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Résumé. Cet article propose un modèle de mélange d’experts pour la classification au-
tomatique de données de régression hétérogènes comportant un nombre de prédicteurs po-
tentiellement grand. L’estimation parcimonieuse des paramètres s’appuie sur une régularisation
de l’estimateur du maximum de vraisemblance pour les experts et les fonctions d’activations,
mise en œuvre par un algorithme EM dédié. La méthode de régularisation proposée, con-
trairement aux méthodes de régularisation de l’état de l’art sur les mélanges d’experts, ne
se base pas sur une solution approchée et ne nécessite pas de seuillage pour retrouver la
solution parcimonieuse. L’étape M de l’algorithme, effectuée par montée de coordonnées,
rendant ainsi prometteur le passage de l’algorithme l’échelle. Une étude expérimentale
met en évidence de bonnes performances de l’approche proposée.

Mots-clés. Mélange d’experts, Sélection de variables, Régularisation, algorithme EM.

Abstract.We consider the Mixture of Experts (MoE) modeling for clustering hetero-
geneous regression data with possibly high-dimensional features and propose a regularized
maximum-likelihood estimation based on a dedicated EM algorithm which integrates co-
ordinate ascent updates of the parameters. Unlike state-of-the art regularized MLE for
MoE, the proposed modeling does not require an approximate of the regularization. The
proposed algorithm allows to automatically obtaining sparse solutions without threshold-
ing, and includes coordinate ascent updates avoiding matrix inversion, and can thus be
scalable. An experimental study shows the good performance of the algorithm in terms
of recovering sparse solutions, density estimation, and clustering.

Keywords. Mixture of experts, Feature selection, Regularization, EM algorithm.

1 Introduction

Mixture of Experts (MoE) introduced by [8] are successful models for modeling hetero-
geneous data in many statistical learning problems including regression, clustering and
classification. A MoE is a fully conditional mixture model where both the mixing propor-
tions (gating network) and the components densities (experts network), depend on some
input covariates. This makes MoE more adapted for input-dependent data than stan-
dard unconditional mixture distributions. A general review of the MoE models and their
applications can be found in [14]. While the MoE modeling with maximum likelihood
inference is widely used, its application in high-dimensional problems is still challenging
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due to the known problem of the ML estimation (MLE) in such a setting, and hence there
is a need to select a subset of the potentially large number of features, that really explain
the problem. Indeed, in high-dimensional setting, the features can be correlated and thus
the actual features that explain the problem reside in a low-dimensional space. This can
be achieved by regularizing the objective function so that to encourage sparse solutions.

In related models, including mixture of linear regressions (MLR), where the mixing
proportions are constant, [10] proposed regularized ML inference, including MIXLASSO,
MIXHARD and MIXSCAD and provided some asymptotic properties corresponding to
these penalty functions. Another L1 penalization for MLR models for high-dimensional
data was proposed by [15] and an adaptive Lasso penalized estimator with oracle inequal-
ity which includes the setting p� n was presented. [12] provided an L1-oracle inequality
by a Lasso estimator for finite mixture of Gaussian regression models. This result can
be seen as a complementary result to [15], by studying the Lasso for its L1-regularization
properties rather than considering it as a variable selection procedure. This work was
extended later in [4] by considering a mixture of multivariate Gaussian regression models.
When the set of features can be seen as to be splitted into groups, [6] introduced the
two types of penalty functions called MIXGL1 and MIXGL2 for MLR models, based on
group Lasso. An MM algorithm version for MLR with Lasso penalty can be found in [11].
Their method allows to avoid matrix operations. In [9], the author extended his MLR
regularization to the MoE setting and provided a root-n consistent and oracle properties
for Lasso and SCAD penalties and developed an EM algorithm [3] for fitting the mod-
els. However, as we will discuss it in section 3.1, this is based on approximated penalty
function, and uses a Newton-Raphson in the updates, which requires matrix inversion.

Here we consider MoE models with regularization as in [9] and propose a regularized
maximum-likelihood inference which doesn’t require an approximate of the regulariza-
tion. We develop a hybrid EM and coordinate ascent algorithm for model fitting. The
proposed algorithm allows to automatically select sparse solutions without thresholding,
and includes coordinate ascent updates avoiding matrix inversion.

2 Modeling with Mixture of Experts (MoE)

Let ((X1, Y1), . . . , (Xn, Yn)) be a random sample of n i.i.d pairs (X i, Yi) where Yi ∈
X ⊂ R is the ith response given some vector of predictors X i ∈ X ⊂ Rp. We con-
sider the MoE modeling for the analysis of a heteregeneous set of such data. Let D =
((x1, y1), . . . , (xn, yn)) be an observed data sample. The MoE model assumes that the
pairs (x, y) are generated from K tailored probability density components (experts) gov-
erned by a hidden categorical random variable Z ∈ {1, . . . , K} that indicates the com-
ponent from which a particular pair is drawn. The latter represents the gating network.
Formally, the MoE an be defined by the following probability density (or mass) function:

f(yi|xi;θ) =

K∑
k=1

πk(xi;w)f(yi|xi;θk) (1)

where the gating network defined by the distribution of the hidden variable Z given the
predictor x, πk(xi;w) = P(Zi = k|Xi = xi;w) =

exp(wk0+x
T
i wk)

1+
∑K−1

l=1 exp(wl0+xT
i wl)

is in general a softmax
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network and the parameter vector is θ = (wT
1 , . . . ,w

T
K−1,θ

T
1 , . . . ,θ

T
K)T ∈ Rνθ where θk

(k = 1, . . . , K) is the parameter vector of the kth expert. The experts are chosen to
sufficiently represent the data for each group k. For example, MoE for non-symmetric
data and robust MoE [2, 1, 13] have been introduced. For a review on MoE, types of
gating networks and experts networks, the reader is refereed to [14]. For the case of
univariate continuous outputs Yi, a common choice to model the relationship between the
input x and the output Y is by considering regression functions, typically Gaussian.

3 Regularized MoE modeling (RMoE)

The parameter vector θ of the MoE (1) is commonly estimated by maximizing the log-

likelihood logL(θ) =
∑n
i=1 log

[∑K
k=1 πk(xi;w)N (yi;βk0 + βTk xi, σ

2
k)
]
by using the EM algorithm

[3, 8] which allows to iteratively find an appropriate local maximizer of the log-likelihood.
However, it is well-known that the MLE may be unstable of even infeasible in high-
dimension namely due to possibly redundant and correlated features. In such a context, a
regularization of the MLE is needed. Regularized maximum likelihood estimation allows
the selection of a relevant subset of features for prediction and thus encourages sparse
solutions. In mixture of experts modeling, one may consider both sparsity in the feature
space of the gates, and of the experts. We propose to infer the MoE model by maximizing a
regularized log-likelihood criterion, which encourages sparsity for both the gating network
parameters and the expert parameters and does not require any approximation, along with
performing the maximization by coordinate ascent, so that to avoid matrix inversion.

3.1 Regularized maximum-likelihood estimation of the MoE

The proposed regularization combines a Lasso penalty for the experts parameters, and
an Elastic-Net like penalty for the gating network, defined by:

PL(θ) = L(θ)−
K∑
k=1

λk‖βk‖1 −
K−1∑
k=1

γk‖wk‖1 −
ρ

2

K−1∑
k=1

‖wk‖22. (2)

A similar strategy were proposed in [9] where the author proposed a regularized ML
function like (2) but which is then approximated in the model inference algorithm. The
devoloped EM algorithm for fitting the model follows indeed the suggestion of [5] to
approximate the penalty function in a some neighbourhood by a local quadratic function.
Therefore, the Newton-Raphson method could be used to update parameters in the M-
step. The weakness of this design is that once a feature is set to zero, it may never
reenter the model at a later stage of the algorithm. To avoid this numerical instability
of the algorithm due to the small values of some of the features in the denominator
of this approximation, [9] replaced that approximation by an ε-local quadratic function.
Unfortunately, these strategies have some drawbacks. First, by approximating the penalty
functions with (ε-)quadratic functions, almost surely none of the components will be
exactly zero. Hence, a threshold should be considered to declare a coefficient is zero
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and this threshold affects the degree of sparsity. Secondly, it cannot guarantee the non-
decreasing property of the EM algorithm of the penalized objective function. Thus, the
convergence of the EM algorithm cannot be ensured. One has also to choose ε as an
additional tuning parameter in practice. Our proposal overcomes these limitations.

3.2 Parameter estimation with a block-wise EM algorithm

We propose a block-wise EM algorithm, which integrates a coordinate ascent algorithm
for updating the model parameters, to monotonically find local maximizers of (2). After
starting with an initial solution θ(0), the algorithm alternates between the two following
steps until convergence (i.e., when there is no longer a significant change in the relative
variation of the regularized log-likelihood (2)).

E-step: Compute the conditional expectation Q(θ,θ(q)) of the penalized complete-data

log-likelihood, given the observed data D and a current parameter vector θ(q). This only

requires the computation of the posterior component memberships τ
(q)
ik for each i and k:

τ
(q)
ik = P(Zi = k|yi,xi;θ(q)) =

πk(xi;w
(q))N (yi;β

(q)
k0 + βTk x

(q)
i , σ

(q)2
k )∑K

l=1 πl(xi;w
(q))N (yi;β

(q)
l0 + βTl x

(q)
i , σ

(q)2
l )

. (3)

M-step: Update the parameters by maximizing the Q-function:

Q(θ;θ(q)) =
∑
i,k

τ
(q)
ik log πk(xi;w)−

K−1∑
k=1

(γk‖wk‖1 −
ρ

2
‖wk‖22)︸ ︷︷ ︸

Q(w;θ(q))

+
∑
i,k

τ
(q)
ik log f(yi|xi;β, σ2

k)−
K∑
k=1

λk‖βk‖1︸ ︷︷ ︸
Q(β,σ;θ(q))

.

We propose a coordinate ascent algorithm to update w and the β’ parameters. Indeed,
based on [16] with regularity conditions, then the coordinate ascent algorithm is successful

in updating w. The function Q(w,θ(q)) is decomposed into separate problems of weighted
and smoothly regularized multinational logistic regression problems. Thus, one can use

one-dimensional generalized Newton-Raphson algorithm with initial value w
(0)
kj = w

(q)
kj

to find the maximizers of these functions. The mth iteration of this coordinate ascent
algorithm is given by: w(m+1)

kj = w
(m)
kj −

∂Q(wkj ;θ
(q))

∂wkj

∣∣∣
w

(m)
kj

(
∂2Q(wkj ;θ

(q))
∂2wkj

)−1∣∣∣
w

(m)
kj

, where the gradient

and the hessian are analytic. Next, we alternate between the update of βkj and σk, in

Q(β, σ;θ(q)). This consists in solving K weighted lasso problems and we obtain the
following closed-form coordinate ascent updates:

β
(m+1)
kj = S

λkσ
(q)2
k

n∑
i=1

τ
(q)
ik r

m
ikjxij

/ n∑
i=1

τ
(q)
ik x

2
ij , and β

(m+1)
k0 =

n∑
i=1

τ
(q)
ik (yi − βTk x

(m+1)
i )

/ n∑
i=1

τ
(q)
ik (4)

with r
(m)
ikj = yi − β

(m)
k0 − β

T
k x

(m)
i + β

(m)
kj xij and S

λkσ
(q)2
k

(.) is a soft-thresholding operator

defined by [Sγ(u)]j = sign(uj)(|uj | − γ)+ and (x)+ a shorthand for max{x, 0}, with initial

values (β
(0)
k0 ,β

(0)
k ) = (β

(q)
k0 ,β

(q)
k ). Then, rerun the E-step, and update σ2k by

σ
2(q+2)
k =

n∑
i=1

τ
(q+1)
ik (yi − β(q+2)

k0 − β(q+2)
k

T
xi)

2
/ n∑
i=1

τ
(q+1)
ik . (5)

This algorithm, at each iteration, improves the optimised penalised log-likelihood function
(2). Also we can directly get zero coefficients without thresholding unlike in [9, 7].
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4 Experimental results

We consider predictors {xi} generated from a zero-mean multivariate Gaussian distri-
bution with correlation structure corr(xij, xij′) = 0.5|j−j′|. The response Y is generated
from a normal MoE regressors model with K = 2, n = 300 and parameters: (β10,β1)

T =
(0, 0, 1.5, 0, 0, 0, 1)T ; (β20,β2)

T = (0, 1,−1.5, 0, 0, 2, 0)T ; (w10,w1)
T = (1, 2, 0, 0,−1, 0, 0)T .

The results are averaged over 100 data sets. We consider nonpenalized MoE, MoE with
ridge penalty for the gates (MoE-L2), MoE with BIC penalty for feature selection (MoE-
BIC) and MIXLASSO (see [10]). For BIC selection, we consider a pool of 5× 4× 5 = 100
candidates to choose the best submodel. Table 1 presents the sensitivity/specificity results
(i.e, proportion of correctly estimated zero coefficients and nonzero coefficents) and the
clustering (including correct classification rate and the Adjusted rand index ARI). We can

Sensitivity/Specificity Correct
Method Expert 1 Expert 2 Gate classification ARI

S1 S2 S1 S2 S1 S2 rate
MoE 0.000 1.000 0.000 1.000 0.000 1.000 89.57%(1.65%) 0.623(.053)

MoE-L2 0.000 1.000 0.000 1.000 0.000 1.000 89.62%(1.63%) 0.624(.052)
MoE-BIC 0.920 1.000 0.930 1.000 0.850 1.000 90.05%(1.65%) 0.638(.053)

MIXLASSO 0.775 1.000 0.6933 1.000 N/A N/A 82.89%(1.92%) 0.4218(.050)
MoE-Lasso+L2 0.700 1.000 0.803 1.000 0.853 0.945 89.46%(1.76%) 0.619(.056)

Table 1: Sensitivity (S1)/Specificity (S2) and clustering error summaries.

see that the proposed algorithm performs very well to retrieve the actual sparse support.
Actually, the L2 and MoE models cannot be considered as model selection methods since
their sensitivity criterion almost surely equal zero. The Lasso+L2 performs quite well in
terms of experts 1 and 2 while the feature selection becomes more difficult for the gate
parameters w since there are correlations between features. The BIC provides very good
results in general. However, in practice to obtain the best submodel we must consider a
lot of cases and this restricts the application capability of BIC. The MIXLASSO, in some
sense can select the actual non-zero features for the experts but this model doesn’t perform
well in clustering. We apply and evaluate the algorithm on the real data set of baseball
salaries (in the same setting as in [10] (32 features)). The results in Table 2 provide the

Method R2 MSE Exp.1 Exp.2 Gate
MoE 0.8099 0.2625(.758) 0 0 0

MIXLASSO 0.4252 1.1858(2.792) 19 21 N/A
MoE-Lasso+L2 0.8020 0.2821(.633) 17 20 29

Table 2: MSE between observations and prediction and R2 for Baseball salaries data.

number of zero coefficients in the experts and the gates of the estimated parameters. We
can see that the proposed algorithm shrinks some parameters to zero and has acceptable
results compared to MoE. It also has better results compared to MIXLASSO.
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5 Conclusion and future work
We proposed a regularized MLE for the MoE model which encourages sparsity, and devel-
oped a blockwise EM algorithm to monotonically maximize this regularized objective to-
wards at least a local maximum. The proposed regularization does not require using using
approximations and the proposed algorithm is based on univariate updates of the model
parameters via coordinate ascent, which allows to tackle problems in high-dimensional
computation and to promote its scalability. The experimental results confirm that the
algorithm performs well in feature selection and clustering of heteteregeneous regression
data. A future work would consist in hierarchical MoE and MoE for discrete data.
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