0 ... 00 y1i—Pp1
T
aL(0) 0 X 0 y2 — P2 oy
=T =X (Y-P 10
N z Yo
0 0 N < YK—-1— PK-1
) Y=(u{, . . ,y&_1)" :nx (K —1) column vector
i) P=(p{,...,p%_1)T : n x (K —1) column vector

i) X=XT,...,X")7T : (nx (K —1)) by (d+ 1) matrix of K — 1 copies of X.
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IRLS for Multi-class logistic regression || Systei”

m Hessian matrix : composed of (K — 1) x (K — 1) block matrices {5:;,;:} K
T Ik,

8%L(0) 8%L(0) 82L(0)
96,007 06,007 ¢ 00,007 |
82L(0) 8%.L(0)
0’°L(0) 802007 Tt 98,00
00067 : 92£(6) :
’ 860,00T '
k
82L(6) 82%.L(0)
00 _ 1007 T 00K _100T.

where each block matrix is of dimension (d + 1) x (d + 1) and is given by :

9%L(0) = T
= — k(%45 0) (ke — me (%43 0)) @i,
80@80{ ;

= —-X"W.X

i) Wi @ n x n diagonal matrix whose diagonal elements are
7Tk(X7;; 9) (5k£ — ﬂ'z(Xi; 0)) fori = 1, cee, N
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IRLS for Multi-class logistic regression 11l Systei”

m For all the logistic components (k,£ =1,..., K — 1), the Hessian takes the form :
2 ~ ~
9 c(OT) = —-X"wWx (11)
0000

— W : (nx (K —1)) by (nx (K —1)) matrix composed of (K —1)) x (K — 1))
block matrices, each block is Ox¢ (k,£=1,...,K —1).

m It can be shown that the Hessian matrix for the multi-class logistic regression
model is positive semi definite and therefore the log-likelihood is concave.

XTW ;X ... XWX
XT"Wie 11X ... XT"Wg_ 1 g X
XT ..o Wii ... Wik X ... 0
0 ... XP) \Wg_11 ... Wg_1x 0 ... X
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IRLS for Multi-class logistic regression 1V Systei”

The NR algorithm in this case can therefore be reformulated as the IRLS

Pty _ 9<t>_[5'25(9)

L ac(e)

8089T :l 0—0(t) 60 ’9:9(”
= 09+ X"WHX)'XT (v - PY)
_ ®XWOR) [RTWORe® + XT(y - PO

= X'WOx)'X” [W“)fw(” +(Y —P® )]
_ XTWOR)XTWOY

where Y = X0® + (W®)~1(Y — P®) which yields in the Iteratively Reweighted
Least Squares (IRLS) algorithm.
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Implementation of logistic regression System>

Tasks :

m Implement (from the scratch) each of the following functions and
apply them to the given data :

» train reglog and predict_reglog
» irls should be in a separate function

Datasets :
» Training data Xtrain.txt and ytrain.txt
» Testing data : Xtest.txt
m Plot the results by highlighting the classification and the generative
model for each class

m compare your results to those you could obtain by using standard

packages
from sklearn.linear model import LogisticRegression
or GLM from statsmodels
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https://chamroukhi.com/data/LogReg/Xtrain.txt
https://chamroukhi.com/data/LogReg/ytrain.txt
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