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Context

Context: Feature extraction from the switch operation signals

» Signals of the consumed electrical power during switch operations
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» Each switch operation consists of 5 successive electromechanical motions
» The signals present smooth or abrupt changes between different regimes

» The proposed solution: use an adapted regression model whose parameters will be
used as the feature vector for each signal.
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The piecewise regression approach

Piecewise polynomial regression model [McGee & Carleton 70]

» The data: {(x1,t1),...,(Xn, tn)}

e x;: real dependant variable: the observation of the signal
e t;: independant variable representing the time

» The piecewise polynomial regression model generating the signal x is:

Vi=1,...,n, X,':,@Z—I’,‘+0'k6i ; 6,‘NN(O,1)

o k satisfies i € lx = (7, Yk+1]: indexes of elements in segment k
e ri=(1,t,...,t")": time-dependant covariate vector in RPT*
e 3,: regression coefficients vector € R*Y for the k™ segment

The model parameters

(1117’7) With ’lp: (ﬁl""7ﬂK70—%7"'70l2() and 7:(’}/17"'?’7K+1)'
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The piecewise regression approach Parameter estimation

Parameter estimation for the piecewise regression model

Maximize the likelihood of (1), ) or equivalently minimize, with respect to (¢,~):

J(p,v) = ZZ[log0k+ ﬁk )]

k=1 i€l

» Global optimization using Fisher's algorithm [Fisher 58] based on dynamic
programming [Bellman 61; Lechevallier 90] since the criterion J is additive on k

> Local optimization using an iterative variant of Fisher's Algorithm [Samé et al. 07]

Time series approximation and segmentation
. s AT .
>x,-:ZkK:12,-kBkr,- v Vi=1,...,n
> 2 = 1if i € (§4,9es1] (xi belongs to the k* segment) and 2 = 0 otherwise

» Using dynamic programming can be computationally expensive

» Provides a hard partition = adapted for regimes with abrupt changes
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The proposed regression approach A regression model with a hidden logistic process

The proposed regression based on hidden process approach

The global regression model

Vi=1,...,n,, X,':,@Z:r,'-i-O'ZI.G,' ; GiNN(O,l),
> z; € {1,...,K} hidden variable: the class label of the regression model generating
Xi
z=(z,...,2,) is a hidden discrete process )
zi ~ M (1, i (w), ..., mik(w)); where
-
exp (wy v;
m(w)=p(z; = k;W):#,
Do exp(w/vi)
> vi=(1,t,..., t,-q)T time-dependant covariate vector € R+
» w=(wi,...,wk) the parameter vector for the K k logistic functions € RK>*(a+1)
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The proposed regression approach The logistic process

Flexibility of the logistic transformation: Example for kK = 2:

© mi(w) in relation to the dimension g of wy:

q=0 g=1 q=2

Time Time

= g = 1 guarantees segmentation into contiguous segments

@ 7 (w) in relation to wy for g = 1; we parametrize wy by wy = A (o, 1)7
01 = —2 A= =5

T

= The parameter \x controls the quality of transitions between classes
= The parameter oy controls the transition time point.
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Parameter estimation

Parameter estimation by maximum likelihood

» Derived mixture density
K
P(Xi; 9) = Zﬁik(W)N(Xi; Bz—rh Ui)
k=1
» Model parameters
0= (W,By,- Bk, 015+, 0k)
» Log-likelihood of 6:

n K
L(6;x) = Z log Z 7 (w)N (xi; B, ri, 0%).
k=1

i=1

» Maximization of L(6;x) by a dedicated Expectation-Maximization (EM) algorithm
[Dempster et al. 77].
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Parameter estimation EM algorithm

Dedicated EM algorithm

Initialization: 6©

Repeat until convergence:

@ E step: Expectation (at iteration m)

Compute the conditional expectation of the complete log-likelihood L(8; x, z)

Q(0,6™) E [L(e; %, 2)|x, 9('">]

n K
ZZT log Tix(w) ZZ |0gNXn5k"7‘7k)

i=1 k=1 i=1 k=1

Q1(w) Q(By,02:k=1,...,K)

@ M step: Maximization (at iteration m)
Compute 8™ = arg m(;axQ(O7 (™)
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Parameter estimation EM algorithm
Details of the M step

@ Maximization of @, with respect to 3,s: Analytic solutions of K separate

polynomial regression problems weighted by the 7,

c ﬁierl) _ (MTrim)M)flMTl-E(m)x

S

where M is the design matrix and I'im) = diag (7'1(;("), e 77'ﬁ,'(")).

Maximization of Q, with respect to o3s

2(m+1 n m T(m+1
° Uk( = L Qi 1Ti(k )(Xi_ﬁk( +)’i)2'

i=
Z/:1 Tik

@ Maximize Q; with respect to w: Solve a multiclass convex logistic regression
problem weighted by the 7{™s = IRLS algorithm [Chen 99, Green 84,
Krishnapuram 05]

wED — W [82 Ql(w)} 1 9Qu(w)

OWOWT Jyew© OW  wew©

= Applying the IRLS algorithm provides the parameter w(m 1),
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Parameter estimation Time series approximation and segmentation

Time series approximation and segmentation with the
proposed model

Time series approximation

» As in standard regression, given the estimated parameters, x; is approximated by
its expectation Vi =1,...,n:

X = E(x,,B) /x, xi; 0 dx, Zﬂ',k ,Bkr,.

A sum of polynomials weighted by the logistic probabilities 7k (W)'s.

= Adapted for a smooth or abrupt transitions between the regression models.

Time series segmentation

» The estimated class label Z; of x; is given by the rule:

% = arg  max ik (W).
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Experiments  Simulated data

Experiments using simulated data

» Evaluation criteria:

@ Misclassification error rate (segmentation error)
@ Error between the true simulated curve without noise and the
estimated curve (Denoising error):

= Z (xi;0) — E(x;; 0))>

» Comparison with the two piecewise regression approahces
» 2 situations of signals with

e K=3, p=2,qg=1
o Varying the sample size n = 100, 200, ..., 1000
° 0524, cr%:lO, 0%215

» Assessment criteria are averaged over 20 samples for each value of n
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Experiments  Simulated data

Example of simulated signals
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Experiments Results

Results 1 (Situation 1)

Denoising error

Misclassification error rate
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Experiments

Results 2 (Situation 2)

Denoising error

Denoising error
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Computing time

CPU time (seconds)
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Experiments Results
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Experiments Results

Application to real signals

Original signal and
estimated signal
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Conclusion

Conclusion

» In contrast with the basic polynomial regression, the proposed approach authorizes
the regression parameters to vary over time

= Accurate modeling of nonlinear signals

» The proposed model integrates a logistic process which makes possible to change
smoothly within various possible regression models

» In addition to feature extraction, this approach can be used to denoise and
segment time series (or signals)

» Computationally efficient.
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Thank you!
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