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Learning Framework for Classification

The data are represented by a random pair (X, Y ) ∈ X × Y where X is a vector

of descriptors for some variable of interest Y

The objective is Prediction, i.e. to seek for a prediction function h : X → Y for

which ŷ = h(x) is a good approximation of the true output y

In a classification problem : typically X ∈ X ⊂ Rp and Y ∈ Y = {0, 1}, {−1,+1}
(binary classification) or {1, · · · ,K} (multiclass classification)

↪→ We will mainly focus on parametric probabilistic models of the form

Y = h(X) + ε, ε ∼ pθ

with the conditional distr. P (Y |X,h) can be computed in terms of Pθ(Y − h(X)).

Data : a random sample (Xi, Yi)
n
i=1 with observed values Dn = (xi, yi)

n
i=1

Data-Scientist’s role : given the data, choose a prediction function h from a

class H that attempts to “minimize” the prediction error for of all possible data

(risk) R(h), under a loss function ` measuring the error of predicting Y by h(X).

↪→ minimize the empirical risk (data-Dn-driven) Rn(h)

↪→ Minimizing Rn(h) may require an optimization algorithm A
Data-Scientist’s “Toolbox” : {Data, loss, hypothesis, algorithm}
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which ŷ = h(x) is a good approximation of the true output y

In a classification problem : typically X ∈ X ⊂ Rp and Y ∈ Y = {0, 1}, {−1,+1}
(binary classification) or {1, · · · ,K} (multiclass classification)

↪→ We will mainly focus on parametric probabilistic models of the form

Y = h(X) + ε, ε ∼ pθ

with the conditional distr. P (Y |X,h) can be computed in terms of Pθ(Y − h(X)).

Data : a random sample (Xi, Yi)
n
i=1 with observed values Dn = (xi, yi)

n
i=1

Data-Scientist’s role : given the data, choose a prediction function h from a

class H that attempts to “minimize” the prediction error for of all possible data

(risk) R(h), under a loss function ` measuring the error of predicting Y by h(X).

↪→ minimize the empirical risk (data-Dn-driven) Rn(h)

↪→ Minimizing Rn(h) may require an optimization algorithm A
Data-Scientist’s “Toolbox” : {Data, loss, hypothesis, algorithm}

F. Chamroukhi Statistical Learning 3/33



Learning Framework for Classification

The data are represented by a random pair (X, Y ) ∈ X × Y where X is a vector

of descriptors for some variable of interest Y

The objective is Prediction, i.e. to seek for a prediction function h : X → Y for
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Prediction/decision function

Def. Classifier or classification rule

h : X → Y
x 7→ h(x)

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear predictors

h : Rp → R

x 7→ 〈x, θ〉 = θTx

The predicted values of Yi’s for new covariates Xi = xis correspond to

ŷi = h(xi)

Example : Linear predictors (cont.) : ŷi = 〈xi, θ〉 = θTxi

Q : How good we are in prediction on a particular pair (x, y) ?
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Loss

Def. Loss function

` : Y × Y → R

(y, h(x)) 7→ `(y, h(x))

It measures how good we are on a particular (x, y) pair.

Examples of loss functions in classification

“0-1” loss : `(y, h(x)) = 1h(x) 6=y

logarithmic loss : `(y, hθ(x)) = − log(pθ(x, y))

Denoting `(y, h(x)) = φ(yh(x))

Hinge loss φhinge(u) = (1− u)+
Logistic loss φlogistic(u) = log(1 + exp(−u))

Exponential loss φexp(u) = exp(−u)
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Examples of loss functions in classification

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

2.5

3
0-1 Loss

Hinge Loss

Logistic Loss

Exponential Loss

Figure – Some loss functions in classification : curves of `(u) for u = yh(x) ; y ∈ {−1, 1}.
[plot losses classification.m]

For y ∈ {−1, 1}, with u = yh(x) :

“0-1” loss : `(u) = 1sign(u)6=1

Hinge loss `(hinge(u) = (1− u)+
Logistic loss `(logistic(u) = log(1 + exp(−u))
Exponential loss `(exp(u) = exp(−u)
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Risk

Risk : the Expected loss :

R(h) = EP [`(Y, h(X))] =

∫
X×Y

`(y, h(x))dP (x, y)

↪→ the error of approximating Y by model/hypothesis h(X) as measured by a chosen

loss function `(Y, h(X)) given the pair (X,Y ) with (unknown) joint distribution P ,

↪→ prediction error : measures the generalization performance of the function h.

“0-1” Risk : Under the “0-1”-loss `(y, h(x)) = 1h(x)6=y :

R(h) = EP [1h(x)6=y] = P(h(X) 6= Y ). =

∫
X×Y

1h(x)6=ydP (x, y)

↪→ This is the most used risk in classification

Q : what is the best function h ? or equivalently, when the risk R(h) is optimal ?
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Optimal prediction function I

Theorem (The Bayes classifier)

Under the (0-1)-loss, `(Y, h(X)) = 1h(X)6=Y , the classification function h∗(x)

minimizing the risk (the Bayes classifier)

R(h) = P(Y 6= h(X)) =

∫
X
P(Y 6= h(X)|X = x)dPX(x)

is given by

∀x ∈ X , h∗(x) = argmax
k∈Y

P(Y = k|X = x).

Def. Decision boundaries
The decision bounadry between each pair of classes k and `, (k, `) ∈ Y ×Y is defined by

ηk,`(x) = {x : P(Y = k|X = x) = P(Y = `X = x)}
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Optimal prediction function II

Proof. Optimal classifier.
Given X = x, the conditional risk under the 0-1 loss is

r(h|X = x) = EY |X=x[`(Y, h(X))|X = x] = EY |X=x[1Y 6=h(X)|X = x]

= P[Y 6= h(X)|X = x]

= 1− P[Y = h(X)|X = x].

By noting that

min
k∈Y

r(h|X = x) = −1 + max
k∈Y

P(Y = k|X = x)

argmin
k∈Y

r(h|X = x) = argmax
k∈Y

P(Y = k|X = x)

we see that h∗(x) = argmax
k∈Y

P(Y = k|X = x) achieves the minimized risk r(h|X = x).

Then the risk R(h∗) = EX [−1 + max
k∈Y

P(Y = k|X = x)] is Bayes.

Goal : estimate h∗, knowing only the data sample Dn = (Xi, Yi)
n
i=1 and loss `.
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Empirical Risk Minimization & MLE I

Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y ).

In real situations P is in unknown, as we only have a sample Dn = (Xi, Yi)1≤i≤n,

↪→ We attempt to minimize the Empirical Risk

Rn(h) =
1

n

n∑
i=1

l(Yi, h(Xi))

to estimate h∗ (within a family H)

↪→ ERM : ĥn = argminh∈HRn(h) is the ERM of h

0-1 Risk : Under the 0-1 loss (standard in classification) : `0−1(y, h(x)) = 1y 6=h(x),

the empirical 0-1 risk is

Rn(h) =
1

n

n∑
i=1

1Yi 6=h(Xi)

ERM and MLE : Conditional maximum likelihood risks :

MLE (density estimation framework) : We seek for an esitmator of the parameters

θ of the joint distribution pθ(x, y).
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Empirical Risk Minimization & MLE II

In discriminative learning (eg. logistic regression), we are interested in estimating

the conditional distribution P (Y |X), rather than the joint distribution P (X,Y ).

Consider the log-loss : `(y, hθ(x)) = − log(pθ(y|x)). We therefore have the

conditional log-likehood risks

R(θ) = −E[log pθ(Y |X)] and Rn(θ) = −
1

n

n∑
i=1

log pθ(yi|xi).

For an i.i.d sample {(xi, yi)ni=1}, the conditional log-likelihood function of θ is :

logL(θ) =

n∑
i=1

log pθ(yi|xi)

Then

Rn(θ) = −
1

n

n∑
i=1

log pθ(yi|xi) = −
1

n
logL(θ)

↪→ With this log-loss, ERM coincides with conditional MLE.

Liner classifier : Consider H = {hθ(x) = α+ βTx}, the set of linear functions in x
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Logistic Regression

Multi−class Logistic Regression
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Logistic Regression

We model the random pair (X, Y ) where Xi ∈ X ⊂ Rd is the predictor and the

response Y ∈ Y = {0, 1} is the class label of X

Logistic Regression : Probabilistic Discriminative approach to model P(Y |X) as

P(Y = 1|X = x) = Logistic(xT θ) =
exp(β0 + β

>x)

1 + exp(β0 + β
>x)

·

Y |X = x is Bernoulli with probability of success πθ(x), i.e.

∀y ∈ {0, 1}, Pθ(Y = y|X = x) = πθ(x)
y(1− πθ(x))1−y

where π(x;θ) = P(Y = 1|X = x;θ) is the sigmoid function.

Classification rule : We have h(x) is defined as

hθ(x) =

{
1 if P(Y = 1|X = x) = Logistic(xT θ) > 1

2
,

0, otherwise.
Eq. : hθ(x) =

{
1 if θT x > 0,

0, otherwise.

The latter comes from the linear bounadry {x : log P(Y=1|X=x)
P(Y=0|X=x)

= β0 + βTx = 0}

The parameter vector of the model θ = (β0,β
>)> ∈ Rd+1

Q : Fit θ from the training data.
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Linear decision boundary :

η1,0(x) = {x : h1(x) = h0(x)}
= {x : P(Y = 1|X = x) = P(Y = 0|X = x)}

= {x : log
P(Y = 1|X = x)

P(X = x)
= 0}

= {x : log

exp(β0+β
>x)

1+exp(β0+β
>x)

1
1+exp(β0+β

>x)

= 0}

= {x : β0 + β
>x = 0}
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Logistic Regression I

↪→ Maximum conditional likelihood.

The conditional log-likelihood function :

L(θ) = log P(Y1 = y1, . . . , Yn = yn|X1 = x1, . . . ,Xn = xn;θ)

= log
n∏
i=1

P(Yi = yi|Xi = xi;θ)

= log

n∏
i=1

P(Yi = 1|Xi = xi;θ)
yiP(Yi = 0|Xi = xi;θ)

1−yi

=
n∑
i=1

yi log π(xi;θ) + (1− yi) log (1− π(xi;θ))

=

n∑
i=1

yi(β0 + β
>xi)− log(1 + exp(β0 + β

>xi))

=
n∑
i=1

yi(1,xi)
>θ − log{1 + exp((1,xi)

>θ)}.

=
n∑
i=1

yix̃
>
i θ − log{1 + exp(x̃i

>θ)}.
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Logistic Regression II

A concave function in θ ↪→ Global maximization

However, it does not admit a closed-form solution

↪→ Numerical optimization : Iterative Reweighted Least Squares (IRLS) Algorithm.
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ERM for logistic regression

Conditional log-likelihood

logL(θ) =
n∑
i=1

yi(1,xi)
>θ − log{1 + exp((1,xi)

>θ)}.

Conditional ERM : Consider the log-loss :

`(y, hθ(x)) = − log(pθ(y|x))

and the hypothesis

hY (X;θ) = Pθ(Y |X) = πθ(X)Y (1− πθ(X))1−Y

The corresponding conditional empirical risk is by definition

Rn(θ) =
1

n

n∑
i=1

`(yi, hθ(xi))

= − 1

n

n∑
i=1

log pθ(yi|xi)

= − 1

n
logL(θ)

↪→ With the log-loss, the conditional ERM coincides with conditional MLE.
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Iteratively Reweighted Least Squares (IRLS)

Newton-Raphson iteration : θ(t+1) = θ(t) −
[
∇2L(θ(t))

]−1

∇L(θ(t))

Let x̃i = (1,x>i )
>, then : L(θ) =

∑n
i=1 yix̃

>
i θ − log{1 + exp(x̃>i θ)}.

Gradient vector :

∂L(θ)

∂θ
=

n∑
i=1

[ ∂
∂θ

yix̃
>
i θ −

∂

∂θ
log(1 + exp(x̃>i θ))

]
=

n∑
i=1

yix̃i − x̃iπ(xi;θ)

=
n∑
i=1

x̃i(yi − π(xi;θ)) · (1)

Hessian matrix :

∂2L(θ)

∂θ∂θ>
= −

n∑
i=1

x̃i
∂

∂θ>
{ exp(x̃>i θ)

1 + exp(x̃>i θ)
} −

n∑
i=1

x̃i
x̃>i exp(x̃>i θ)(
1 + exp(x̃>i θ)

)2
= −

n∑
i=1

x̃ix̃
>
i π(xi;θ)(1− π(xi;θ)) (2)

The Newton-Raphson iterative update of θ has therefore the following expression :

θ(t+1) = θ(t) +
[ n∑
i=1

x̃ix̃
>
i π(xi;θ

(t))(1− π(xi;θ(t)))
]−1

n∑
i=1

x̃i(yi − π(xi;θ(t)))
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Iteratively Reweighted Least Squares (IRLS)

θ(t+1) = θ(t) +
[ n∑
i=1

x̃ix̃
>
i π(xi;θ

(t))(1− π(xi;θ(t)))
]−1

n∑
i=1

x̃i(yi − π(xi;θ(t)))

Matrix form the NR iteration update :

Let

X̃ = (x̃1, . . . , x̃n)
> matrix whose rows are the augmented input vectors (1,x>i )

y = (y1, . . . , yn)
> the vector on binary labels yi

p = (π(x1;θ), . . . , π(xn;θ))
> the vector of logistic probabilities

W = diag(p� (1n − p)) diagonal matrix with (W)ii = π(xi;θ) (1− π(xi;θ))

ỹ = X̃θ(t) + (W(t))−1(y − p(t)) the current approximate response

Then

↪→ Vectorial form of the Gradient : ∂L(θ)
∂θ

= X̃>(y − p(t))

↪→ Vectorial form of the Hessian matrix : ∂2L(θ)

∂θ∂θ>
= −X̃>WX̃
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ỹ = X̃θ(t) + (W(t))−1(y − p(t)) the current approximate response

Then

↪→ Vectorial form of the Gradient : ∂L(θ)
∂θ

= X̃>(y − p(t))

↪→ Vectorial form of the Hessian matrix : ∂2L(θ)

∂θ∂θ>
= −X̃>WX̃

F. Chamroukhi Statistical Learning 19/33



Iteratively Reweighted Least Squares (IRLS)

Then we get the Matrix form :

θ(t+1) = θ(t+1) = θ(t) −
[
∇2L(θ(t))

]−1
∇L(θ(t)) (3)

= θ(t) +
(
X̃>WX̃

)−1
X̃>(y − p(t))

= θ(t) + (X̃TW(t)X̃)−1X̃T (y − p(t)) (4)

= (X̃TW(t)X̃)−1
[
X̃TW(t)X̃θ(t) + X̃T (y − p(t))

]
(5)

= (X̃TW(t)X)−1X̃T
[
W(t)X̃θ(t) + (y − p(t))

]
(6)

= (X̃>W(t)X̃)−1X̃>W(t)ỹ (7)
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Algorithm 1 Pseudo Code for Training Logistic Regression IRLS.

Inputs : n sample (xi, yi)
n
i=1 arranged as X = (x1, . . . ,xn)

> and y = (y1, . . . , yn)
>

Construct X̃ = [1n,X]

Initialization : θ(0) ; set t← 0 (IRLS iteration)

while increment in log-likelihood > ε (eg. 1e-6) do

p(t) = (π(x1;θ
(t)), . . . , π(xn;θ

(t)))> = exp(X̃θ(t))� (1n + exp(X̃θ(t)))

W(t) = diag(p(t) � (1n − p(t)))

z̃ = X̃θ(t) + (W(t))−1(y − p(t))

θ(t+1) = (X̃>W(t)X̃)−1X̃>W(t)z̃

% Convergence test

log-lik =
∑
{y � (X̃θ(t))− log(1n + exp(X̃θ(t)))}. % log-likelihood.

end

Result: θ̂ = θ(t) the MLE of θ

Algorithm 2 Pseudo Code for Predicting with Logistic Regression.

Inputs : Test sample (xi)
n
i=1 arranged as X = (x1, . . . ,xn)

>, and parameter vector θ

Construct X̃ = [1n,X]

probs = exp(X̃θ)� (1n + exp(X̃θ)) % Conditional probabilities

ŷ = 1probs≥1/2 % Predicted labels using Bayes rule (argmax)

Result: ŷ the predicted class labels
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“Optimal” decision boundaries

Def. Decision boundaries
The decision bounadry between each pair of classes k and `, (k, `) ∈ Y ×Y is defined by

ηk,`(x) = {x : P(Y = k|X = x) = P(Y = `|X = x)}

Plugin classifier : Prediction by the Bayes’ decision rule

ĥ(x) = argmax
k∈Y

P(Y = k|X = x; θ̂) (8)

Plugin Decision boundaries : The decision bounadry between each pair of classes k

and ` is defined by

ηk,`(x; θ̂) = {x : P(Y = k|X = x; θ̂) = P(Y = `|X = x; θ̂)}
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ERM vs MLE : Logistic Regression : y ∈ {0, 1} with pθ(y|x) = πθ(x)
y(1− πθ(x))1−y,

and πθ(x) = σ(β0 + β
Tx) = exp (β0+β

Tx)

1+exp (β0+βTx)
is the logistic function.

Rn(θ) = −
1

n

n∑
i=1

log pθ(yi|xi) = −
1

n

n∑
i=1

yi(β0 + β
>xi)− log(1 + exp(β0 + β

>xi))︸ ︷︷ ︸
Conditional log-likelihood
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ERM for logistic regression / Logistic Loss

Conditional log-likelihood (yi ∈ {0, 1})
logL(θ) =

∑n
i=1 yi(1,xi)

>θ − log{1 + exp((1,xi)
>θ)}.

Conditional ERM : Consider the logistic loss : `(y, hθ(x)) = log(1 + exp(−yihθ(xi))),
yi ∈ {−1,+1} and the hypothesis hθ(X) = β0 + βTX

The corresponding conditional empirical risk is by definition

Rn(h) =
1

n

n∑
i=1

`(yi, hθ(xi)) =
1

n

n∑
i=1

log(1 + e−yihθ(xi))

=
1

n

n∑
i=1

log

(
1 + eyihθ(xi)

eyihθ(xi)

)
= −

1

n

n∑
i=1

log

(
eyihθ(xi)

1 + eyihθ(xi)

)

= −
1

n

n∑
i=1

{
yihθ(xi)− log

(
1 + eyihθ(xi)

)}
; yi ∈ {−1,+1}

= −
1

n

{∑n
i=1

{
yihθ(xi)− log

(
1 + ehθ(xi)

)}
; yi = 1∑n

i=1

{
−hθ(xi)− log

(
1 + e−hθ(xi)

)}
; yi = −1

= −
1

n

{∑n
i=1

{
yihθ(xi)− log

(
1 + ehθ(xi)

)}
; yi = 1∑n

i=1

{
− log

(
1 + ehθ(xi)

)}
; yi = −1

= −
1

n
logL(θ)

↪→ With the logistic loss, the conditional ERM coincides with conditional MLE.
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Multi-class logistic regression

Multi−class Logistic Regression
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Multi-class logistic regression I

X ∈ X = Rd and Yi ∈ Y = {1, · · · ,K}

Conditional (Discriminative) model : for k = 1, · · · ,K − 1

P(Y = k|x;θ) = exp(αk + β
T
k x)

1 +
∑K−1
`=1 exp(α` + β

T
` x)

= πk(xi;θ)

for k = K, P(Y = K|x;θ) = 1−
∑K−1
k=1 P(Y = k|x;θ) = 1

1−
∑K−1

`=1
exp(α`+β

T
`
x)
·

This is equivalent to setting (αK ,β
T
K)T = 0.

Link function : for k = 1, · · · ,K

log
P(Y = k|x;θ)
P(Y = K|x;θ) = αk + β

T
k x
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Multi-class logistic regression II

The model parameter : θ = (θ1, . . . ,θK) with θk = (αk,β
T
k )
T (k = 1, · · · ,K− 1)

Maximum conditional likelihood estimation :The conditional log-likelihood of θ

L(θ) = log

n∏
i=1

P(Yi|xi;θ) = log
n∏
i=1

K∏
k=1

P(Yi = k|xi;θ)yik

=

n∑
i=1

K∑
k=1

yik log πk(xi;θ)

where we have used the notation yik = 1yi 6=k, i.e. yik = 1 iff yi = k

This log-likelihood is convex but can not be maximized in a closed form.

The Newton-Raphson (NR) algorithm :

θ(t+1) = θ(t) −
[
∂2L(θ)
∂θ∂θT

]−1

θ=θ(t)

∂L(θ)
∂θ

∣∣
θ=θ(t)
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Newton-Raphson for Multi-class LR

The Newton-Raphson algorithm is an iterative numerical optimization algorithm

starts from an initial arbitrary solution θ(0), and updates the estimation of θ

A single NR update is given by :

θ(t+1) = θ(t) −
[
∂2L(θ)
∂θ∂θT

]−1
∂L(θ)
∂θ

(9)

where the Hessian and the gradient of L(θ) (which are respectively the second and

first derivative of L(θ)) are evaluated at θ = θ(t).

NR can be stopped when the relative variation of L(θ) is below a prefixed

threshold.
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IRLS for Multi-class logistic regression I

Gradient vector : ∂L(θ)
∂θ

=
(
( ∂L(θ)
∂θ1

)T , . . . , ( ∂L(θ)
∂θK−1

)T
)T

where ∀k ∈ [K − 1] :

∂L(θ)
∂θk

=
n∑
i=1

(
yik − πk(xi;θ)

)
xi = XT (yk − pk)

i) X = (x1, . . . ,xn)
T : n× (d+ 1) matrix whose rows are the inputs xi,

ii) yk = (y1k, . . . , ynk)
T : n× 1 vector of indicator variables yik

iii) pk = (πk(x1;θ), . . . , πk(xn;θ))
T : n× 1 vector of logistic probabilities

Vectorized form of the gradient of L(θ) for all the logistic components :

∂L(θ)
∂θ

=


XT 0 . . . 0

0 XT . . . 0
...

...
. . .

...

0 0 . . . XT




y1 − p1

y2 − p2

...

yK−1 − pK−1

 = X̃T (Y −P) (10)

i) Y = (yT1 , . . . ,y
T
K−1)

T : n× (K − 1) column vector

ii) P = (pT1 , . . . ,p
T
K−1)

T : n× (K − 1) column vector

iii) X̃ = (XT , . . . ,XT )T : (n× (K − 1)) by (d+ 1) matrix of K − 1 copies of X.
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IRLS for Multi-class logistic regression II

Hessian matrix : composed of (K − 1)× (K − 1) block matrices { ∂
2L(θ)

∂θ`∂θ
T
k

}K−1
k,`=1

∂2L(θ)
∂θ∂θT

=



∂2L(θ)
∂θ1∂θ

T
1

∂2L(θ)
∂θ1∂θ

T
2

. . . ∂2L(θ)
∂θ1∂θ

T
K−1

∂2L(θ)
∂θ2∂θ

T
1

. . . ∂2L(θ)
∂θ1∂θ

T
K−1

... ∂2L(θ)
∂θ`∂θ

T
k

...

∂2L(θ)
∂θK−1∂θ

T
1

. . . ∂2L(θ)
∂θK−1∂θ

T
K−1


where each block matrix is of dimension (d+ 1)× (d+ 1) and is given by :

∂2L(θ)
∂θ`∂θ

T
k

= −
n∑
i=1

πk(xi;θ) (δk` − π`(xi;θ))xixTi

= −XTWk`X

i) Wk` : n× n diagonal matrix whose diagonal elements are

πk(xi;θ) (δk` − π`(xi;θ)) for i = 1, . . . , n.
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IRLS for Multi-class logistic regression III

For all the logistic components (k, ` = 1, . . . ,K − 1), the Hessian takes the form :

∂2L(θ)
∂θ∂θT

= −X̃TWX̃ (11)

→W : (n× (K − 1)) by (n× (K − 1)) matrix composed of (K − 1))× (K − 1))

block matrices, each block is θk` (k, ` = 1, . . . ,K − 1).

It can be shown that the Hessian matrix for the multi-class logistic regression

model is positive semi definite and therefore the log-likelihood is concave.

H = −


XTW1,1X . . . XTW1,K−1X

...
. . .

...

XTWK−1,1X . . . XTWK−1,K−1X



= −


XT . . . 0

...
. . .

...

0 . . . XT




W1,1 . . . W1,K−1

...
. . .

...

WK−1,1 . . . WK−1,K−1



X . . . 0
...

. . .
...

0 . . . X


= −X̃TWX̃
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IRLS for Multi-class logistic regression IV

The NR algorithm in this case can therefore be reformulated as the IRLS

θ(t+1) = θ(t) −
[
∂2L(θ)
∂θ∂θT

]−1

θ=θ(t)

∂L(θ)
∂θ

∣∣∣
θ=θ(t)

= θ(t) + (X̃TW(t)X̃)−1X̃T (Y −P(t))

= (X̃TW(t)X̃)−1
[
X̃TW(t)X̃θ(t) + X̃T (Y −P(t))

]
= (X̃TW(t)X)−1X̃T

[
W(t)X̃θ(t) + (Y −P(t))

]
= (X̃TW(t)X̃)−1X̃TW(t)Ỹ

where Ỹ = X̃θ(t) + (W(t))−1(Y −P(t)) which yields in the Iteratively Reweighted

Least Squares (IRLS) algorithm.

F. Chamroukhi Statistical Learning 32/33



Implementation of logistic regression

Tasks :

Implement (from the scratch) each of the following functions and
apply them to the given data :

I train reglog and predict reglog

I irls should be in a separate function

Datasets :
I Training data Xtrain.txt and ytrain.txt
I Testing data : Xtest.txt

Plot the results by highlighting the classification and the generative

model for each class

compare your results to those you could obtain by using standard

packages

from sklearn.linear model import LogisticRegression

or GLM from statsmodels
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