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Classification

Supervised Learning
m Gaussian Discriminant Analysis
m Linear Discriminant Analysis
m Quadratic Discriminant Analysis
m Mixture Discriminant Analysis

Linear Discriminant Analysis (LDA)

Statistical Learning

Quadratic Discriminant Analysis (QDA)




Learning Framework for Classification Systemx

m The data are represented by a random pair (X,Y) € X x Y where X is a vector
of descriptors for some variable of interest Y
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Learning Framework for Classification Systemx

m The objective is Prediction, i.e. to seek for a prediction function h : X — ) for
which § = h(x) is a good approximation of the true output y
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Learning Framework for Classification Systemx

m The objective is Prediction, i.e. to seek for a prediction function h : X — ) for
which § = h(x) is a good approximation of the true output y

m In a classification problem : typically X ¢ X CR? and Y € ¥ = {0,1},{-1,+1}
(binary classification) or {1,---, K} (multiclass classification)
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Learning Framework for Classification Systemx

m The objective is Prediction, i.e. to seek for a prediction function h : X — ) for
which § = h(x) is a good approximation of the true output y

m In a classification problem : typically X ¢ X CR? and Y € ¥ = {0,1},{-1,+1}
(binary classification) or {1,---, K} (multiclass classification)

— We will mainly focus on parametric probabilistic models of the form
Y =h(X)+e€e~po
with the conditional distr. P(Y'|X, h) can be computed in terms of Py(Y — h(X)).
P(X,Y|h) = P(Y|X,h)P(X|h)
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Learning Framework for Classification Systemx

m Data : a random sample (X;,Y;)i_; with observed values D,, = (x;,y: )71
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Learning Framework for Classification Systemx

m Data : a random sample (X, Y;)i—; with observed values D,, = (xi, yi)i=1

m Data-Scientist’s role : given the data, choose a prediction function h from a
class H that attempts to “minimize” the prediction error for of all possible data
(risk) R(h), under a loss function £ measuring the error of predicting Y by h(X).
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Learning Framework for Classification Systemx

m Data : a random sample (X, Y;)i—; with observed values D,, = (xi, yi)i=1

m Data-Scientist’s role : given the data, choose a prediction function h from a
class H that attempts to “minimize” the prediction error for of all possible data
(risk) R(h), under a loss function £ measuring the error of predicting Y by h(X).

< minimize the empirical risk (data-D,-driven) R, (h)
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Learning Framework for Classification Systemx

m Data : a random sample (X, Y;)i—; with observed values D,, = (xi, yi)i=1

m Data-Scientist's role : given the data, choose a prediction function h from a
class H that attempts to “minimize” the prediction error for of all possible data
(risk) R(h), under a loss function £ measuring the error of predicting Y by h(X).

< minimize the empirical risk (data-D,-driven) R, (h)
< Minimizing R, (h) may require an optimization algorithm A
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Learning Framework for Classification Systemx

m Data-Scientist’s “Toolbox” : {Data, loss, hypothesis, algorithm

F. CHAMROUKHI Statistical Learning



Prediction/decision function

h: X =Y

z — h(x)

is a decision/prediction function, parametric or not, linear or not, ...
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is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear predictors
h: R - R

z (z,0) =0"x
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Prediction/decision function

h: X =Y

z — h(x)

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear predictors
h: R - R

z (z,0) =0"x
The predicted values of Y;'s for new covariates X; = x;s correspond to

Yi = h(x:)

Example : Linear predictors (cont.) : §i = (x,60) = 87z,
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Prediction/decision function System

h: X =Y

z — h(x)

is a decision/prediction function, parametric or not, linear or not, ...

Example : Linear predictors
h:RF - R
z (z,0) =0"x
The predicted values of Y;'s for new covariates X; = x;s correspond to
Yi = h(x:)
Example : Linear predictors (cont.) : §i = (x,60) = 87z,

Q : How good we are in prediction on a particular pair (z,y)?
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Loss

0: Y xY—R
(y, h(z)) — £y, h(z))

It measures how good we are on a particular (z,y) pair.

(We assume that the distribution of the test data is the same as for the training data).
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Loss

0: Y xY—R
(y, h(z)) — £y, h(z))

It measures how good we are on a particular (z,y) pair.

(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in classification

m “0-1" loss : £(y, h(z)) = Lp(a)2y
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Loss

0: Y xY—R
(y, h(z)) — £y, h(z))

It measures how good we are on a particular (z,y) pair.
(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in classification
m “0-1" loss : £(y, h(z)) = Lp(a)2y
m logarithmic loss : £(y, ho(z)) = —log(pe(x,y))
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Loss

0: Y xY—R
(y, h(z)) — £y, h(z))

It measures how good we are on a particular (z,y) pair.
(We assume that the distribution of the test data is the same as for the training data).

Examples of loss functions in classification

m “0-1" loss : £(y, h(x)) = Lp(a)2y

logarithmic loss : £(y, ho(x)) = —log(pe(z,y))
Denoting £(y, h(z)) = ¢(yh(x))
Hinge loss @ninge(u) = (1 — u)+

Logistic loss ¢iogistic (1) = log(1 + exp(—u))

m Exponential loss ¢exp(u) = exp(—u)
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Examples of loss functions in classification Systemx
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FIGURE — Some loss functions in classification : curves of £(u) for u = yh(z); y € {—1,1}.
[plot_losses_classification.m]

For y € {—1,1}, with u = yh(z) :
m “0-1" loss : £(u) = Lggn(u)-1
m Hinge loss £(hinge(u) = (1 —u)+
m Logistic loss £(iogistic(u) = log(1 4 exp(—u))

m Exponential loss £(exp(u) = exp(—u)
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plot_losses_regression.m

Risk quté‘rﬁ;?

m Risk : the Expected loss :

R(h) = Ep[£(Y, h(X))] = / 0y, h(z))dP(z, y)

XXy

< the error of approximating Y by model/hypothesis h(X) as measured by a chosen
loss function (Y, h(X)) given the pair (X,Y") with (unknown) joint distribution P,

< prediction error : measures the generalization performance of the function h.
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RiSk qutemx

m “0-1” Risk : Under the “0-1"-loss £(y, h(x)) = L)y :

R(h) = Ep[Lyg)sy] = P(W(X) #Y). = /

]lh(z)¢ydp($7 y)
XXy

< This is the most used risk in classification

F. CHAMROUKHI Statistical Learning



RiSk qutemx

Q : what is the best function h? or equivalently, when the risk R(h) is optimal ?
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Optimal prediction function |

Under the (0-1)-loss, £(Y,h(X)) = 1(x)2y, the classification function h™(x)
minimizing the risk (the Bayes classifier)

R() = P(Y # 1(X)) = [ P(Y £ h(X)IX = 2)aPx ()

is given by
Vre X, h'(z)= argrglea)))dP’(Y =k|X =z).

The decision bounadry between each pair of classes k and ¢, (k,¢) € Y x Y is defined by

Mee(z) ={z:PY =kl X =2) =P =X =2)}
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Optimal prediction function Il System

Given X = z, the conditional risk under the 0-1 loss is

r(h|X = x) = Ey|X=x[€(Y, h(X))IX = m] = ]EY\X:x[]]-Y;éh(X)|X = J}]
= PY #h(X)|X =2
= 1-PY = (X)X = a].

By noting that

minr(h|X =2) = —-1+maxP(Y =k|X =x)
key kEY
arg gleigr(h|X =z) = argrgleali(IF’(Y =k|X =x)

we see that h*(z) = argllgleaﬁ(IP’(Y = k|X = x) achieves the minimized risk 7(h|X = z).
Then the risk R(h*) = Ex[-1+ rlz%)}dP’(Y = k|X = )] is Bayes. O

Goal : estimate h*, knowing only the data sample D,, = (X;,Y;)j=; and loss Z.
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Empirical Risk Minimization & MLE | Systemx

m Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y).
In real situations P is in unknown, as we only have a sample D, = (X;, Y3)1<i<n,

— We attempt to minimize the Empirical Risk

n

Ru(h) = %Zz(m, (X))

=1

to estimate A* (within a family )

m MLE (density estimation framework) : In generative learning (eg. discriminant
analysis), we are interested in modeling the joint distribution P(X,Y") (then the
conditional P(Y'|X) is obtained by Bayes’ Theorem). We seek for an esitmator of
the parameters 0 of the joint distribution po(z,y).
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Empirical Risk Minimization & MLE || Systemx

m Consider the log-loss : £(y, ho(x)) = —log(pe(z,y)). We therefore have the
log-likehood risks
R(0) = —E[log ps (X, Y)]

and

1 n
Rn(0) = —— > logpo(wi, ).
i=1

m For an i.i.d sample {(z;,y:)i=1}, the conditional log-likelihood function of @ is :

log L(6) = _ log pe (i, v:)
=1

Then
1 — 1
()= —=S"1 i yi) = —— log L(0
R (0) ”;:1 og po(zi, yi) - log (0)

— With the log-loss, ERM coincides with MLE.
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quté‘rﬁ;v

Gaussian Discriminant Analysis
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Gaussian Discriminant Analysis System

m Generative model
p(Y:, Xi;0) = P(Yi)p(X:[Y3; 0)
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Gaussian Discriminant Analysis System

m Generative model
p(Y:, Xi;0) = P(Yi)p(X:[Y3; 0)

m P(Y; = k) = wy, the prior probability of class k,
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Gaussian Discriminant Analysis System

m Generative model
p(Y:, Xi;0) = P(Yi)p(X:[Y3; 0)

m P(Y; = k) = wy the prior probability of class k,
m (X, =x;|Yi = k; 0k) = ¢p(@i; py, Xk) the conditional density of class k is the
Gaussian p.d.f in R? with mean p, and covariance matrix Xy, defined as

_d _1 1 _
Ba(xs; py,, Ti) = (2m) 7 2 [Bp| ™ 2 eXP{—g(mz‘—ﬂk)TEk Y — )}
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Gaussian Discriminant Analysis System

m Generative model
p(Yi, X4;0) = P(Yi)p(Xi[|Y3; 6)

m P(Y; = k) = wy the prior probability of class k,

m (X, =x;|Yi = k; 0k) = ¢p(@i; py, Xk) the conditional density of class k is the
Gaussian p.d.f in R? with mean p, and covariance matrix Xy, defined as

_d _1 1 _
Ba(xs; py,, Ti) = (2m) 7 2 [Bp| ™ 2 eXP{—i(mz‘—ﬂk)TEk Y — )}

mO=(wi,...,wk, ] ,...,,vech’ (Z1),... ,vech” (Zx))"
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Gaussian Discriminant Analysis Systemx

m Data Generating Process under Gaussian Discriminant Analysis : Given 6 :
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Gaussian Discriminant Analysis Systemx

m Data Generating Process under Gaussian Discriminant Analysis : Given 6 :

i) Sample a class label Y; given the class weights w = {wy, -+ ,wk},

Yilwy,...,wg ~ Categorical(l;wy,...,wkg),
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Gaussian Discriminant Analysis System

m Data Generating Process under Gaussian Discriminant Analysis : Given 6 :

i) Sample a class label Y; given the class weights w = {wy, -+ ,wk},
Yilwy,...,wg ~ Categorical(l;wy,...,wkg),
ii) Sample an observation X ; from the conditional distribution f(-; 0%) :

XilYi =k, B~ N5 pg, Zie)
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Gaussian Discriminant Analysis System

m Data Generating Process under Gaussian Discriminant Analysis : Given 6 :

i) Sample a class label Y; given the class weights w = {wy, -+ ,wk},
Yilwy,...,wg ~ Categorical(l;wy,...,wkg),
ii) Sample an observation X ; from the conditional distribution f(-; 0%) :

XilYi =k, B~ N5 pg, Zie)
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Classification rule & Decision Boundaries

The Bayes’ decision rule h(z) defined as
b = - P(Y; = k| X; = ;0
Ui = ho(x) = argmax P(Y; = k| xi; 6)
with
o< widp(@i; py,, Xie)

The decision bounadry between each pair of classes k and ¢, (k,¢) € Y x Y is defined by

{@:P(Y = kX = 2;0) = B(Y = (| X = 2;0)}
{x s wedp(xi; g, Bk) = wedp(®i; pg, Xe)}

Me,e(T)
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Linear Discriminant Analysis Systemx

Linear Discriminant Analysis (LDA) arises when we assume that all the classes have a
common covariance matrix 3y =X Vk=1,... K.
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Linear Discriminant Analysis Systeins”

Linear Discriminant Analysis (LDA) arises when we assume that all the classes have a
common covariance matrix 3y =X Vk=1,... K.

Consider GDA with X, = ¥ Vk =1,..., K, then the decision boundary between two
classes k and / is

Nee(2;0) = {z:P(Y =klz;0) =P(Y = k|z;0)}
_ o PY = k|z;0)
- {”” 8By =l 0) 0}
_ e Wk N(z; 1y, )
= {w : log " + log 7./\/.(3:;“[’2) = 0}

1 _ _
= T 10gf_§(ﬂk+#4)T2 1(#k‘#z)"‘(#k‘#e)Tz 'z =0
A S ——
BT
= {w:a—l—,@Ta::O},

< the classes are separated by hyperplane in the input space.
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Linear Discriminant Analysis

Linear Discriminant Analysis (LDA)
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Logistic/Softmax Regression vs LDA

Consider LDA with Y = {0, 1}, then the posterior is logistic. Vk € ), we have

expio + Tmz-
P(Y; = 1|x:;0) = p{ B T}
1+ exp{a+ B x;}

with o = log Z—; - %(Nl — 1) =71y + o) and B =B (1 — o)
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Logistic/Softmax Regression vs LDA

Consider LDA with Y = {0, 1}, then the posterior is logistic. Vk € ), we have

P(Y;  1[as; 0) — —Plot B )
’ v 1 +exp{a+ 87z}

with o = log Z_(l) - %(Nl — 1) =71y + o) and B =B (1 — o)

Consider LDA with Y = {1, ..., K}, then the posterior is softmax. Vk € ), we have :

exp{ay, + B @i}
1+ 375 explar + Bl @i}

B(Y: = klz; 6) =

with e = log 25 — 3 (= k) T2 by + pgc) and By = 7wy, — pig)
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Logistic/Softmax Regression vs LDA

Consider LDA with Y = {0, 1}, then the posterior is logistic. Vk € ), we have

expio + Tmz-
P(Y; = 1|x:;0) = p{ B T}
1+ exp{a+ B x;}

with o = log Z—; - %(Nl — 1) =71y + o) and B =B (1 — o)

Consider LDA with Y = {1, ..., K}, then the posterior is softmax. Vk € ), we have :

exp{on + Bz}

P(Yi = kla; 0) = -
1+ 35 exp{a + Bl @i}

with e = log 25 — 3 (= k) T2 by + pgc) and By = 7wy, — pig)

— Logistic/Softmax Regression and LDA are almost the same

< They lead to linear decision boundaries
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Relationship between Logistic Regression and LDA qutemx

Consider LDA with Y = {0, 1}, then the posterior is logistic.
e g) — P(Yi = 1) f(Xi = z4|Y; = 1;0)
O S By 0K = wl¥i = 0:0) 4 PO = D (X: = Vi = 10)
_ w1da(Ti; Py, X)
Woa(i; po, ) + w1¢a(wi; py, 3)
_ w1da(Ti; oy, B) [ woda(xis g, )
L4 wiga(@s; py, B) /woda(zi; po, )
- exp{log & i 31y = po) ST By + o) + (g — o) B i}
1+ exp{log it — 3y = o) TS (g + o) + (1 — 1) TE M2
exp{a + g7z}
1 +expl{a+ BTz}
with o = 10%* - %(Ilq — 10) =71y + o) and B =B (py — o) O
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Relationship between Logistic Regression and LDA S‘is“’"‘x

Consider LDA with Y = {1,..., K}, then the posterior is softmax : Vk € ), we have

P(Y; = k|zi; 0) = K( = k) f(Xi =Y = k;0) _ ;{Uk(éd(wi;lik,z)
i P =0f(Xi=xlYi=1460) 3,0, wida(®i; py, X)

W ha(®; py,, ) [ wic da( wi;HmE)

1+ 5  wida(@ g, B) Jwicda(@is e, )
exp{log £ — *(Mk pr) 2T (g pg) + (g — ) TE )

1+ Zl 1 exp{log wr *(I‘Jk B ) TS (e + 1) + (1 — No)TE_lwi}
exp{ax + B, wi}

1+ 3305, exp{an + B i}

with oy, = logg—; — (e — Br) T by + pg) and By = 27 (ky, — py) O
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quté‘rﬁ;v

Quadratic Discriminant Analysis
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Quadratic Discriminant Analysis Systemx

Quadratic Discriminant Analysis (QDA) corresponds to allowing a different covariance
matrix for each class. The QDA decision boundaries are quadratic functions in x :
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Quadratic Discriminant Analysis Systes”

Quadratic Discriminant Analysis (QDA) corresponds to allowing a different covariance
matrix for each class. The QDA decision boundaries are quadratic functions in x :

Proof.

Consider GDA with different {34 }+ ;, then the decision boundary between two classes
kand {is

P(Y = k|x; 0
Nye(2;0) = {ac : logw = 0}
B Wk N (@5 py,, Bi)
= {w : log o + log 7N(£L‘;ﬂg,2e) =0
{m : log% — 1log ||
' we 2 |Eg|

1

-3 [(:c —1)"S @ — ) — (2 — )T (e — W)] _ O}.

— We then get quadratic discriminant functions in the input space. O
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Maximum-Likelihood Estimation Systemx

m Maximize the joint log-likelihood function : 6 = arg maxgce L(0) with L(6) =
log [Ti_y p(Yi = yi, Xo = @450) = log [T [P(Y: = 9:) f(Xs = ai|Ys = v:; 6)].

m Let y;r = 1, +1 the binary indicator variable. Then we have

n K
L) = log]T T = @,|Y; = k;0,))V*

; 'L—; k=1 .

= ZE Yik log wg + Zzyzk log gpa(xs; g, Xik)
i1=1 k=1 =1 k=1
n K

= ZZ Yix log wy
i=1 k=1
n K

+
(]

d 1 1 _
S i [—5 log(2m) — £ log %] — & (@ — 1) B @i — )

=1 k=1

m A concave function in @ — Global maximization is guaranteed

< A closed-form solution
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Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA)
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Maximum-Likelihood Estimation |

Let us denote by

k) = Zyz‘k log wy,

Ly S) —-P*E:ym[k%|2k|+( — ) S (@ - )]
i=1
Then
K
L) = Z [L(wk) + L(py,, Xk)] + constant,
k=1

m W) = arg maxu, L(wy) subject to Z{il w; =1
u i, = argmax, L, Sr)
= argmaxs, L(p, k)

M)
B

quté‘rﬁ;v
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Maximum-Likelihood Estimation I Systemx

m To perform this constrained maximization, we introduce the Lagrange multiplier
A\ ; the resulting unconstrained maximization consists of maximizing the
Lagrangian function for k € {1,..., K}

n K
Lx(wk) = Zyik logﬂ'k + A (1 — Zﬂ'l> .
=1 =1

Taking the derivative of Ly (wg) w.r.t wi we obtain : aLgfl’:k) — Zinavik

Wi

Then, setting these derivative to zero yields :

Dic Yik

W

=\

By multiplying each hand side of (24) by 7, and summing over k we get
SOK wexEisivie — 5K\ 5y which implies that A = n.

wy,
Finally, from (24) we get the updating formula for the weights wy's, that is
. Yo ik nk _ #Classk

=== = — vk 1,...,K}.
Wk n n n ) 6{7 ) }
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Estimation the Gaussian parameters | Systei”

m Maximizing w.r.t the means p, Vk € {1,..., K} the function

L(py)

I -
—3 D yil@i — ) " @ — )
=1

K
1 _ _ _
= 3 E E Yik I:m'LTEk Yoy — 2w By 4y B 1/%]

1=1 k=1

Taking the derivative w.r.t p, yields :

OL(p - -
:—f E yzk 22k1wi+22kluk] .
aﬂk

Then, by setting these derivative to zero we get the MLE for the mean p, :

n . .
B, = 721'711 YR ke {1,... K}

i=1Yik
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Estimation the Gaussian parameters | Systei”

m Maximizing w.r.t the covariance matrix X for £k = 1,..., K the function
I _
L(Z) = —3 Zy [ 10835 |+ (@ = 1) B0 @i )]
where we used the fact that log |[A™!| = —log |A|

m Taking the derivative w.r.t the precision matrix 2;1 (technically easier) :

OL(Xy)
(_k :_7Zyzk |: B+ (i — ) (s p’k)T]7
[3)
we used the properties : 8 log|A] = AT
oA ®
u"Au = trace(u” Au) = trace(uu” A)
Otrace(BA) B”
0A N
Setting these derivative to zero we get 3 = % S i@ — ) (@i — )

Since the mean is unknown, then we replace it by its MLE fi,. We then get

~ 1 <& N T
k= nszyzk(wz_lr‘k)(wz — ) -
i=1
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Estimation the Gaussian parameters || Systemx

Bias correction for f)k : We note that unlike for the proportions wy and the mean
vectos p,,, the estimator of the covriance matrix is biased. Indeed

a 1 « N N
EXy = n*kZE[yf(Xi*Mk)(Xifﬂk)T]
=1
1< ~ P
= oD EWIXG X -yl X - i X+ yl ]
i=1

= D EXX] - —yz Zy’“X X+ IS EX Y X
i=1 Tk j=1 =1
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Estimation the Gaussian parameters |l| Systemx

Elyf X: X/ = i+ pup)
Ely; Y yy XX ] = E[XX[ ]+ (ne - Dppy
j=1

= Bkt + (e — D) = S+ ey

E [yf DD viu X X[

j=11=1

B nynyijz’“XF]
j=1 =1

= B[y XX ]+ i (ne — Dpgpy
=k (Zk A+ ) + (e — Dy
= T+ nipmy

Then

~ 2 1 1
E[S4] = B+ ppy — B = 2y + B+ . = Bp — oo B =
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Estimation the Gaussian covriance in LDA | systenx

m Consider the problem of maximizing w.r.t the covariance matrix 3 the function

n K
1 . -
LE) = =530 o[ logl= '+ (@ - m) =7 (@ - )]
i=1 k=1
m Taking the derivative of this function w.r.t the precision matrix £ *, we obtain :

) 222%16[ S (@i - ) (@ — )]

i=1 k=1

Then, by setting these derivatives to zero we get the updating formula for the
covariance matrix X, that is

n K
~ 1 T
= P Z Zyzk(mz — ) (@i — py)
i=1 k=1
Since the mean is unknown, then we replace it by its MLE fi,. We then get

n K
= %Zzyzk(wz — ) (i — ﬁ'k)T

i=1 k=1
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m Bias correction for & : We note that unlike for the proportions wy and the mean
vectos p;,, the estimator of the covriance matrix is biased. Indeed, we can show
(similarly as for the MLE of Xj) that

We then take

n K
S 1 —~ T
T=—% ;;yik(fﬂi — ) (i — )

as an unbiased estimator of X
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n

1 K
az;;m XXT—2—Zy]X XT+—Z%X —Zijl
EX:X[] = T+ mmpy

ED i X; X[ = E[X:X[]]+ (ne— Dy
=1

= Doty + (e — Dy =3+ neppy

ED O uur X, X0 ] = meB[X 0 X ]+ (g — Dpg

j=11=1

= (B A ey + (e = D) = meS + ng g

ED yi X, ) urX/]
j=1 =1
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I

1 T kL k T k1 k T
— NS+ npppy, —2> Y7 — -2 yiupmy + 2 Ui —Tk+ Dy k]

1 T kL T k1 T
— [T A npppy =23 yr — X = 2npppy + Oy — g + nugy )
1 e 1
- lpmoyuil
" ik Tk

1 n n n
= “hE-osCE 4+ 244
n ni no N

1
ZnE - KX
n

(n—K)
n
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Algorithm 1 Pseudo Code Train LDA.

Inputs : n sample (x;, ;) arranged as X = (x1,...,2,) " and y = (¥1,...,Yn
3 =07% d-by-d matrix of zeros
fork=1,...,K do

_ i1 Yik
k= n

)T

g

~ il Yik®i
K = Y Yik

=34 eyl — ) (@i — )T
end
Result: 6 = {@y, fi,, %} the MLE of 6

Algorithm 2 Pseudo Code Predict_LDA.

Inputs : Test sample X = (x1,...,x,)" and parameters {wy, t1;,, S}
fork=1,...,K do
| wiPr = wrga(X; py, 3)
end
Y = arg maxy, wyPy % Predicted labels using Bayes rule

Result: y the predicted class labels
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Algorithm 3 Pseudo Code Train QDA.

Inputs : n sample (x;,y:)/—, arranged as X = (z1,..., )" and y = (v1,. ..
fork=1,...,K do
By = Z?:; Yik
_ Tis1 Yik®i

B = > Yik

X = m Sy k(@i — fy) (@i — By) "
end

Result: 6 = {@y, iy, 51} the MLE of 6

>yn)T

Algorithm 4 Pseudo Code Predict_QDA.

Inputs : Test sample X = (x1,...,x,) " and parameters {wy, p,,, X1}
fork=1,...,K do

| WPk = wida(X; py, Ti)
end
Y = arg maxy wyPy % Predicted labels using Bayes rule
Result: y the predicted class labels
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Implementation of Discriminant analysis models Systemx

Tasks :

m Implement (from the scratch) each of the following functions and
apply them to the given data :

» train_ LDA and predict_LDA
» train QDA and predict_QDA

Datasets :
» Training data Xtrain.txt and ytrain.txt
» Testing data : Xtest.txt
m Plot the results by highlighting the classification and the generative
model for each class

m compare your results to those you could obtain by using standard

packages, for example :
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

from sklearn.discriminant_analysis import

QuadraticDiscriminantAnalysis
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https://chamroukhi.com/data/GDA/Xtrain.txt
https://chamroukhi.com/data/GDA/ytrain.txt
https://chamroukhi.com/data/GDA/Xtest.txt

Mixture Discriminant Analysis Systeinx”

m LDA and QDA model each class conditional density as a Gaussian.

m This may be limited for modeling non-homogeneous classes where some classes are
composed of different sub-groups.

Mixture Discriminant Analysis (MDA)
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Mixture Discriminant Analysis (MDA) Systei”

m Mixture Discriminant Analysis (MDA) models each class conditional density as
Gaussian mixture density, rather than a single Gaussian

m with MDA, we can therefore capture many specific properties of real data such as
multimodality, heterogeneity, heteroskedasticity, etc.

m Model : p(X =a,Y =k;0) =P(Y = k)p(x|Y = k;0r) = wip(x|Y = k;0%)
with each class k has an Mj-component Gaussian mixture density :

M,
p(a]Y =k;01) = > anN (@ pyy, Swa)
=1

m The ay;'s are the non-negative mixing proportions that sum to 1 Zf\i’i ak = 1 Vk.

m Oy = {o, Ekl}l]\i’i is the parameter vector of class k

m we can allow a different covariance matrix for each mixture component as well as a
common covariance matrix
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Training MDA | Systei”

We can show that (Will be detailed later)

dp = iz Ve #Classk
n n
The EM algorithm for each class &
vl e {1,...,Mk}

m(xi;05) D =P(Z; = 1|V = k;0) =

akzN(wz,ukl ) =)

(t) ):(t)) fori=1,...,n

k,g 1 apN (x5 My

o™ = Zym(wi;ew‘“/zwk
=1 i=1

n n

pi =Yy ek)(t)wi/ZTl(miQ 0:)yin
i=1 =1

S =Yy 06) Y (s — i) (i — HZ‘?W)T/ > (@i 1)y
=1 =1
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