Statistical Learning

Master Spécialisé Intelligence Artificielle de Confiance (IAC)

@ Centrale Supélec en partenariat avec l'IRT SystemX

2024/2025.

Faïcel Chamroukhi

Classification

- Supervised Learning
 - Gaussian Discriminant Analysis
 - Linear Discriminant Analysis
 - Quadratic Discriminant Analysis
 - Mixture Discriminant Analysis

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role : given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X)
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm $\mathcal A$
- Data-Scientist's "**Toolbox**" : {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X)
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm $\mathcal A$
- Data-Scientist's "Toolbox": {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X)
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm $\mathcal A$
- Data-Scientist's "**Toolbox"**: {Data, loss, hypothesis, algorithm

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- Data : a random sample $(\boldsymbol{X}_i, Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n = (\boldsymbol{x}_i, y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X)
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "Toolbox": {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_0$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X)
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm $\mathcal A$
- Data-Scientist's "Toolbox": {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\epsilon}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm $\mathcal A$
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X, Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\epsilon}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm ${\mathcal A}$
- Data-Scientist's "Toolbox" : {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\theta}$$

- lacksquare Data : a random sample $(m{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(m{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X).
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm ${\mathcal A}$
- Data-Scientist's "Toolbox": {Data, loss, hypothesis, algorithm}

- The data are represented by a random pair $(X,Y) \in \mathcal{X} \times \mathcal{Y}$ where X is a vector of descriptors for some variable of interest Y
- The objective is **Prediction**, i.e. to seek for a prediction function $h: \mathcal{X} \to \mathcal{Y}$ for which $\widehat{y} = h(x)$ is a good approximation of the true output y
- In a classification problem : typically $X \in \mathcal{X} \subset \mathbb{R}^p$ and $Y \in \mathcal{Y} = \{0,1\}, \{-1,+1\}$ (binary classification) or $\{1,\cdots,K\}$ (multiclass classification)
- \hookrightarrow We will mainly focus on parametric probabilistic models of the form

$$Y = h(X) + \epsilon, \epsilon \sim p_{\epsilon}$$

- lacksquare Data : a random sample $(\boldsymbol{X}_i,Y_i)_{i=1}^n$ with observed values $\mathcal{D}_n=(\boldsymbol{x}_i,y_i)_{i=1}^n$
- Data-Scientist's role: given the data, choose a prediction function h from a class $\mathcal H$ that attempts to "minimize" the prediction error for of all possible data (risk) R(h), under a loss function ℓ measuring the error of predicting Y by h(X)
 - \hookrightarrow minimize the **empirical risk** (data- \mathcal{D}_n -driven) $R_n(h)$
 - \hookrightarrow Minimizing $R_n(h)$ may require an optimization algorithm \mathcal{A}
- Data-Scientist's "**Toolbox**" : {Data, loss, hypothesis, algorithm}

Def. Classifier or classification rule

$$h: \mathcal{X} \to \mathcal{Y}$$

 $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example: Linear predictors

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear predictors (cont.) : $\widehat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Q : How good we are in prediction on a particular pair (x,y)?

Def. Classifier or classification rule

$$h: \mathcal{X} \to \mathcal{Y}$$

 $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example: Linear predictors

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear predictors (cont.) : $\widehat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Q : How good we are in prediction on a particular pair (x,y)?

Def. Classifier or classification rule

$$h: \mathcal{X} \to \mathcal{Y}$$

 $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example: Linear predictors

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear predictors (cont.) : $\widehat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Q: How good we are in prediction on a particular pair (x,y)?

Def. Classifier or classification rule

$$h: \mathcal{X} \to \mathcal{Y}$$

 $x \mapsto h(x)$

is a decision/prediction function, parametric or not, linear or not, ...

Example: Linear predictors

$$h \colon \mathbb{R}^p \to \mathbb{R}$$
$$x \mapsto \langle x, \theta \rangle = \theta^T x$$

The **predicted** values of Y_i 's for new covariates $X_i = x_i$ s correspond to

$$\widehat{y}_i = h(x_i)$$

Example : Linear predictors (cont.) : $\widehat{y}_i = \langle x_i, \theta \rangle = \theta^T x_i$

Q: How good we are in prediction on a particular pair (x,y)?

Def. Loss function

$$\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $(y, h(x)) \mapsto \ell(y, h(x))$

It measures how good we are on a particular (x,y) pair.

(We assume that the distribution of the test data is the same as for the training data).

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
- $lacksquare \operatorname{logarithmic loss}: \ell(y,h_{ heta}(x)) = -\log(p_{ heta}(x,y))$
 - Denoting $\ell(y, h(x)) = \phi(yh(x))$
- Hinge loss $\phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- **Exponential loss** $\phi_{\text{exp}}(u) = \exp(-u)$

Def. Loss function

$$\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $(y, h(x)) \mapsto \ell(y, h(x))$

It measures how good we are on a particular $\left(x,y\right)$ pair.

(We assume that the distribution of the test data is the same as for the training data).

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
- logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$
 - Denoting $\ell(y, h(x)) = \phi(yh(x))$
- Hinge loss $\phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Exponential loss $\phi_{\exp}(u) = \exp(-u)$

Def. Loss function

$$\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $(y, h(x)) \mapsto \ell(y, h(x))$

It measures how good we are on a particular $\left(x,y\right)$ pair.

(We assume that the distribution of the test data is the same as for the training data).

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
- logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$

Denoting
$$\ell(y, h(x)) = \phi(yh(x))$$

- Hinge loss $\phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- **Exponential loss** $\phi_{\text{exp}}(u) = \exp(-u)$

Def. Loss function

$$\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$$

 $(y, h(x)) \mapsto \ell(y, h(x))$

It measures how good we are on a particular (x,y) pair.

(We assume that the distribution of the test data is the same as for the training data).

- "0-1" loss : $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$
- logarithmic loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$
 - Denoting $\ell(y, h(x)) = \phi(yh(x))$
- Hinge loss $\phi_{\text{hinge}}(u) = (1-u)_+$
- Logistic loss $\phi_{\text{logistic}}(u) = \log(1 + \exp(-u))$
- Exponential loss $\phi_{\text{exp}}(u) = \exp(-u)$

Examples of loss functions in classification

FIGURE – Some loss functions in classification : curves of $\ell(u)$ for u=yh(x); $y\in\{-1,1\}$. [plot_losses_classification.m]

For $y \in \{-1,1\}$, with u = yh(x):

- $\bullet \quad \text{``0-1''} \ \operatorname{loss} : \ell(u) = \mathbb{1}_{\operatorname{sign}(u) \neq 1}$
- Hinge loss $\ell(\text{hinge}(u) = (1-u)_+$
- Logistic loss $\ell(logistic(u) = log(1 + exp(-u))$
- Exponential loss $\ell(\exp(u) = \exp(-u)$

Risk

■ **Risk** : the *Expected loss* :

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y)$$

- \hookrightarrow the error of approximating Y by model/hypothesis h(X) as measured by a chosen loss function $\ell(Y,h(X))$ given the pair (X,Y) with (unknown) joint distribution P,
- \rightarrow prediction error : measures the generalization performance of the function h.
 - "0-1" Risk : Under the "0-1"-loss $\ell(y,h(x))=\mathbbm{1}_{h(x)\neq y}$:

$$R(h) = \mathbb{E}_P[\mathbb{1}_{h(x) \neq y}] = \mathbb{P}(h(X) \neq Y). = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{h(x) \neq y} dP(x, y)$$

- ${\bf Q}$: what is the best function h? or equivalently, when the risk R(h) is optimal?

Risk

■ **Risk**: the *Expected loss*:

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y)$$

- \mapsto the error of approximating Y by model/hypothesis h(X) as measured by a chosen loss function $\ell(Y,h(X))$ given the pair (X,Y) with (unknown) joint distribution P,
- ightarrow prediction error : measures the generalization performance of the function h.
 - "0-1" Risk : Under the "0-1"-loss $\ell(y, h(x)) = \mathbb{1}_{h(x) \neq y}$:

$$R(h) = \mathbb{E}_P[\mathbb{1}_{h(x) \neq y}] = \mathbb{P}(h(X) \neq Y). = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{h(x) \neq y} dP(x, y)$$

- ${f Q}$: what is the best function h ? or equivalently, when the risk R(h) is optimal ?

Risk

■ **Risk**: the *Expected loss*:

$$R(h) = \mathbb{E}_P[\ell(Y, h(X))] = \int_{\mathcal{X} \times \mathcal{Y}} \ell(y, h(x)) dP(x, y)$$

- \hookrightarrow the error of approximating Y by model/hypothesis h(X) as measured by a chosen loss function $\ell(Y,h(X))$ given the pair (X,Y) with (unknown) joint distribution P,
- \mapsto prediction error : measures the generalization performance of the function h.
 - "0-1" Risk : Under the "0-1"-loss $\ell(y,h(x))=\mathbbm{1}_{h(x)\neq y}$:

$$R(h) = \mathbb{E}_P[\mathbb{1}_{h(x) \neq y}] = \mathbb{P}(h(X) \neq Y). = \int_{\mathcal{X} \times \mathcal{Y}} \mathbb{1}_{h(x) \neq y} dP(x, y)$$

- ${f Q}$: what is the best function h? or equivalently, when the risk R(h) is optimal?

Optimal prediction function I

Theorem (The Bayes classifier)

Under the (0-1)-loss, $\ell(Y, h(X)) = \mathbb{1}_{h(X) \neq Y}$, the classification function $h^*(x)$ minimizing the risk (the Bayes classifier)

$$R(h) = \mathbb{P}(Y \neq h(X)) = \int_{\mathcal{X}} \mathbb{P}(Y \neq h(X)|X = x) dP_X(x)$$

is given by

$$\forall x \in \mathcal{X}, \quad h^*(x) = \arg \max_{k \in \mathcal{Y}} \mathbb{P}(Y = k | X = x).$$

Def. Decision boundaries

The decision bounadry between each pair of classes k and ℓ , $(k,\ell) \in \mathcal{Y} \times \mathcal{Y}$ is defined by

$$\eta_{k,\ell}(x) = \{x : \mathbb{P}(Y = k | X = x) = \mathbb{P}(Y = \ell X = x)\}\$$

Optimal prediction function II

Proof. Optimal classifier.

Given X=x, the conditional risk under the 0-1 loss is

$$\begin{split} r(h|X=x) &= & \mathbb{E}_{Y|X=x}[\ell(Y,h(X))|X=x] = \mathbb{E}_{Y|X=x}[\mathbb{1}_{Y\neq h(X)}|X=x] \\ &= & \mathbb{P}[Y\neq h(X)|X=x] \\ &= & 1 - \mathbb{P}[Y=h(X)|X=x]. \end{split}$$

By noting that

$$\begin{aligned} & \min_{k \in \mathcal{Y}} r(h|X=x) & = & -1 + \max_{k \in \mathcal{Y}} \mathbb{P}(Y=k|X=x) \\ & \arg\min_{k \in \mathcal{Y}} r(h|X=x) & = & \arg\max_{k \in \mathcal{Y}} \mathbb{P}(Y=k|X=x) \end{aligned}$$

we see that $h^*(x) = \arg\max_{k \in \mathcal{Y}} \mathbb{P}(Y = k | X = x)$ achieves the minimized risk r(h | X = x).

Then the risk
$$R(h^*) = \mathbb{E}_X[-1 + \max_{k \in \mathcal{Y}} \mathbb{P}(Y = k | X = x)]$$
 is Bayes.

Goal: estimate h^* , knowing only the data sample $D_n = (X_i, Y_i)_{i=1}^n$ and loss ℓ .

Empirical Risk Minimization & MLE I

- Then Expected loss R(h) depends on the joint distribution P of the pair (X,Y). In real situations P is in unknown, as we only have a sample $D_n = (X_i,Y_i)_{1 \le i \le n}$,
- → We attempt to minimize the Empirical Risk

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n l(Y_i, h(X_i))$$

to estimate h^* (within a family \mathcal{H})

- \hookrightarrow ERM: $\hat{h}_n = \arg\min_{h \in \mathcal{H}} R_n(h)$ is the **ERM** of h
 - 0-1 Risk : Under the 0-1 loss (standard in classification) : $\ell_{0-1}(y,h(x)) = \mathbb{1}_{y\neq h(x)}$, the empirical 0-1 risk is

$$R_n(h) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{Y_i \neq h(X_i)}$$

ERM and MLE: maximum likelihood risks:

■ MLE (density estimation framework): In generative learning (eg. discriminant analysis), we are interested in modeling the joint distribution P(X,Y) (then the conditional P(Y|X) is obtained by Bayes' Theorem). We seek for an esitmator of the parameters θ of the joint distribution $p_{\theta}(x,y)$.

Empirical Risk Minimization & MLE II

■ Consider the log-loss : $\ell(y, h_{\theta}(x)) = -\log(p_{\theta}(x, y))$. We therefore have the log-likehood risks

$$R(\theta) = -\mathbb{E}[\log p_{\theta}(X, Y)]$$

and

$$R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(x_i, y_i).$$

■ For an i.i.d sample $\{(x_i, y_i)_{i=1}^n\}$, the conditional log-likelihood function of θ is :

$$\log L(\theta) = \sum_{i=1}^{n} \log p_{\theta}(x_i, y_i)$$

Then

$$R_n(\theta) = -\frac{1}{n} \sum_{i=1}^n \log p_{\theta}(x_i, y_i) = -\frac{1}{n} \log L(\theta)$$

→ With the log-loss, ERM coincides with MLE.

Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(X_i = x_i | Y_i = k; \theta_k) = \phi_p(x_i; \mu_k, \Sigma_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean μ_k and covariance matrix Σ_k , defined as

$$\phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)\}$$

- $\bullet \ \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- lacktriangle Data Generating Process under Gaussian Discriminant Analysis : Given heta :
 - i) Sample a class label Y_i given the class weights $oldsymbol{w} = \{w_1, \cdots, w_K\}$,

$$Y_i|w_1,\ldots,w_K \sim \mathsf{Categorical}(1;w_1,\ldots,w_K),$$

ii) Sample an observation $oldsymbol{X}_i$ from the conditional distribution $f(\cdot;oldsymbol{ heta}_k)$

$$X_i|Y_i=k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$$

Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- \blacksquare $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(X_i = x_i | Y_i = k; \theta_k) = \phi_p(x_i; \mu_k, \Sigma_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean μ_k and covariance matrix Σ_k , defined as

$$\phi_d(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2}(\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k)\}$$

- $\bullet \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- lacktriangle Data Generating Process under Gaussian Discriminant Analysis : Given $m{ heta}$:
 - i) Sample a class label Y_i given the class weights $oldsymbol{w} = \{w_1, \cdots, w_K\}$,

$$Y_i|w_1,\ldots,w_K$$
 \sim Categorical $(1;w_1,\ldots,w_K),$

ii) Sample an observation $oldsymbol{X}_i$ from the conditional distribution $f(\cdot;oldsymbol{ heta}_k)$

$$X_i|Y_i = k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$$

■ Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- \blacksquare $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(X_i = x_i | Y_i = k; \theta_k) = \phi_p(x_i; \mu_k, \Sigma_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean μ_k and covariance matrix Σ_k , defined as

$$\phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)\}$$

- $\quad \blacksquare \ \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- **Data Generating Process** under Gaussian Discriminant Analysis : Given θ :
 - i) Sample a class label Y_i given the class weights $oldsymbol{w} = \{w_1, \cdots, w_K\}$,
 - $Y_i|w_1,\ldots,w_K \sim \mathsf{Categorical}(1;w_1,\ldots,w_K),$
 - ii) Sample an observation X_i from the conditional distribution $f(\cdot; \theta_k)$

 $X_i|Y_i = k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$

Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- \blacksquare $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(\boldsymbol{X}_i = \boldsymbol{x}_i | Y_i = k; \boldsymbol{\theta}_k) = \phi_p(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean $\boldsymbol{\mu}_k$ and covariance matrix $\boldsymbol{\Sigma}_k$, defined as

$$\phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)\}$$

- $\bullet \ \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- lacksquare Data Generating Process under Gaussian Discriminant Analysis : Given $oldsymbol{ heta}$:
 - i) Sample a class label Y_i given the class weights $oldsymbol{w} = \{w_1, \cdots, w_K\}$,
 - $Y_i|w_1,\ldots,w_K \sim \mathsf{Categorical}(1;w_1,\ldots,w_K),$
 - ii) Sample an observation X_i from the conditional distribution $f(\cdot; heta_k)$

 $X_i|Y_i = k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$

Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(X_i = x_i | Y_i = k; \theta_k) = \phi_p(x_i; \mu_k, \Sigma_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean μ_k and covariance matrix Σ_k , defined as

$$\phi_d(\mathbf{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2}(\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k)\}$$

- $\quad \blacksquare \ \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- lacktriangle Data Generating Process under Gaussian Discriminant Analysis : Given $m{ heta}$:
 - i) Sample a class label Y_i given the class weights $\boldsymbol{w} = \{w_1, \cdots, w_K\}$,

$$Y_i|w_1,\ldots,w_K \sim \mathsf{Categorical}(1;w_1,\ldots,w_K),$$

ii) Sample an observation $oldsymbol{X}_i$ from the conditional distribution $f(\cdot;oldsymbol{ heta}_k)$:

$$X_i|Y_i = k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$$

Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(X_i = x_i | Y_i = k; \theta_k) = \phi_p(x_i; \mu_k, \Sigma_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean μ_k and covariance matrix Σ_k , defined as

$$\phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)\}$$

- $\bullet \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- lacktriangle Data Generating Process under Gaussian Discriminant Analysis : Given $m{ heta}$:
 - i) Sample a class label Y_i given the class weights ${m w}=\{w_1,\cdots,w_K\}$,

$$Y_i|w_1,\ldots,w_K \sim \mathsf{Categorical}(1;w_1,\ldots,w_K),$$

ii) Sample an observation $oldsymbol{X}_i$ from the conditional distribution $f(\cdot;oldsymbol{ heta}_k)$:

$$X_i|Y_i = k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$$

Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(X_i = x_i | Y_i = k; \theta_k) = \phi_p(x_i; \mu_k, \Sigma_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean μ_k and covariance matrix Σ_k , defined as

$$\phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)\}$$

- $\bullet \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- lacktriangle Data Generating Process under Gaussian Discriminant Analysis : Given $m{ heta}$:
 - i) Sample a class label Y_i given the class weights ${m w}=\{w_1,\cdots,w_K\}$,

$$Y_i|w_1,\ldots,w_K \sim \mathsf{Categorical}(1;w_1,\ldots,w_K),$$

ii) Sample an observation $oldsymbol{X}_i$ from the conditional distribution $f(\cdot;oldsymbol{ heta}_k)$:

$$X_i|Y_i = k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$$

Generative model

$$p(Y_i, \boldsymbol{X}_i; \boldsymbol{\theta}) = \mathbb{P}(Y_i) p(\boldsymbol{X}_i | Y_i; \boldsymbol{\theta})$$

- $\mathbb{P}(Y_i = k) = w_k$ the prior probability of class k,
- $p(X_i = x_i | Y_i = k; \theta_k) = \phi_p(x_i; \mu_k, \Sigma_k)$ the conditional density of class k is the Gaussian p.d.f in \mathbb{R}^p with mean μ_k and covariance matrix Σ_k , defined as

$$\phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = (2\pi)^{-\frac{d}{2}} |\boldsymbol{\Sigma}_k|^{-\frac{1}{2}} \exp\{-\frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)\}$$

- $\bullet \theta = (w_1, \dots, w_K, \boldsymbol{\mu}_1^\top, \dots, \boldsymbol{\mu}_K^\top, \mathsf{vech}^\top(\boldsymbol{\Sigma}_1), \dots, \mathsf{vech}^\top(\boldsymbol{\Sigma}_K))^\top$
- lacktriangle Data Generating Process under Gaussian Discriminant Analysis : Given $m{ heta}$:
 - i) Sample a class label Y_i given the class weights ${m w}=\{w_1,\cdots,w_K\}$,

$$Y_i|w_1,\ldots,w_K \sim \mathsf{Categorical}(1;w_1,\ldots,w_K),$$

ii) Sample an observation $oldsymbol{X}_i$ from the conditional distribution $f(\cdot;oldsymbol{ heta}_k)$:

$$X_i|Y_i = k, \mu_k, \Sigma_k \sim \mathcal{N}_d(\cdot; \mu_k, \Sigma_k)$$

Classification rule & Decision Boundaries

Def. Classification rule

The Bayes' decision rule h(x) defined as

$$\widehat{y}_i = h_{\theta}(x) = \arg \max_{k \in \mathcal{Y}} \mathbb{P}(Y_i = k | \boldsymbol{X}_i = \boldsymbol{x}_i; \boldsymbol{\theta})$$

with

$$\mathbb{P}(Y_i = k | \boldsymbol{X}_i = \boldsymbol{x}_i; \boldsymbol{\theta}) \quad \propto \quad \mathbb{P}(Y_i = k) f(\boldsymbol{X}_i = \boldsymbol{x}_i | Y_i = k; \boldsymbol{\theta}_k)$$

$$\propto \quad w_k \phi_p(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

Def. Decision boundaries

The decision bounadry between each pair of classes k and ℓ , $(k,\ell) \in \mathcal{Y} \times \mathcal{Y}$ is defined by

$$\eta_{k,\ell}(\boldsymbol{x}) = \{ \boldsymbol{x} : \mathbb{P}(Y = k | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\theta}) = \mathbb{P}(Y = \ell | \boldsymbol{X} = \boldsymbol{x}; \boldsymbol{\theta}) \}$$

$$= \{ \boldsymbol{x} : w_k \phi_p(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = w_\ell \phi_p(\boldsymbol{x}_i; \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell) \}$$

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) arises when we assume that all the classes have a common covariance matrix $\Sigma_k = \Sigma \ \forall k = 1, \dots, K$.

$$\eta_{k,\ell}(\boldsymbol{x};\boldsymbol{\theta}) = \left\{ \boldsymbol{x} : \mathbb{P}(Y = k | \boldsymbol{x}; \boldsymbol{\theta}) = \mathbb{P}(Y = k | \boldsymbol{x}; \boldsymbol{\theta}) \right\} \\
= \left\{ \boldsymbol{x} : \log \frac{\mathbb{P}(Y = k | \boldsymbol{x}; \boldsymbol{\theta})}{\mathbb{P}(Y = \ell | \boldsymbol{x}; \boldsymbol{\theta})} = 0 \right\} \\
= \left\{ \boldsymbol{x} : \log \frac{w_k}{w_\ell} + \log \frac{\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})}{\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma})} = 0 \right\} \\
= \left\{ \boldsymbol{x} : \log \frac{w_k}{w_\ell} - \frac{1}{2} (\boldsymbol{\mu}_k + \boldsymbol{\mu}_\ell)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_\ell) + \underbrace{(\boldsymbol{\mu}_k - \boldsymbol{\mu}_\ell)^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x}}_{\boldsymbol{\beta}^T \boldsymbol{x}} = 0 \right\} \\
= \left\{ \boldsymbol{x} : \alpha + \boldsymbol{\beta}^T \boldsymbol{x} = 0 \right\},$$

Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) arises when we assume that all the classes have a common covariance matrix $\Sigma_k = \Sigma \ \forall k = 1, ..., K$.

Consider GDA with $\Sigma_k = \Sigma \ \forall k = 1, \dots, K$, then the decision boundary between two classes k and ℓ is

$$\eta_{k,\ell}(\boldsymbol{x};\boldsymbol{\theta}) = \left\{ \boldsymbol{x} : \mathbb{P}(Y = k | \boldsymbol{x}; \boldsymbol{\theta}) = \mathbb{P}(Y = k | \boldsymbol{x}; \boldsymbol{\theta}) \right\} \\
= \left\{ \boldsymbol{x} : \log \frac{\mathbb{P}(Y = k | \boldsymbol{x}; \boldsymbol{\theta})}{\mathbb{P}(Y = \ell | \boldsymbol{x}; \boldsymbol{\theta})} = 0 \right\} \\
= \left\{ \boldsymbol{x} : \log \frac{w_k}{w_\ell} + \log \frac{\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})}{\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma})} = 0 \right\} \\
= \left\{ \boldsymbol{x} : \underbrace{\log \frac{w_k}{w_\ell} - \frac{1}{2} (\boldsymbol{\mu}_k + \boldsymbol{\mu}_\ell)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_\ell)}_{\alpha} + \underbrace{(\boldsymbol{\mu}_k - \boldsymbol{\mu}_\ell)^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x}}_{\boldsymbol{\beta}^T \boldsymbol{x}} = 0 \right\} \\
= \left\{ \boldsymbol{x} : \alpha + \boldsymbol{\beta}^T \boldsymbol{x} = 0 \right\},$$

 \hookrightarrow the classes are separated by hyperplane in the input space.

Linear Discriminant Analysis

Logistic/Softmax Regression vs LDA

Binary classification

Consider LDA with $\mathcal{Y}=\{0,1\}$, then the posterior is logistic. $\forall k\in\mathcal{Y}$, we have

$$\mathbb{P}(Y_i = 1 | \boldsymbol{x}_i; \boldsymbol{\theta}) = \frac{\exp\{\alpha + \boldsymbol{\beta}^T \boldsymbol{x}_i\}}{1 + \exp\{\alpha + \boldsymbol{\beta}^T \boldsymbol{x}_i\}}$$

with
$$\alpha = \log \frac{w_1}{w_0} - \frac{1}{2}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_0)$$
 and $\boldsymbol{\beta} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$

Multiclass classification

Consider LDA with $\mathcal{Y}=\{1,\ldots,K\}$, then the posterior is softmax. $\forall k\in\mathcal{Y}$, we have :

$$\mathbb{P}(Y_i = k | \boldsymbol{x}_i; \boldsymbol{\theta}) = \frac{\exp\{\alpha_k + \boldsymbol{\beta}_k^T \boldsymbol{x}_i\}}{1 + \sum_{l=1}^{K-1} \exp\{\alpha_l + \boldsymbol{\beta}_l^T \boldsymbol{x}_i\}}$$

with
$$\alpha_k = \log rac{w_k}{w_K} - rac{1}{2}(\mu_k - \mu_K)^T \mathbf{\Sigma}^{-1}(\mu_k + \mu_K)$$
 and $\boldsymbol{\beta}_k = \mathbf{\Sigma}^{-1}(\mu_k - \mu_K)$

 \hookrightarrow Logistic/Softmax Regression and LDA are almost the same

→ They lead to linear decision boundaries

Logistic/Softmax Regression vs LDA

Binary classification

Consider LDA with $\mathcal{Y}=\{0,1\}$, then the posterior is logistic. $\forall k \in \mathcal{Y}$, we have

$$\mathbb{P}(Y_i = 1 | \boldsymbol{x}_i; \boldsymbol{\theta}) = \frac{\exp\{\alpha + \boldsymbol{\beta}^T \boldsymbol{x}_i\}}{1 + \exp\{\alpha + \boldsymbol{\beta}^T \boldsymbol{x}_i\}}$$

with $\alpha = \log \frac{w_1}{w_0} - \frac{1}{2}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_0)$ and $\boldsymbol{\beta} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$

Multiclass classification

Consider LDA with $\mathcal{Y}=\{1,\ldots,K\}$, then the posterior is softmax. $\forall k\in\mathcal{Y}$, we have :

$$\mathbb{P}(Y_i = k | \boldsymbol{x}_i; \boldsymbol{\theta}) = \frac{\exp\{\alpha_k + \boldsymbol{\beta}_k^T \boldsymbol{x}_i\}}{1 + \sum_{l=1}^{K-1} \exp\{\alpha_l + \boldsymbol{\beta}_l^T \boldsymbol{x}_i\}}$$

with $\alpha_k = \log \frac{w_k}{w_K} - \frac{1}{2} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k + \boldsymbol{\mu}_K)$ and $\boldsymbol{\beta}_k = \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)$

 \hookrightarrow Logistic/Softmax Regression and LDA are almost the same

→ They lead to linear decision boundaries

Logistic/Softmax Regression vs LDA

Binary classification

Consider LDA with $\mathcal{Y} = \{0, 1\}$, then the posterior is logistic. $\forall k \in \mathcal{Y}$, we have

$$\mathbb{P}(Y_i = 1 | \boldsymbol{x}_i; \boldsymbol{\theta}) = \frac{\exp\{\alpha + \boldsymbol{\beta}^T \boldsymbol{x}_i\}}{1 + \exp\{\alpha + \boldsymbol{\beta}^T \boldsymbol{x}_i\}}$$

with $\alpha = \log \frac{w_1}{w_0} - \frac{1}{2}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 + \boldsymbol{\mu}_0)$ and $\boldsymbol{\beta} = \boldsymbol{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$

Multiclass classification

Consider LDA with $\mathcal{Y}=\{1,\ldots,K\}$, then the posterior is softmax. $\forall k\in\mathcal{Y}$, we have :

$$\mathbb{P}(Y_i = k | \boldsymbol{x}_i; \boldsymbol{\theta}) = \frac{\exp\{\alpha_k + \boldsymbol{\beta}_k^T \boldsymbol{x}_i\}}{1 + \sum_{l=1}^{K-1} \exp\{\alpha_l + \boldsymbol{\beta}_l^T \boldsymbol{x}_i\}}$$

with $\alpha_k = \log \frac{w_k}{w_K} - \frac{1}{2} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k + \boldsymbol{\mu}_K)$ and $\boldsymbol{\beta}_k = \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)$

Proof. Case of binary classification.

Consider LDA with $\mathcal{Y} = \{0, 1\}$, then the posterior is logistic.

$$\begin{split} \mathbb{P}(Y_{i} = 1 | \boldsymbol{x}_{i}; \boldsymbol{\theta}) &= \frac{\mathbb{P}(Y_{i} = 1) f(\boldsymbol{X}_{i} = \boldsymbol{x}_{i} | Y_{i} = 1; \boldsymbol{\theta})}{\mathbb{P}(Y_{i} = 0) f(\boldsymbol{X}_{i} = \boldsymbol{x}_{i} | Y_{i} = 0; \boldsymbol{\theta}) + \mathbb{P}(Y_{i} = 1) f(\boldsymbol{X}_{i} = \boldsymbol{x}_{i} | Y_{i} = 1; \boldsymbol{\theta})} \\ &= \frac{w_{1} \phi_{d}(\boldsymbol{x}_{i}; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma})}{w_{0} \phi_{d}(\boldsymbol{x}_{i}; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma})} \\ &= \frac{w_{1} \phi_{d}(\boldsymbol{x}_{i}; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}) / w_{0} \phi_{d}(\boldsymbol{x}_{i}; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma})}{1 + w_{1} \phi_{d}(\boldsymbol{x}_{i}; \boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}) / w_{0} \phi_{d}(\boldsymbol{x}_{i}; \boldsymbol{\mu}_{0}, \boldsymbol{\Sigma})} \\ &= \frac{\exp\{\log \frac{w_{1}}{w_{0}} - \frac{1}{2} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{0}) + (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_{i}\}}{1 + \exp\{\log \frac{w_{1}}{w_{0}} - \frac{1}{2} (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_{1} + \boldsymbol{\mu}_{0}) + (\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{T} \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_{i}\}} \\ &= \frac{\exp\{\alpha + \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\}}{1 + \exp\{\alpha + \boldsymbol{\beta}^{T} \boldsymbol{x}_{i}\}} \end{split}$$

with
$$\alpha = \log \frac{w_1}{w_0} - \frac{1}{2} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 + \boldsymbol{\mu}_0)$$
 and $\boldsymbol{\beta} = \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$

Proof. Case of multiclass classification.

Consider LDA with $\mathcal{Y} = \{1, \dots, K\}$, then the posterior is softmax : $\forall k \in \mathcal{Y}$, we have

$$\begin{split} & \mathbb{P}(Y_i = k | \boldsymbol{x}_i; \boldsymbol{\theta}) = \frac{\mathbb{P}(Y_i = k) f(\boldsymbol{X}_i = \boldsymbol{x}_i | Y_i = k; \boldsymbol{\theta})}{\sum_{l=1}^K \mathbb{P}(Y_i = l) f(\boldsymbol{X}_i = \boldsymbol{x}_i | Y_i = l; \boldsymbol{\theta})} = \frac{w_k \phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})}{\sum_{l=1}^K w_l \phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})} \\ & = \frac{w_k \phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}) / w_K \phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_K, \boldsymbol{\Sigma})}{1 + \sum_{l=1}^{K-1} w_l \phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_l, \boldsymbol{\Sigma}) / w_K \phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_K, \boldsymbol{\Sigma})} \\ & = \frac{\exp\{\log \frac{w_k}{w_K} - \frac{1}{2} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k + \boldsymbol{\mu}_K) + (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_i\}}{1 + \sum_{l=1}^{K-1} \exp\{\log \frac{w_k}{w_K} - \frac{1}{2} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k + \boldsymbol{\mu}_K) + (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_i\}} \\ & = \frac{\exp\{\alpha_k + \boldsymbol{\beta}_k^T \boldsymbol{x}_i\}}{1 + \sum_{l=1}^{K-1} \exp\{\alpha_l + \boldsymbol{\beta}_l^T \boldsymbol{x}_i\}} \end{split}$$

with
$$\alpha_k = \log \frac{w_k}{w_K} - \frac{1}{2} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k + \boldsymbol{\mu}_K)$$
 and $\boldsymbol{\beta}_k = \boldsymbol{\Sigma}^{-1} (\boldsymbol{\mu}_k - \boldsymbol{\mu}_K)$

Quadratic Discriminant Analysis (QDA) corresponds to allowing a different covariance matrix for each class. The QDA decision boundaries are quadratic functions in \boldsymbol{x} :

Proof

Consider GDA with different $\{\Sigma_k\}_{k=1}^K$, then the decision boundary between two classes k and ℓ is

$$\eta_{k,\ell}(\boldsymbol{x};\boldsymbol{\theta}) = \left\{ \boldsymbol{x} : \log \frac{\mathbb{P}(Y = k|\boldsymbol{x};\boldsymbol{\theta})}{\mathbb{P}(Y = \ell|\boldsymbol{x};\boldsymbol{\theta})} = 0 \right\} \\
= \left\{ \boldsymbol{x} : \log \frac{w_k}{w_\ell} + \log \frac{\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_k,\boldsymbol{\Sigma}_k)}{\mathcal{N}(\boldsymbol{x};\boldsymbol{\mu}_\ell,\boldsymbol{\Sigma}_\ell)} = 0 \right\} \\
\left\{ \boldsymbol{x} : \log \frac{w_k}{w_\ell} - \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_k|}{|\boldsymbol{\Sigma}_\ell|} \right. \\
\left. - \frac{1}{2} \left[(\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) - (\boldsymbol{x} - \boldsymbol{\mu}_\ell)^T \boldsymbol{\Sigma}_\ell^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_\ell) \right] = 0 \right\}.$$

 \hookrightarrow We then get quadratic discriminant functions in the input space.

Quadratic Discriminant Analysis (QDA) corresponds to allowing a different covariance matrix for each class. The QDA decision boundaries are quadratic functions in \boldsymbol{x} :

Proof.

Consider GDA with different $\{\Sigma_k\}_{k=1}^K$, then the decision boundary between two classes k and ℓ is

$$\begin{split} \eta_{k,\ell}(\boldsymbol{x};\boldsymbol{\theta}) &= & \left\{ \boldsymbol{x} : \log \frac{\mathbb{P}(Y = k | \boldsymbol{x}; \boldsymbol{\theta})}{\mathbb{P}(Y = \ell | \boldsymbol{x}; \boldsymbol{\theta})} = 0 \right\} \\ &= & \left\{ \boldsymbol{x} : \log \frac{w_k}{w_\ell} + \log \frac{\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} = 0 \right\} \\ & \left\{ \boldsymbol{x} : \log \frac{w_k}{w_\ell} - \frac{1}{2} \log \frac{|\boldsymbol{\Sigma}_k|}{|\boldsymbol{\Sigma}_\ell|} \right. \\ & \left. - \frac{1}{2} \left[(\boldsymbol{x} - \boldsymbol{\mu}_k)^T \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_k) - (\boldsymbol{x} - \boldsymbol{\mu}_\ell)^T \boldsymbol{\Sigma}_\ell^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_\ell) \right] = 0 \right\}. \end{split}$$

→ We then get quadratic discriminant functions in the input space.

Maximum-Likelihood Estimation

- Maximize the joint log-likelihood function : $\widehat{\boldsymbol{\theta}} = \arg\max_{\boldsymbol{\theta} \in \Theta} L(\boldsymbol{\theta})$ with $L(\boldsymbol{\theta}) = \log\prod_{i=1}^n p(Y_i = y_i, \boldsymbol{X}_i = \boldsymbol{x}_i; \boldsymbol{\theta}) = \log\prod_{i=1}^n [\mathbb{P}(Y_i = y_i) f(\boldsymbol{X}_i = \boldsymbol{x}_i | Y_i = y_i; \boldsymbol{\theta})].$
- lacksquare Let $y_{ik}=\mathbb{1}_{y_i
 eq k}$ the binary indicator variable. Then we have

$$\begin{split} L(\boldsymbol{\theta}) &= & \log \prod_{i=1}^n \prod_{k=1}^K [\mathbb{P}(Y_i = k) f(\boldsymbol{X}_i = \boldsymbol{x}_i | Y_i = k; \boldsymbol{\theta}_k)]^{y_{ik}} \\ &= & \sum_{i=1}^n \sum_{k=1}^K y_{ik} \log w_k + \sum_{i=1}^n \sum_{k=1}^K y_{ik} \log \phi_d(\boldsymbol{x}_i; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \\ &= & \sum_{i=1}^n \sum_{k=1}^K y_{ik} \log w_k \\ &+ & \sum_{i=1}^n \sum_{k=1}^K y_{ik} \left[-\frac{d}{2} \log(2\pi) - \frac{1}{2} \log |\boldsymbol{\Sigma}_k| - \frac{1}{2} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k) \right] \end{split}$$

- lacktriangle A concave function in $heta \hookrightarrow$ Global maximization is guaranteed
- → A closed-form solution

Maximum-Likelihood Estimation I

Let us denote by

$$\begin{split} L(w_k) &= \sum_{i=1}^n y_{ik} \log w_k, \\ L(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) &= -\frac{1}{2} \sum_{i=1}^n y_{ik} \left[\log |\boldsymbol{\Sigma}_k| + (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k) \right], \end{split}$$

Then

$$L(\boldsymbol{\theta}) = \sum_{k=1}^{K} [L(w_k) + L(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)] + constant,$$

- $\widehat{w}_k = \arg\max_{w_k} L(w_k)$ subject to $\sum_{l=1}^K w_l = 1$
- $\label{eq:max_muk} \quad \widehat{\boldsymbol{\mu}}_k = \arg\max_{\boldsymbol{\mu}_k} L(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$
- $\widehat{\boldsymbol{\Sigma}}_k = \arg \max_{\boldsymbol{\Sigma}_k} L(\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$

Maximum-Likelihood Estimation II

■ To perform this constrained maximization, we introduce the Lagrange multiplier λ ; the resulting unconstrained maximization consists of maximizing the Lagrangian function for $k \in \{1, \ldots, K\}$

$$L_{\lambda}(w_k) = \sum_{i=1}^{n} y_{ik} \log \pi_k + \lambda \left(1 - \sum_{l=1}^{K} \pi_l \right).$$

Taking the derivative of $L_{\lambda}(w_k)$ w.r.t w_k we obtain : $\frac{\partial L_{\lambda}(w_k)}{\partial w_k} = \frac{\sum_{i=1}^n y_{ik}}{w_k} - \lambda$. Then, setting these derivative to zero yields :

$$\frac{\sum_{i=1}^{n} y_{ik}}{w_k} = \lambda.$$

By multiplying each hand side of (24) by π_k and summing over k we get $\sum_{k=1}^K \frac{w_k \times \sum_{i=1}^n y_{ik}}{w_k} = \sum_{k=1}^K \lambda \times \pi_k \text{ which implies that } \lambda = n.$

Finally, from (24) we get the updating formula for the weights w_k 's, that is

$$\widehat{w}_k = \frac{\sum_{i=1}^n y_{ik}}{n} = \frac{n_k}{n} = \frac{\#\text{Class}k}{n}, \quad \forall k \in \{1, \dots, K\}.$$

Estimation the Gaussian parameters I

■ Maximizing w.r.t the means μ_k $\forall k \in \{1, ..., K\}$ the function

$$\begin{split} L(\boldsymbol{\mu}_k) &= -\frac{1}{2} \sum_{i=1}^n y_{ik} (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^\top \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k) \\ &= -\frac{1}{2} \sum_{i=1}^n \sum_{k=1}^K y_{ik} \left[\boldsymbol{x}_i^\top \boldsymbol{\Sigma}_k^{-1} \boldsymbol{x}_i - 2 \boldsymbol{x}_i^\top \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k + \boldsymbol{\mu}_k^\top \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k \right] \end{split}$$

Taking the derivative w.r.t μ_k yields :

$$\frac{\partial L(\boldsymbol{\mu}_k)}{\partial \boldsymbol{\mu}_k} = -\frac{1}{2} \sum_{i=1}^n y_{ik} \left[-2\boldsymbol{\Sigma}_k^{-1} \boldsymbol{x}_i + 2\boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k \right].$$

Then, by setting these derivative to zero we get the MLE for the mean μ_k :

$$\widehat{\boldsymbol{\mu}}_k = \frac{\sum_{i=1}^n y_{ik} \boldsymbol{x}_i}{\sum_{i=1}^n y_{ik}} \quad \forall k \in \{1, \dots, K\}.$$

Estimation the Gaussian parameters I

■ Maximizing w.r.t the covariance matrix Σ_k for k = 1, ..., K the function

$$L(\boldsymbol{\Sigma}_k) = -\frac{1}{2} \sum_{i=1}^n y_{ik} \left[-\log |\boldsymbol{\Sigma}_k^{-1}| + (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^{\top} \boldsymbol{\Sigma}_k^{-1} (\boldsymbol{x}_i - \boldsymbol{\mu}_k) \right]$$

where we used the fact that $\log |\mathbf{A}^{-1}| = -\log |\mathbf{A}|$

■ Taking the derivative w.r.t the precision matrix Σ_k^{-1} (technically easier) :

$$\frac{\partial L(\boldsymbol{\Sigma}_k)}{\partial \boldsymbol{\Sigma}_k^{-1}} = -\frac{1}{2} \sum_{i=1}^n y_{ik} \left[-\boldsymbol{\Sigma}_k + (\boldsymbol{x}_i - \boldsymbol{\mu}_k) (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^\top \right],$$

we used the properties : $\frac{\partial}{\partial \mathbf{A}} \log |\mathbf{A}| = \mathbf{A}^{-T}$

$$\mathbf{u}^{T} \mathbf{A} \mathbf{u} = \operatorname{trace}(\mathbf{u}^{T} \mathbf{A} \mathbf{u}) = \operatorname{trace}(\mathbf{u} \mathbf{u}^{T} \mathbf{A})$$
$$\frac{\partial \operatorname{trace}(\mathbf{B} \mathbf{A})}{\partial \mathbf{A}} = \mathbf{B}^{T}$$

Setting these derivative to zero we get $\widehat{\Sigma}_k = \frac{1}{n_k} \sum_{i=1}^n y_{ik} (x_i - \mu_k) (x_i - \mu_k)^{\top}$. Since the mean is unknown, then we replace it by its MLE $\widehat{\mu}_k$. We then get

$$\widehat{\boldsymbol{\Sigma}}_k = \frac{1}{n_k} \sum_{i=1}^n y_{ik} (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k)^{\top}.$$

Estimation the Gaussian parameters II

Bias correction for $\widehat{\Sigma}_k$: We note that unlike for the proportions w_k and the mean vectos μ_k , the estimator of the covriance matrix is biased. Indeed

$$\begin{split} \mathbb{E}\widehat{\boldsymbol{\Sigma}}_k &= \frac{1}{n_k} \sum_{i=1}^n \mathbb{E}[y_i^k (\boldsymbol{X}_i - \widehat{\boldsymbol{\mu}}_k) (\boldsymbol{X}_i - \widehat{\boldsymbol{\mu}}_k)^\top] \\ &= \frac{1}{n_k} \sum_{i=1}^n \mathbb{E}[y_i^k \boldsymbol{X}_i \boldsymbol{X}_i^\top - y_i^k \widehat{\boldsymbol{\mu}}_k \boldsymbol{X}_i^\top - y_i^k \boldsymbol{X}_i \widehat{\boldsymbol{\mu}}_k^\top + y_i^k \widehat{\boldsymbol{\mu}}_k \widehat{\boldsymbol{\mu}}_k^\top] \\ &= \frac{1}{n_k} \sum_{i=1}^n \mathbb{E}\left[y_i^k \boldsymbol{X}_i \boldsymbol{X}_i^\top - \frac{2}{n_k} y_i^k \sum_{j=1}^n y_j^k \boldsymbol{X}_j \boldsymbol{X}_i^\top + \frac{y_{ik}}{n_k^2} \sum_{j=1}^n y_j^k \boldsymbol{X}_j \sum_{l=1}^n y_j^l \boldsymbol{X}_l^\top\right] \end{split}$$

Estimation the Gaussian parameters III

$$\begin{split} \mathbb{E}[y_i^k \boldsymbol{X}_i \boldsymbol{X}_i^\top] &= \boldsymbol{\Sigma}_k + \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top \\ \mathbb{E}[y_i^k \sum_{j=1}^n y_j^k \boldsymbol{X}_j \boldsymbol{X}_i^\top] &= \mathbb{E}[\boldsymbol{X}_i \boldsymbol{X}_i^\top] + (n_k - 1) \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top \\ &= \boldsymbol{\Sigma}_k + \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top + (n_k - 1) \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top = \boldsymbol{\Sigma}_k + n_k \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top \\ \mathbb{E}\left[y_i^k \sum_{j=1}^n y_j^k \boldsymbol{X}_j \sum_{l=1}^n y_l^k \boldsymbol{X}_l^\top\right] &= \mathbb{E}\left[y_i^k \sum_{j=1}^n \sum_{l=1}^n y_j^k y_l^k \boldsymbol{X}_j \boldsymbol{X}_l^\top\right] \\ &= n_k \mathbb{E}[y_i^k \boldsymbol{X}_i \boldsymbol{X}_i^\top] + n_k (n_k - 1) \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top \\ &= n_k (\boldsymbol{\Sigma}_k + \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top) + n_k (n_k - 1) \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top \\ &= n_k \boldsymbol{\Sigma}_k + n_k^2 \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top \end{split}$$

Then

$$\mathbb{E}[\widehat{\boldsymbol{\Sigma}}_k] = \boldsymbol{\Sigma}_k + \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top - \frac{2}{n_k} \boldsymbol{\Sigma}_k - 2\boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top + \frac{1}{n_k} \boldsymbol{\Sigma}_k + \boldsymbol{\mu}_k \boldsymbol{\mu}_k^\top = \boldsymbol{\Sigma}_k - \frac{1}{n_k} \boldsymbol{\Sigma}_k = \frac{n_k - 1}{n_k} \boldsymbol{\Sigma}_k$$

Estimation the Gaussian covriance in LDA I

lacksquare Consider the problem of maximizing w.r.t the covariance matrix Σ the function

$$L(\mathbf{\Sigma}) = -\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \left[-\log |\mathbf{\Sigma}^{-1}| + (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\top} \mathbf{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu}_k) \right]$$

■ Taking the derivative of this function w.r.t the precision matrix Σ^{-1} , we obtain :

$$\frac{\partial L(\boldsymbol{\Sigma})}{\partial \boldsymbol{\Sigma}^{-1}} = -\frac{1}{2} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} \left[-\boldsymbol{\Sigma} + (\boldsymbol{x}_i - \boldsymbol{\mu}_k)(\boldsymbol{x}_i - \boldsymbol{\mu}_k)^{\top} \right].$$

Then, by setting these derivatives to zero we get the updating formula for the covariance matrix Σ , that is

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} (\boldsymbol{x}_i - \boldsymbol{\mu}_k) (\boldsymbol{x}_i - \boldsymbol{\mu}_k)^{\top}.$$

Since the mean is unknown, then we replace it by its MLE $\widehat{\mu}_k$. We then get

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k)^{\top}.$$

Bias correction for $\widehat{\Sigma}$: We note that unlike for the proportions w_k and the mean vectos μ_k , the estimator of the covriance matrix is biased. Indeed, we can show (similarly as for the MLE of Σ_k) that

$$\mathbb{E}[\widehat{\boldsymbol{\Sigma}}] = \frac{n-K}{n} \boldsymbol{\Sigma}$$

We then take

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n-K} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{ik} (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k)^{\top}.$$

as an unbiased estimator of Σ

$$\mathbb{E}\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{i}^{k} \mathbb{E} \left[\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top} - 2 \frac{1}{n_{k}} \sum_{j=1}^{n} y_{j}^{k} \boldsymbol{X}_{j} \boldsymbol{X}_{i}^{\top} + \frac{1}{n_{k}} \sum_{j=1}^{n} y_{j}^{k} \boldsymbol{X}_{j} \frac{1}{n_{k}} \sum_{l=1}^{n} y_{j}^{l} \boldsymbol{X}_{l}^{\top} \right]$$

 $\mathbb{E}[X_iX_i^{\top}] = \Sigma + \mu_i\mu_i^{\top}$

$$\mathbb{E}[\sum_{j=1}^{n} y_{j}^{k} \boldsymbol{X}_{j} \boldsymbol{X}_{i}^{\top}] = \mathbb{E}[\boldsymbol{X}_{i} \boldsymbol{X}_{i}^{\top}] + (n_{k} - 1)\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}$$

$$= \boldsymbol{\Sigma} + \boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top} + (n_{k} - 1)\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top} = \boldsymbol{\Sigma} + n_{k} \boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}$$

$$\mathbb{E}[\sum_{j=1}^{n} y_{j}^{k} \boldsymbol{X}_{j} \sum_{l=1}^{n} y_{l}^{k} \boldsymbol{X}_{l}^{\top}] = \mathbb{E}[\sum_{j=1}^{n} \sum_{l=1}^{n} y_{j}^{k} y_{l}^{k} \boldsymbol{X}_{j} \boldsymbol{X}_{l}^{\top}] = n_{k} \mathbb{E}[\boldsymbol{X}_{1} \boldsymbol{X}_{1}^{\top}] + n_{k} (n_{k} - 1)\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}$$

$$= n_{k} (\boldsymbol{\Sigma} + \boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top} + (n_{k} - 1)\boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}) = n_{k} \boldsymbol{\Sigma} + n_{k}^{2} \boldsymbol{\mu}_{k} \boldsymbol{\mu}_{k}^{\top}$$

Then

$$\begin{split} \mathbb{E}[\hat{\boldsymbol{\Sigma}}] &= \frac{1}{n}[n\boldsymbol{\Sigma} + n\boldsymbol{\mu}_{k}\boldsymbol{\mu}_{k}^{\top} - 2\sum_{i,k}\boldsymbol{y}_{i}^{k}\frac{1}{n_{k}}\boldsymbol{\Sigma} - 2\sum_{i,k}\boldsymbol{y}_{i}^{k}\boldsymbol{\mu}_{k}\boldsymbol{\mu}_{k}^{\top} + \sum_{i,k}\boldsymbol{y}_{i}^{k}\frac{1}{n_{k}}\boldsymbol{\Sigma}_{k} + \sum_{i,k}\boldsymbol{y}_{i}^{k}\boldsymbol{\mu}_{k}\boldsymbol{\mu}_{k}^{\top}] \\ &= \frac{1}{n}[n\boldsymbol{\Sigma} + n\boldsymbol{\mu}_{k}\boldsymbol{\mu}_{k}^{\top} - 2\sum_{i,k}\boldsymbol{y}_{i}^{k}\frac{1}{n_{k}}\boldsymbol{\Sigma} - 2n\boldsymbol{\mu}_{k}\boldsymbol{\mu}_{k}^{\top} + \sum_{i,k}\boldsymbol{y}_{i}^{k}\frac{1}{n_{k}}\boldsymbol{\Sigma}_{k} + n\boldsymbol{\mu}_{k}\boldsymbol{\mu}_{k}^{\top}] \\ &= \frac{1}{n}[n\boldsymbol{\Sigma} - \sum_{i,k}\boldsymbol{y}_{i}^{k}\frac{1}{n_{k}}\boldsymbol{\Sigma}] \\ &= \frac{1}{n}[n\boldsymbol{\Sigma} - \boldsymbol{\Sigma}(\frac{n_{1}}{n_{1}} + \frac{n_{2}}{n_{2}} + \dots + \frac{n_{K}}{n_{K}})] \\ &= \frac{1}{n}[n\boldsymbol{\Sigma} - K\boldsymbol{\Sigma}] \\ &= \frac{(n - K)}{n}\boldsymbol{\Sigma} \end{split}$$

Inputs: n sample $(\boldsymbol{x}_i, y_i)_{i=1}^n$ arranged as $\mathbf{X} = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_n)^\top$ and $\boldsymbol{y} = (y_1, \dots, y_n)^\top$ $\widehat{\boldsymbol{\Sigma}} = 0$ % d-by-d matrix of zeros

for
$$k = 1, \dots, K$$
 do

$$\widehat{w}_k = \frac{\sum_{i=1}^n y_{ik}}{n}$$

$$\widehat{\boldsymbol{\mu}}_k = rac{\sum_{i=1}^n y_{ik} \boldsymbol{x}_i}{\sum_{i=1}^n y_{ik}}$$

$$\widehat{\boldsymbol{\Sigma}} = \widehat{\boldsymbol{\Sigma}} + rac{1}{n-K} \sum_{i=1}^n y_{ik} (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k) (\boldsymbol{x}_i - \widehat{\boldsymbol{\mu}}_k)^{\top}$$

end

Result: $\widehat{m{ heta}} = \{\widehat{w}_k, \widehat{m{\mu}}_k, \widehat{m{\Sigma}}\}$ the MLE of $m{ heta}$

Algorithm 2 Pseudo Code Predict_LDA.

Inputs : Test sample $\mathbf{X}=(m{x}_1,\ldots,m{x}_n)^{ op}$ and parameters $\{w_k,m{\mu}_k,m{\Sigma}\}$

for
$$k = 1, \ldots, K$$
 do

$$w_k \mathbf{P}_k = w_k \phi_d(\mathbf{X}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

end

 $\widehat{m{y}} = rg \max_k w_k \mathbf{P}_k$ % Predicted labels using Bayes rule

Result: \widehat{y} the predicted class labels

Algorithm 3 Pseudo Code Train_QDA.

Inputs : n sample $({m x}_i,y_i)_{i=1}^n$ arranged as ${f X}=({m x}_1,\ldots,{m x}_n)^{ op}$ and ${m y}=(y_1,\ldots,y_n)^{ op}$

for
$$k = 1, \ldots, K$$
 do

$$\widehat{w}_k = \frac{\sum_{i=1}^n y_{ik}}{n}$$

$$\widehat{oldsymbol{\mu}}_k = rac{\sum_{i=1}^n y_{ik} oldsymbol{x}_i}{\sum_{i=1}^n y_{ik}}$$

$$\widehat{oldsymbol{\Sigma}}_k = rac{1}{\sum_{i=1}^n y_{ik}} \sum_{i=1}^n y_{ik} (oldsymbol{x}_i - \widehat{oldsymbol{\mu}}_k) (oldsymbol{x}_i - \widehat{oldsymbol{\mu}}_k)^ op$$

end

Result: $\widehat{m{ heta}} = \{\widehat{w}_k, \widehat{m{\mu}}_k, \widehat{m{\Sigma}}_k\}$ the MLE of $m{ heta}$

Algorithm 4 Pseudo Code Predict_QDA.

Inputs : Test sample $\mathbf{X}=(m{x}_1,\dots,m{x}_n)^{ op}$ and parameters $\{w_k,m{\mu}_k,m{\Sigma}_k\}$

for
$$k = 1, \dots, K$$
 do

$$w_k \mathbf{P}_k = w_k \phi_d(\mathbf{X}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

end

 $\widehat{m{y}} = rg \max_k w_k \mathbf{P}_k$ % Predicted labels using Bayes rule

Result: \widehat{y} the predicted class labels

Implementation of Discriminant analysis models

Tasks:

- Implement (from the scratch) each of the following functions and apply them to the given data :
 - train_LDA and predict_LDA
 - train_QDA and predict_QDA

Datasets:

- Training data Xtrain.txt and ytrain.txt
- ► Testing data : Xtest.txt
- Plot the results by highlighting the classification and the generative model for each class
- compare your results to those you could obtain by using standard packages, for example :

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import
QuadraticDiscriminantAnalysis

Mixture Discriminant Analysis

- LDA and QDA model each class conditional density as a Gaussian.
- This may be limited for modeling non-homogeneous classes where some classes are composed of different sub-groups.

Mixture Discriminant Analysis (MDA)

- Mixture Discriminant Analysis (MDA) models each class conditional density as Gaussian mixture density, rather than a single Gaussian
- with MDA, we can therefore capture many specific properties of real data such as multimodality, heterogeneity, heteroskedasticity, etc.
- Model : $p(X = x, Y = k; \theta) = \mathbb{P}(Y = k)p(x|Y = k; \theta_k) = w_k p(x|Y = k; \theta_k)$ with each class k has an M_k -component Gaussian mixture density :

$$p(\boldsymbol{x}|Y=k;\boldsymbol{\theta}_k) = \sum_{l=1}^{M_k} \alpha_{kl} \mathcal{N}(\boldsymbol{x}; \boldsymbol{\mu}_{kl}, \boldsymbol{\Sigma}_{kl})$$

- The α_{kl} 's are the non-negative mixing proportions that sum to $1\sum_{l=1}^{M_k} \alpha_{kl} = 1 \ \forall k.$
- $m{ heta}_k = \{lpha_{kl}, m{\mu}_{kl}, m{\Sigma}_{kl}\}_{l=1}^{M_k}$ is the parameter vector of class k
- we can allow a different covariance matrix for each mixture component as well as a common covariance matrix

Training MDA I

We can show that (Will be detailed later)

$$\widehat{\pi}_k = \frac{\sum_{i=1}^n y_{ik}}{n} = \frac{\#\text{Class}k}{n}, \quad \forall k \in \{1, \dots, K\}.$$

The EM algorithm for each class k

$$\forall l \in \{1, \ldots, M_k\}$$

$$\tau_l(\boldsymbol{x}_i;\boldsymbol{\theta}_k)^{(t)} = \mathbb{P}(Z_i = l|Y_i = k;\boldsymbol{\theta}^{(t)}) = \frac{\alpha_{kl}\mathcal{N}(\boldsymbol{x}_i;\boldsymbol{\mu}_k^{(t)},\boldsymbol{\Sigma}_{kl}^{(t)})}{\sum_{k\ell=1}^K \alpha_\ell \mathcal{N}(\boldsymbol{x}_i;\boldsymbol{\mu}_k^{(t)},\boldsymbol{\Sigma}_{k\ell}^{(t)})} \text{ for } i = 1,\dots,n$$

$$\alpha_{kl}^{\mathrm{new}} = \sum_{i=1}^{n} y_{ik} \tau_l(\boldsymbol{x}_i; \boldsymbol{\theta}_k)^{(t)} / \sum_{i=1}^{n} y_{ik}$$

$$\boldsymbol{\mu}_{kl}^{\mathrm{new}} = \sum_{i=1}^{n} y_{ik} \tau_l(\boldsymbol{x}_i; \boldsymbol{\theta}_k)^{(t)} \boldsymbol{x}_i / \sum_{i=1}^{n} \tau_l(\boldsymbol{x}_i; \boldsymbol{\theta}_k)^{(t)} y_{ik}$$

$$oldsymbol{\Sigma}_{kl}^{ ext{new}} = \sum_{i=1}^n y_{ik} au_l(oldsymbol{x}_i; oldsymbol{ heta}_k)^{(t)} (oldsymbol{x}_i - oldsymbol{\mu}_{kl}^{ ext{new}})^{ op} \Big/ \sum_{i=1}^n au_l(oldsymbol{x}_i; oldsymbol{ heta}_k)^{(t)} y_{ik}.$$