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ABSTRACT
We propose a new unsupervised learning algorithm to fit regression
mixture models with unknown number of components. The developed
approach consists in a penalized maximum likelihood estimation carried
out by a robust expectation–maximization (EM)-like algorithm. We derive
it for polynomial, spline, and B-spline regression mixtures. The proposed
learning approach is unsupervised: (i) it simultaneously infers the model
parameters and the optimal number of the regressionmixture components
from the data as the learning proceeds, rather than in a two-fold scheme as
in standard model-based clustering using afterward model selection crite-
ria, and (ii) it does not require accurate initialization unlike the standard EM
for regressionmixtures. Thedevelopedapproach is applied to curve cluster-
ing problems. Numerical experiments on simulated and real data show that
the proposed algorithm performs well and provides accurate clustering
results, and confirm its benefit for practical applications.
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1. Introduction

Mixturemodelling [1] is one of themost popular and successful approaches in density estimation and
cluster and discriminant analyses.[1–6] In this paper, we focus on the finite mixture model [1] and
its use in clustering, that is, model-based clustering,[2,4,6] which is a widely used and a successful
approach in cluster analysis. In the finite mixture approach for cluster analysis, the data probability
density function is assumed to be a mixture density, each component density being associated with a
cluster. The problemof clustering, therefore, becomes the one of estimating the parameters of themix-
ture model (e.g. estimating themean vector and the covariance matrix for each component density in
the case of Gaussian mixture models (GMMs)). Maximum likelihood estimation of the mixture den-
sity is often performed using thewell-known expectation–maximization (EM) algorithm [7,8] thanks
to its good desirable properties of stability and reliable convergence. One of the main model-based
clustering approaches is the one based on the finiteGMMand the EMalgorithmor its extensions.[1,8]
It concerns in general multivariate (vectorial) data. However, in many areas of application, such as
electrical engineering,[9] railway monitoring,[10] speech or phoneme recognition,[11] radar wave-
form recognition,[12] etc, the individuals are curves or functions, which aremore structured, so that a
standardmultivariate analysis that considers individuals as vectorial data, is not adapted. The adapted
analysis approaches in this case relate the functional data analysis (FDA) framework [13,14] which
concerns the paradigm of data analysis for which the individuals are curves or time series, or more
generally functions, rather than vectors of reduced dimensions. In this case, the clustering can be
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2 F. CHAMROUKHI

performed by using dedicated model-based curve clustering approaches, in particular the regression
mixture model, including polynomial regression mixtures (PRM), spline regression mixtures (SRM),
and B-spline regression mixtures (bSRM).[15–17] Non-parametric statistical approaches have also
been proposed for functional data discrimination [11,18] and clustering.[11]

In this paper, we focus on regression mixtures and their use in model-based curve clustering.
Modellingwith regressionmixtures is an important topic in the general family ofmixturemodels. The
regression mixture model [15,17,19–26] arises when we assume that the observed response yi for the
predictor variable xi is generated from one of K possibly parametric regression functions g(yi|xi; θk)
of parameters θk with prior probability πk. This includes PRM, SRM, and bSRM. These three models
are considered here. The use of regression mixtures for density estimation as well as for cluster and
discriminant analyses, requires fitting the mixture parameters.

The problem of fitting regressionmixturemodels is a widely studied problem in statistics, machine
learning, and data analysis, particularly for cluster analyses. It is usually performed by maximum
likelihood by using the EM algorithm.[7,8,17,21] However, it is well-known that the initialization
is crucial for EM. If the initialization is not appropriately performed, the EM algorithm may lead to
unsatisfactory results. The EM algorithm also requires the number of clusters to be given a priori. The
problem of selecting the number of mixture components in this case can be addressed by using, in
an afterward step, some model selection criteria to choose one from a set of pre-estimated candidate
models. The problem of fitting regression mixtures is also related to the one of fitting Gaussian mix-
tures formultivariate data, for which some solutions have been provided particularly those in [27,28].
However, these approaches mainly concern GMMs for multivariate data, rather than functional data
or curves.

In this paper, we consider regression mixtures and their use in model-based clustering for curves,
rather than for vectorial data. We propose a new unsupervised learning algorithm to fit regres-
sion mixture models with unknown number of components. The developed unsupervised learning
approach consists in a penalized maximum likelihood estimation carried out by a robust EM-like
algorithm.We derive the proposed algorithm for fitting PRM, SRM, and bSRM. The proposed learn-
ing approach is unsupervised. It simultaneously infers themodel parameters and the optimal number
of the regressionmixture components from the data as the learning proceeds, rather than in a two-fold
scheme as in standardmodel-based clustering using afterwardmodel selection criteria. Furthermore,
it does not require accurate initialization unlike the standard EM for regression mixtures.

This paper is organized as follows. In Section 2, we give a background on regression mixtures
and their use in model-based clustering. In Section 3, we present the proposed approach and the
robust EM-like algorithm for fitting regression mixtures and model-based curve clustering. Then,
in Section 4, we present experimental results on both simulated data and real-world data sets to
apply and assess the proposed approach. Finally, in Section 5, we discuss the proposal and provide
concluding remarks and future directions.

2. Regressionmixtures

The finite regressionmixturemodel provides a way tomodel data arising from a number of unknown
classes of conditionally dependent observed data. Let us denote by D = ((x1, y1), . . . , (xn, yn)) an
observed independently and identically distributed (i.i.d) sample where each individual is a couple of
a response yi and its corresponding covariate xi. For example, in the case of curves, the response con-
sists of mi observations yi = (yi1, . . . , yimi) (regularly) observed at the inputs xi = (xi1, . . . , ximi) for
all i = 1, . . . , n (e.g. x may represent the sampling time in a temporal context). The finite regression
mixture model assumes that each individual (xi, yi) is drawn from a mixture density of K (possi-
bly unknown) components, whose mixing proportions are (π1, . . . ,πK) where πk = p(zi = k) is the
prior probability of component k, zi ∈ {1, . . . ,K} being the hidden class label of the ith individual. A
commonway tomodel the conditional dependence in the observed data is to use regression functions.
The regression mixture model assumes that each mixture component k is a conditional component
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 3

density fk(yi|xi; θk) of a regression model with parameters θk. This includes PRM, SRM, and bSRM,
see for example.[16,21,29] One can also use generative hidden process regression mixtures [30–32]
which can be seen as a hierarchical dynamical regression mixture model which also performs curve
segmentation, in addition to mixture density estimation and curve clustering.

The PRM assumes that each observation (xi, yi) is drawn from one of K polynomial regression
functions with coefficients βk corrupted by a standard zero-mean Gaussian noise:

yi = Xiβk + εik, (1)

where Xi is the mi × (p+ 1) regression (Vandermonde) matrix with rows xj = (1, xij, x2ij . . . , x
p
ij), p

being the polynomial degree, βk = (βk0, . . . ,βkp)
T is the (p+ 1)× 1 vector of regression coefficients

for class k, εik ∼ N (0, σ 2
k Imi) is a multivariate standard zero-mean Gaussian noise with a covariance

matrix σ 2
k Imi , and Imi denotes the mi ×mi identity matrix. Thus, the PRM is given by the following

conditional mixture density:

f (yi|xi; θ) =
K∑

k=1
πk N (yi;Xiβk, σ

2
k Imi)· (2)

The model parameters are given by the parameter vector θ = (π1, . . . ,πK , θ1, . . . , θK) where the
πk’s are the non-negative mixing proportions that sum to 1 and θk = (βk, σ 2

k ) represents the
regression parameters and the noise variance for cluster k. The unknown parameter vector θ is
generally estimated by maximizing the observed-data log-likelihood given an i.i.d data set D =
((x1, y1), . . . , (xn, yn)):

L(θ) =
n∑

i=1
log

K∑
k=1

πk N (yi;Xiβk, σ
2
k Imi)· (3)

This is usually performed iteratively via EM.[7,16,17]

2.1. Standard EM for fitting regressionmixtures

The EM algorithm for regression mixtures starts with an initial parameter vector θ (0) and alternates
between the two following steps until convergence:

2.1.1. E-step
This step computes the expected log-likelihood for the complete-data (D, z) where z = (z1, . . . , zn)
are the unknown cluster labels, given the observed dataD and a current estimation θ (q) of the param-
eter vector θ , q being the current iteration number. It simply consists in computing the posterior
probability that the ith observation is generated from cluster k:

τ
(q)
ik = p(zi = k|yi, xi; θ (q)) = π

(q)
k N (yi;Xiβ

(q)
k , σ 2(q)

k Imi

)
∑K

h=1 π
(q)
h N (yi;Xiβ

(q)
h , σ 2(q)

h Imi)
· (4)

2.1.2. M-step
This step updates the model parameters and provides the parameter vector θ (q+1) by maximizing the
expected complete-data log-likelihood computed at the E-step, with respect to θ and provides the
following parameter updates [1,8,15,16]:

π
(q+1)
k = 1

n

n∑
i=1

τ
(q)
ik (k = 1, . . . ,K), (5)
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4 F. CHAMROUKHI

β
(q+1)
k =

[ n∑
i=1

τ
(q)
ik XT

iXi

]−1 n∑
i=1

τ
(q)
ik Xi

Tyi, (6)

σ
2(q+1)
k = 1∑n

i=1 τ
(q)
ik mi

n∑
i=1

τ
(q)
ik ‖ yi − Xiβk ‖2 . (7)

The pseudo code 1 summarizes the standard EM algorithm for PRMs.

Algorithm 1 Pseudo code of the standard EM algorithm for regression mixtures.
Inputs: Data D = ((x1, y1), . . . , (xn, yn)), number of clusters K, and polynomial
degree p
1: fix a threshold υ > 0 ; set q← 0 (iteration)

Initialization: θ (0) = (π
(0)
1 , . . . ,π(0)

K , θ (0)
1 , . . . , θ (0)

K ):
2: Initialize the partition randomly or by running K-means and initialize the πk’s
3: Fit a regression model with parameters θ

(0)
k = (β

(0)
k , σ 2(0)

k ) to each cluster
4: while increment in log-likelihood > ε do
5: //E-step:
6: for k = 1, . . . ,K do
7: Compute τ

(q)
ik for i = 1, . . . , n using Equation (4)

8: end for
9: //M-step:
10: for k = 1, . . . ,K do
11: Compute π

(q+1)
k using Equation (5)

12: Compute β
(q+1)
k using Equation (6)

13: Compute σ
2(q+1)
k using Equation (7)

14: end for
15: q← q+ 1
16: end while
Outputs: θ̂ = θ (q), τ̂ik = τ

(q)
ik

2.2. SRM and bSRM

The SRM (respectively, bSRM) is an extension of the previously described PRM to a semiparametric
modelling by relying on splines (respectively, B-splines).

2.2.1. Spline and B-spline regression
Splines [33] are widely used for function approximation based on constrained piecewise polynomials.
Let ξ = ξ0 < ξ1, . . . ,< ξL < ξL+1 be ordered knots, including L internal knots, ξ0 and ξL+1 being the
two boundary knots. An order-M spline with knots ξ is a piecewise-polynomial of degree p = M − 1
with continuous derivatives at the interior knots up to order M − 2. For example, an order-2 spline
is a continuous piecewise linear function. The spline regression function can be written as:

yij =
p∑

	=0
β	x	

ij +
L∑

	=1
β	+p(xij − ξ	)

p
+ + εij, (8)

where (xij − ξ	)+ = xij − ξ	 if xij ≥ ξk and (xij − ξ	)+ = 0 otherwise,β = (β0, . . . ,βL+p)T inRL+M
is the vector of spline coefficients, and ε is an additive Gaussian noise. This spline regression model
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 5

can be written in a vectorial form as

yi = Siβ + εi, (9)

where Si is the mi × (L+M) spline regression matrix with rows sj = (1, xij, x2ij . . . , x
p
ij, (xij −

ξ1)
p
+, . . . , (xij − ξL)

p
+).

For splines, the columns of the regressionmatrixX tend to be highly correlated since each column
is a transformed version of x. This collinearity may result in a nearly singular matrix and imprecision
in the spline fit.[34] B-splines allows efficient computations thanks to the block matrix form of the
regressionmatrix. An order-M B-spline function is defined as a sum of linear combination of specific
basis functions B	,M as:

yij =
L+M∑
	=1

β	B	,M(xij), xij ∈ [ζ	, ζ	+M], (10)

where each Mth order B-spline B	,M is a piecewise polynomial of degree p = M − 1 that has finite
support over [ζl, ζ	+M] and is zero everywhere else. Each of the basis functions B	,M(xij) can be com-
puted as in [35] (see also Appendix 1). The vectorial form for the B-spline regression model can be
written as:

yi = Biβ + εi, (11)

where each row of themi × (L+M) B-spline regression matrix Bi for the ith curve is given by: bj =
(B1,M(xij), B2,M(xij), . . . , BL+M,M(xij)).

2.2.2. SRM and bSRM and the EM algorithm
The SRM (respectively, B-spline) is similarly defined as the PRM described previously. The mixture
density in this case is given by Equation (2) where the regression matrix Xi is replaced by the spline
regression matrix Si (respectively, the B-spline regression matrix Bi).

The parameter estimation procedure for the SRM and bSRM is the same as the one used for the
PRM, that is maximum likelihood estimation via the EM algorithm. The E- and M- steps are still the
same, as well as as the initialization procedure and the convergence conditions.

2.3. Regressionmixtures formodel-based clustering

From a clustering prospective, the estimated mixture components can be interpreted as K clusters,
where each cluster is associated to amixture component. Thus, once themodel parameters have been
estimated, the posterior cluster probabilities given by Equation (4) can be used as a fuzzy partition
of the data into K clusters. They indeed represent the a posteriori uncertainty, given the observed
data and the estimated model, about which cluster k each observed data (xi, yi) is originated from.
Furthermore, a hard partition of the data can then be obtained by assigning each observation to the
cluster with the highest posterior probability (MAP rule), that is, by estimating the cluster label as:

ẑi = arg
K

max
k=1

τ̂ik· (12)

However, it can be noticed that, the standard EM algorithm for all theses regression mixture models
is sensitive to initialization. It might yield poor estimations if the mixture parameters are not initial-
ized properly. The EM initialization in general can be performed from a randomly chosen partition
of the data or by computing a partition from another clustering algorithm such as K-means, Classi-
fication EM,[36] Stochastic EM,[37] etc or by initializing EM with a few number of iterations of EM
itself. Several works have been proposed in the literature in order to overcome this drawback and
making the EM algorithm for Gaussian mixtures robust with regard initialization.[28,38,39] Further
details about choosing starting values for the EM algorithm for Gaussian mixtures can be found for
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6 F. CHAMROUKHI

example in [38]. In addition, the EM algorithm requires the number of mixture components (clus-
ters) to be known. While the number of clusters can be chosen by some model selection criteria such
as the Bayesian information criterion (BIC),[40] the Akaike information criterion (AIC) [41] or the
integrated classification likelihood criterion,[42] or resampling methods such as bootstrap,[43,44]
this requires performing an afterward model selection procedure. Some authors have considered this
issue in order to estimate the unknown number of mixture components in GMMs, for example in
[28,45].

In general, these two issues have been considered each separately. Among the approaches that con-
sider the problem of robustness with regard to initial values and the one of estimating the number of
mixture components, in the same algorithm, one can cite the EM algorithm proposed in [27]. This
EM algorithm is capable of selecting the number of components and attempts to be not sensitive
with regard to initial values. It optimizes a minimum message length criterion, which is a penal-
ized log-likelihood, rather than the observed-data log-likelihood. The penalization term allows to
control the model complexity. It starts by fitting a mixture model with a large number of clusters
and discards invalid clusters as the learning proceeds. The degree of validity of each cluster is mea-
sured through the penalization term which includes the mixing proportions to know if the cluster
is small or not to be discarded, and therefore to reduce the number of clusters. More recently, in
[28], the authors developed a robust EM-like algorithm for model-based clustering of multivariate
data using GMMs that simultaneously addresses the problem of initialization and the one of estima-
tion of the number of mixture components. This algorithm overcomes some initialization drawback
of the EM algorithm proposed in [27]. As shown in [28], this problem regarding initialization can
become more serious especially for a data set with a large number of clusters. However, these pre-
sented model-based clustering approaches, including those in [27,28], are concerned with vectorial
datawhere the observations are assumed to be vectors of reduced dimension.When the data are rather
curves or functions, they are not adapted. Indeed, when the data are functional where the individuals
are presented as curves or surfaces rather than vectors, they are in general very structured. Relying
on standard multivariate mixture analysis may therefore lead to unsatisfactory results in terms of
modelling and classification accuracy.[10,30,31,46] However, addressing the problem from an FDA
prospective, that is formulating ‘functional’ mixturemodels, allows to overcome these limitations, for
example, as in [10,16,30,46]. In this case of model-based functional data clustering, one can rely on
the regression mixture approaches [15–17] or generative hidden process regression [15,30,31] which
are adapted for curves with regime changes. In this paper, we attempt to overcome the limitations of
the EM algorithm in the case of regression mixtures and model-based curve clustering by propos-
ing an EM-like algorithm which is robust with regard initialization and automatically estimates the
optimal number of clusters as the learning proceeds.

In the next sectionwederive our robust EM-like algorithm for fitting regressionmixtures including
PRM, SRM, and bSRM.

3. Penalizedmaximum likelihood via a robust EM-like algorithm for fitting
regressionmixtures

In this section we present the proposed EM-like algorithm for model-based curve clustering using
regressionmixtures. The present work is in the same spirit of the EM-like algorithmpresented in [28],
but by extending the idea to the case of functional data (curve) clustering, rather than multivariate
data clustering. It is therefore concerned with regression mixture models rather than multivariate
GMMs. Indeed, the data here are assumed to be curves rather than vectors of reduced dimensions.
This leads to fitting regression mixture models (including splines or B-splines), rather than fitting
standard Gaussian mixtures. We start by describing the maximized objective function and then we
derive the proposed EM-like algorithm to estimate the regression mixture model parameters. The
proposed approach was initially described in part in [47] where the proposed algorithm was derived
for the PRM and first results on simulated curves have been provided. Here, we derive the proposed
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 7

approach for PRM, SRM, and bSRM. We provide additional technical details including on model
selection, an extensive experiments on additional benchmark and several real-world data.

3.1. Penalizedmaximum likelihood estimation

For estimating the regression mixture model (2), we attempt to maximize a penalized log-likelihood
function rather than the standard observed-data log-likelihood (3). This criterion consists in penaliz-
ing the observed-data log-likelihood (3) by a term accounting for themodel complexity. As themodel
complexity is related to particularly the number of clusters and therefore the structure of the hidden
variables zi (recall that zi represents the class label of the ith curve), we chose to use the entropy of the
hidden variable zi as penalty. The penalized log-likelihood criterion is therefore derived as follows.
The (differential) entropy of zi is defined by:

H(zi) = −
K∑

k=1
p(zi = k) log p(zi = k) = −

K∑
k=1

πk logπk· (13)

By assuming that the variables z = (z1, . . . , zn) are i.i.d, which is in general the assumption in cluster-
ing using mixtures where the cluster labels are assumed to be distributed according to a Multinomial
distribution, the whole entropy for z is therefore additive and we have

H(z) = −
n∑
i=1

K∑
k=1

πk logπk· (14)

The penalized log-likelihood function we propose to maximize is thus constructed by penalizing the
observed-data log-likelihood (3) by the entropy term (14), that is

J (λ, θ) = L(θ)− λH(z), λ ≥ 0, (15)

which leads to the following penalized log-likelihood criterion:

J (λ, θ) =
n∑
i=1

log
K∑

k=1
πkN (yi;Xiβk, σ

2
k Imi)+ λn

K∑
k=1

πk logπk, (16)

whereL(θ) is the observed-data log-likelihood maximized by the standard EM algorithm for regres-
sion mixtures (see Equation (3)) and λ ≥ 0 is a parameter that controls the complexity of the fitted
model. This penalized log-likelihood function (16) we attempt to optimize allows to control the
complexity of the model fit through the roughness penalty λn

∑K
k=1 πk logπk. The entropy term

−n∑K
k=1 πk logπk in the penalty measures the complexity of a fitted model for K clusters. When

the entropy is large, the fitted model is rougher, and when it is small, the fitted model is smoother.
The non-negative smoothing parameter λ is for establishing a trade-off between closeness of fit to the
data and a smooth fit. As λ decreases, the fittedmodel tends to be less complex, andwe get a smoother
fit. However, when λ increases, the result is a rougher fit. In the next section, we discuss how to set
this regularization coefficient in an adaptive way.

The next section presents the proposed robust EM-like algorithm to maximize the penalized
observed-data log-likelihood J (λ, θ) for regression mixture density estimation and model-based
curve clustering.

3.2. Robust EM-like algorithm formodel-based curve clustering using regressionmixtures

Given an i.i.d training data set of n curves D = ((x1, y1), . . . , (xn, yn)), the penalized log-
likelihood (16) is iteratively maximized by using the following robust EM-like algorithm for
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8 F. CHAMROUKHI

model-based curve clustering. Before giving the EM steps, we give the penalized complete-data log-
likelihood, onwhich the EM formulation is based. The complete-data log-likelihood, in this penalized
case, is given by:

Jc(λ, θ) =
n∑

i=1

K∑
k=1

zik log[πkN (yi;Xiβk, σ
2
k Imi)]+ λn

K∑
k=1

πk logπk, (17)

where zik is an indicator binary-valued variable such that zik = 1 if zi = k (i.e. if the ith observation
(xi, yi) is generated from the kth regressionmixture component) and zik = 0 otherwise. After starting
with an initial solution (see Section 3.3 for the initialization strategy and stopping rule), the proposed
algorithm alternates between the two following steps until convergence.

3.2.1. E-step
This step computes the expectation of the penalized complete-data log-likelihood (17) over the hid-
den data z, given the observed data D and a current parameter estimation θ (q), q being the current
iteration number:

Q(λ, θ ; θ (q)) = E
[Jc(λ, θ)|D; θ (q)]

=
n∑
i=1

K∑
k=1

E
[
zik|D; θ (q)]log[πkN (yi;Xiβk, σ

2
k Imi)]+ λn

K∑
k=1

πk logπk

=
n∑
i=1

K∑
k=1

τ
(q)
ik log[πkN (yi;Xiβk, σ

2
k Imi)]+ λn

K∑
k=1

πk logπk, (18)

where

τ
(q)
ik = p(zi = k|yi, xi; θ (q)) = π

(q)
k N (yi;Xiβ

T(q)
k , σ 2(q)

k Imi

)
∑K

h=1 π
(q)
h N (yi;Xiβ

(q)
h , σ 2(q)

h Imi)
(19)

is the posterior probability that the curve (xi, yi) is generated by the kth cluster. This step therefore
only requires the computation of the posterior cluster probabilities τ

(q)
ik (i = 1, . . . , n) for each of the

K clusters.

3.2.2. M-step
This step updates the value of the parameter vector θ by maximizing the Q-function (20) with
respect to θ , that is by computing the parameter vector update θ (q+1) = argmaxθ Q(λ, θ ; θ (q)). By
decomposing Equation (20) as:

Q(λ, θ ; θ (q)) = Qπ (λ,π1, . . . ,πK ; θ (q))+
K∑

k=1
Qθk(λ,βk, σ

2
k ; θ

(q)), (20)

where

Qπ (λ,π1, . . . ,πK ; θ (q)) =
n∑
i=1

K∑
k=1

τ
(q)
ik logπk + λn

K∑
k=1

πk logπk (21)
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and

Qθk(λ,βk, σ
2
k ; θ

(q)) =
n∑

i=1
τ

(q)
ik logN (yi;Xiβk, σ

2
k Imi)

=
n∑

i=1
τ

(q)
ik

(
−mi

2
log 2π − mi

2
log σ 2

k −
1

2σ 2
k
‖ yi − Xiβk ‖2

)
, (22)

it follows the maximization of the Q-function can be performed by maximizing separately
Qπ (λ,π1, . . . ,πK ; θ (q))with respect to themixing proportions (π1, . . . ,πK) and, for each component
k, Qθk(λ,βk, σ 2

k ; θ
(q)) with respect to the regression parameters {βk, σ 2

k }.
The mixing proportions updates are obtained by maximizing Equation (21) with respect to the

mixing proportions (π1, . . . ,πK) subject to the constraint
∑K

k=1 πk = 1. This can be solved using
Lagrangemultipliers and the obtained updating formula is given by (details are given in Appendix 2):

π
(q+1)
k = 1

n

n∑
i=1

τ
(q)
ik + λπ

(q)
k

(
logπ

(q)
k −

K∑
h=1

π
(q)
h logπ

(q)
h

)
· (23)

We notice here that the update of the mixing proportions (23) is close to the standard EM update
((1/n)

∑n
i=1 τ

(q)
ik see Equation (5)) for very small value of λ. However, for a large value of λ, the

penalization termwill play its role in order tomake clusters competitive and thus allows for discarding
invalid clusters and enhancing actual clusters. Indeed, in the updating formula (23), we can see that
for cluster k if

logπ
(q)
k −

K∑
h=1

π
(q)
h logπ

(q)
h > 0, (24)

that is, for the (logarithm of the) current proportion logπ
(q)
k , the entropy of the hidden variables is

decreasing, and therefore the model complexity tends to be stable, the cluster k has therefore to be
enhanced. This explicitly results in the fact that the update of the kth mixing proportion π

(q+1)
k in

Equation (23) will increase. On the other hand, if Equation (24) is less than 0, the cluster proportion
will therefore decrease as it is not very informative in the sense of the entropy.

The regularization parameter λ is updated so that it is large when the difference between the
current and the previous values of the mixing proportions πk is small, in order to enhance the
competition, and it is small when that difference is large, in order to keep the partition stable. A
simple updating formula to take this into account is the exponential of minus the magnitude the
difference between the current and the previous values of the mixing proportions, that is, λ(q+1) =
e(−κ|π(q+1)

k −π(q)
k |), where κ is a chosen positive constant which characterizes the variation speed of the

parameter. Hence, for all the K components, the resulting updating formula is the normalized sum
over the K components, that is

λ(q+1) =
∑K

k=1 e
(−κ|π(q+1)

k −π(q)
k |)

K
·

The constant κ can be fixed by taking into account the amount of the data, that is, mainly the sample
size, and also the number of observations per individual. For example it can be set to ηn, n being the
sample size and η a positive constant set which can be set tomin(1, 0.5�m/2−1�) as in [28],m being the
average number of observations per curve and �x� denotes the largest integer that is no more than
x. Then, since the updated mixing proportions in Equation (23) directly depend on the new value
of the regularization parameter λ, we must also take into account the constraint that the updated
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10 F. CHAMROUKHI

mixing proportions are non-negative and sum to 1, that is, 0 ≤ πk ≤ 1,
∑K

k=1 πk = 1. Based on the
study of the function πk logπk in Equation (23), it can be easily shown as described in [28], that the
updated value of λ must not exceed 1−maxKk=1((

∑n
i=1 τ

(q)
ik )/n)/−maxKk=1 π

(q)
k
∑K

k=1 π
(q)
k logπ

(q)
k

to namely prevent the mixing proportions exceeding one. Finally, it follows that the adaptive formula
for updating the penalization coefficient λ is given as in [28] by:

λ(q+1) = min

⎧⎨
⎩
∑K

k=1 e
(−ηn|π(q+1)

k −π(q)
k |)

K
,

1−maxKk=1(
∑n

i=1 τ
(q)
ik /n)

−maxKk=1 π
(q)
k
∑K

k=1 π
(q)
k logπ

(q)
k

⎫⎬
⎭ . (25)

Thus, the penalization coefficient λ is set as described previously in such a way to be large for enhanc-
ing competition when the proportions are not increasing enough from one iteration to another. In
this case, the robust algorithm plays its role for estimating the number of clusters (which is decreas-
ing in this case by discarding small invalid clusters). We note that here a cluster k can be discarded
if its proportion is less than 1/n, that is π

(q)
k < 1/n. On the other hand, λ has to become small when

the proportions are sufficiently increasing as the learning proceeds and the partition can therefore
be considered as stable. In this case, the robust EM-like algorithm tends to have the same behaviour
as the standard EM described in Section 2.1. The regularization coefficient λ is also set in [0, 1] to
prevent very large values.

The regression parameters (βk, σ 2
k ) are updated by separately maximizing for each component k

function (22). This maximization consists in analytically solving a weighted least-squares problem
where the weights are the posterior cluster probabilities τ

(q)
ik and provides the following parameter

updates:

β
(q+1)
k =

[ n∑
i=1

τ
(q)
ik XT

i Xi

]−1 n∑
i=1

τ
(q)
ik XT

i yi, (26)

σ
2(q+1)
k = 1∑n

i=1 τ
(q)
ik mi

n∑
i=1

τ
(q)
ik ‖ yi − Xiβ

(q+1)
k ‖2 , (27)

where the posterior cluster probabilities τ
(q)
ik given by Equation (19) are computed using the mixing

proportions derived in Equation (23).
Then, once the model parameters have been estimated, a fuzzy partition of the data into K clus-

ters, represented by the estimated posterior cluster probabilities τ̂ik, is obtained. A hard partition can
also be computed according to the MAP principle by maximizing the posterior cluster probabilities
according to Equation (12).

3.3. Initialization strategy and stopping rule

The initial number of clusters is K(0) = n, n being the total number of curves and the initial
mixing proportions are π

(0)
k = 1/K(0), (k = 1, . . . ,K(0)). Then, to initialize the regression param-

eters βk and the noise variances σ 2
k (k = 1, . . . ,K(0)), we fitted a polynomial regression model on

each curve k, (k = 1, . . . ,K(0)); The initial values of the regression parameters are thus given by
β

(0)
k = (XT

kXk)
−1Xkyk and the noise variance can be deduced as σ

2(0)
k = 1/mk ‖ yk − Xkβ

(0)
k ‖2. To

avoid singularities at the starting point, we set σ
2(0)
k as a middle value in the following sorted range

‖ yk − Xkβ
(0)
k ‖2 for k = 1, . . . , n. The algorithm is stopped when themaximum variation of the esti-

mated regression parameters between two iterations max1≤k≤K(q) ‖ β
(q+1)
k − β

(q)
k ‖ was less than a

fixed threshold υ (e.g. 10−6).
The pseudo code 2 summarizes the proposed robust EM-like algorithm for model-based curve

clustering using regression mixtures.
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 11

Algorithm 2 Pseudo code of the proposed robust EM-like algorithm for regression mixtures.
Inputs: DataD = ((x1, y1), . . . , (xn, yn)) and polynomial degree p
1: υ ← 10−6; q← 0; converge← 0
//Initialization:

2: K(0) = n
3: λ(0) = 1
4: θ (0) = (π

(0)
1 , . . . ,π(0)

K , θ (0)
1 , . . . , θ (0)

K )

5: for k = 1, . . . ,K(q) do
6: Compute τ

(q)
ik for i = 1, . . . , n using Equation (19)

7: end for
//main loop:

8: while (! converge) do
9: for k = 1, . . . ,K(q) do
10: Compute τ

(q)
ik for i = 1, . . . , n using Equation (19)

11: end for
12: for k = 1, . . . ,K(q) do
13: Compute π

(q+1)
k using Equation (23)

14: end for
15: Compute λ(q+1) using Equation (25)
16: Discard invalid clusters with small proportions π

(q)
k < 1

n ; Set K(q+1) = K(q) − #{π(q)
k |π

(q)
k <

1
n } ; normalize τ

(q+1)
ik and π

(q+1)
k so that they sum to one

17: if the partition is stabilized : if K(q+1) − K(q+1−nIter) = 0 (e.g. nIter = 50) then
18: set λ(q) = 0
19: end if
20: for k = 1, . . . ,K(q) do
21: Compute β

(q+1)
k using Equation (26)

22: Compute σ
2(q+1)
k using Equation (27)

23: end for
24: for k = 1, . . . ,K(q) do
25: Compute τ

(q)
ik for i = 1, . . . , n using Equation (19)

26: end for
27: for k = 1, . . . ,K(q) do
28: Compute β

(q+1)
k using Equation (26)

29: end for
30: if max1≤k≤K(q) ‖ β

(q+1)
k − β

(q)
k ‖< ε then

31: converge = 1
32: end if
33: q← q+ 1
34: end while
Outputs: K̂ = K(q), θ̂ = θ (q), τ̂ik = τ

(q)
ik

3.4. Choosing the order of regression and spline knots number and locations

For a general use of the proposed algorithm for the PRM, the order of regression can be chosen by
cross-validation techniques as in [16]. In our experiments, we report the results corresponding to the
degree for which the PRM provides the best fit. However, in some situations, the PRMmodel may be
too simple to capture the full structure of the data, in particular for curves with high nonlinearity or
with regime changes, even if they can be seen as providing a useful first-order approximation of the
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12 F. CHAMROUKHI

data structure. The (B-)spline regression models in this case are more adapted. For these models, one
may need to choose the spline order as well as the number of knots and their locations. For the order
of regression in (B-)splines, we notice that, in practice, the most widely used orders areM = 1, 2, and
4.[35] For smooth function approximation, cubic (B-)splines, which correspond to a (B-)spline of
order 4 and thus with twice continuous derivatives, are sufficient to approximate smooth functions.
When the data present irregularity, such as a kind of piecewise non-continuous functions, a linear
spline (of order 2) should be more adapted. This was namely used for the satellite data set. The order
1 can be chosen for piecewise constant data. Concerning the choice of the number of knots and their
locations, a common choice is to place a number of knots uniformly spaced across the range of x. In
general more knots are needed for functions with high nonlinearity or regime changes. One can also
use automatic techniques for the selection of the number of knots and their locations as reported in
[16]. For example, this can be performed by using cross validation as in [34]. In [48], the knots are
placed at selected order statistics of the sample data and the number of knots is determined either
by a simple rule or by minimizing a variant of AIC. The general goal is to use a sufficient number
of knots to fit the data while at the same time to avoid over-fitting and to not make the computation
excessive. The current algorithm can be easily extended to handle this type of automatic selection of
spline knots placement, but as the unsupervised clustering problem itself requiresmuch attention and
is difficult, it is wise to fix the number and location of knots. In this paper, we will use knot sequences
which are uniformly spaced across the range of x. The studied problems are not very sensitive to the
number and location of knots. Few number of equispaced knots (less than ten for the data studied in
this paper) are sufficient to fit the data.

4. Experimental study

This section is dedicated to the evaluation of the proposed approach on simulated data and real-
world data. The algorithms have been implemented in MATLAB1. We evaluate the proposed robust
algorithm for the three regression mixture models, that is, PRM, SRM, and bSRM, respectively,
abbreviated as PRM, SRM, and bSRM. The evaluation is performed in terms of estimating the actual
partition by considering the estimated number of clusters and the clustering accuracy (misclassifica-
tion error). First results on simulated arbitrary nonlinear curves as well as curves from a mixture
of linear regressions have been presented in [47] and show the potential benefit of the proposed
algorithm. Here we perform several additional experiments and consider the three regression mix-
ture models. We first consider simulated data and the waveforms benchmark of Breiman et al.[49]
Then, we consider three real-world data sets covering three different application area: phoneme
recognition, clustering gene expression time course data for bio-informatics and clustering radar
waveform data.

4.1. Simulation study

This section is dedicated to the evaluation of the proposed approach on simulated data. We con-
sider the waveform curves of Brieman and data simulated according to two different simulation
scenarios.

In the first experiment, we consider the waveform data introduced in [49] and studied in [50]
and elsewhere. The waveform data consist in a three-class problem where each curve is generated as
follows:

• y1(t) = uh1(t)+ (1− u)h2(t)+ εt for the class 1;
• y2(t) = uh2(t)+ (1− u)h3(t)+ εt for the class 2;
• y3(t) = uh1(t)+ (1− u)h3(t)+ εt for the class 3;
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 13

where u is a uniform random variable on (0, 1), h1(t) = max(6− |t − 11|, 0); h2(t) = h1(t − 4);
h3(t) = h1(t + 4) and εt is a zero-mean Gaussian noise with unit standard deviation. The temporal
interval considered for each curve is [1; 21] with a constant period of sampling of 1 s. Figure 1 shows
the waveform data mean functions from the generative model before the Gaussian noise is added
and a sample of 150 waveforms. Figures 2–4, respectively, show the corresponding obtained clus-
tering results for the waveform data for the PRM, SRM, and bSRM. Each sub-figure corresponds to
a cluster. The solid line corresponds to the estimated mean curve and the dashed lines correspond
to the confidence region computed as plus and minus twice the estimated standard deviation. The
number of clusters is correctly estimated by the proposed algorithm for three models. For this data,
the spline regression models provide slightly better results in terms of clusters approximation than
the PRM (here p = 4). This can be seen for the third cluster. Table 1 presents the clustering results
averaged over 20 different sample of 500 curves. It includes the estimated number of clusters, themis-
classification error rate, and the absolute error between the true clusters proportions and variances
and the estimated ones. We compared the algorithm for the proposed models to two standard clus-
tering algorithms: K-means clustering, and the EM clustering using GMMs. The GMM density of
the observations was assumed f (yi;μk, σ 2

k ) =∑K
k=1 πkN (yi;μk; σ 2

k Imi). We note that, for these two
algorithms, the number of clusters was fixed to the actual one. The number of clusters in this case

Figure 1. The waveform mean functions from the generative model before the Gaussian noise is added (up), and a sample of
simulated waveform data (bottom).

Figure 2. Clustering results obtained by the proposed robust EM-like algorithm and the PRMmodel (polynomial degree p = 4) for
the waveform data. Each sub-figure corresponds to a cluster.
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14 F. CHAMROUKHI

Figure 3. Clustering results obtained by the proposed robust EM-like algorithm and the SRM model with a cubic-spline of three
knots for the waveform data. Each sub-figure corresponds to a cluster.

Figure 4. Clustering results obtained by the proposed robust EM-like algorithm and the bSRMmodel with a cubic b-spline of three
knots for the waveform data. Each sub-figure corresponds to a cluster.

Table 1. Clustering results for the waveform data.

Actual K-means Stand. EM–GMM EM–PRM EM–SRM EM–bSRM

K 3 – – 3 3 3
misc. error – 6.2± (0.24)% 5.90± (0.23)% 4.31± (0.42)% 2.94± (0.88)% 2.53± (0.70)
σ1 1 0.164± (0.013) 0.14± (0.018) 0.128± (0.015) 0.108± (0.015) 0.103± (0.012)
σ2 1 0.131± (0.014) 0.124± (0.015) 0.102± (0.015) 0.090± (0.011) 0.079± (0.010)
σ3 1 0.264± (0.027) 0.245± (0.025) 0.223± (0.021) 0.180± (0.014) 0.141± (0.013)
π1

1
3 0.0043± (0.002) 0.0041± (0.002) 0.0037± (0.0018) 0.0035± (0.0015) 0.0034± (0.0015)

π2
1
3 0.0036± (0.0028) 0.0034± (0.0019) 0.0029± (0.0023) 0.0018± (0.0015) 0.0012± (0.0011)

π3
1
3 0.0047± (0.0049) 0.0043± (0.0058) 0.0040± (0.0062) 0.0037± (0.0015) 0.0035± (0.0014)

can be chosen by using model selection criteria such as the BIC. This requires however an afterward
step which consists in selecting a model from pre-estimated models with different number of com-
ponents. One can observe that for all the models, the actual number of clusters is correctly retrieved.
The misclassification error rate as well as the parameter estimation errors are slightly better for the
spline regression models, in particular the bSRM. On the other hand, it can be seen that the regres-
sion mixture models with the proposed EM-like algorithm outperform the standard K-means and
EM–GMM clustering algorithms. In addition, notice that for the standard EM algorithm, when the
number of mixture components is not fixed by the user, its estimation is in general performed in a
two-fold procedure, that is, the estimation of several mixture models with varying number of com-
ponents, followed by a model selection step using selection criteria. however, the proposed algorithm
simultaneously infers the model and its optimal number of components. In Figure 5, one can see
the variation of the estimated number of clusters as well as the value of the objective function from
one iteration to another for the three models. These results highlight the capability of the proposed
algorithm to provide an accurate partition with an optimal number of clusters.

To assess the behaviour of the proposed approach in terms of the number of observations, the
dimension of each observation, as well as the number of clusters in the data, the cluster and the
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JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 15

Figure 5. Variation of the number of clusters and the value of the objective function during the iterations of the algorithm for the
PRM (left), SRM (middle), and bSRM (right) for the waveform data.

cluster proportions, we considered the following simulation scenarios. Simulations S1 were designed
to assess the capacity of the proposed approach to retrieve partitions with a small number of clusters
while simulations S2 were designed to retrieve partitions with a large number of clusters. In the first
scenario S1, we simulated data from a small number of clusters (K = 3), including one well separated
cluster and two poorly separated clusters. The data were generated according to the PRM model (2)
as follows:

• yi = −0.1xi + 0.7+ 0.05εi if zi = 1;
• yi = xi + 0.05εi if zi = 2;
• yi = xi + 0.1εi if zi = 3.

The input xi is composed of m ordered equi-spaced points in the range (0, 1), εi ∼ N (0, Im)

is a standard multivariate Gaussian noise and the cluster label zi is simulated according to the
multinomial distribution M(1;π1,π2,π3) with non-uniform mixing proportions which are given
by π1 = 0.2,π2 = π3 = 0.4. It can be seen from the generative model and in Figure 6 that the first
cluster cluster is designed to be well separated from the two others, while the second cluster is com-
pletely incorporated within the third cluster. These two clusters have the same mean and only differ
according to the variance.

For this scenario, we considered different situations regarding the number of observations and
the dimension of each observation. We considered a small sample size n = 50 and a large sample
size n = 500. For each sample size, we considered a small observation dimensionm = 50 and a large
observation dimensionm = 500. We however note that for curve clustering, the number of observa-
tions m per curve is in general expected to be more than 50. Figure 6 shows the obtained results for
data simulated according to the first scenario. It can be seen that, for the four situations with different
sample size and curve dimension, the true partition is correctly estimated. The merged clusters are
also retrieved with success. The model indeed takes into account mixture components with different
noise variances (heteroskedastic model).

Table 2 shows the actual and estimated model parameters for the data shown in Figure 6. One
can observe that the estimated parameters are very close to the true ones, for each of the considered
situations.
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16 F. CHAMROUKHI

Figure 6. Clustering results obtained by the proposed algorithm and the PRMmodel for data simulated according to the scenario
S1 with, from top to bottom, the simulated data with the true partition and the true parameters, their estimated counterparts, the
value of the objective function, and the number of clusters during the iterations of the algorithm.

Table 2. Estimated parameters.

Parameter β11 β10 β21 β20 β31 β30 σ1 σ2 σ3 π1 π2 π3

Actual −0.1 0.7 1 0 1 0 0.05 0.05 0.1 0.2 0.4 0.4
n = 50,m = 50 −0.0994 0.6969 0.9862 0.0057 0.9913 0.0104 0.0533 0.0517 0.0958 0.2 0.44 0.36
n = 50,m = 500 −0.1007 0.7012 0.9978 0.0013 1.0011 −0.0000 0.0500 0.0499 0.1001 0.18 0.34 0.48
n = 500,m = 50 −0.0988 0.6994 1.0002 −0.0003 1.0036 −0.0016 0.0498 0.0503 0.1000 0.218 0.3919 0.3901
n = 500,m =

500
−0.1001 0.6999 1.0003 0.0000 0.9992 −0.0002 0.0499 0.0501 0.1000 0.1960 0.4240 0.3800

In the second scenario S2, we simulated data from a large number of clusters (K = 12), including
poorly separated clusters an some well separated clusters. We considered data from curves contain-
ing m = 500 observations with a sample size n = 300 and n = 500. The data for this scenario were
generated as follows:

• yi = xi + 0.1εi if zi = 1; yi = 0.8xi + 0.1+ 0.01εi if zi = 2; yi = 1.2xi − 0.1+ 0.01εi if zi = 3;
• yi = 0.5+ 0.05εi if zi = 4; yi = 0.2xi + 0.4+ 0.01εi if zi = 5; yi = −0.2xi + 0.6+ 0.01εi if

zi = 6;
• yi = −xi + 1+ 0.05εi if zi = 7; yi = −0.8xi + 0.9+ 0.01εi if zi = 8; yi = −1.2xi + 1.1+ 0.01εi

if zi = 9;
• yi = −5xi + 3+ 0.1εi if zi = 10; yi = 5xi − 2+ 0.1εi if zi = 11; yi = −40xi + 20.5+ 0.03εi if

zi = 12.
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Figure 7. Clustering results obtained by the proposed algorithm and the PRMmodel for data simulated according to the scenario
S2with, from left to right, the simulated datawith the true partition and the true parameters, their estimated counterparts, the value
of the objective function, and the number of clusters during the iterations of the algorithm.

The clusters in this case have uniform mixing-proportions πk = 1/K for k = 1, . . . , 12. As it can
be seen from the generative model and in Figure 7, the clusters 1, 2, and 3 (respectively , the clusters
4, 5, and 6, and the clusters 7, 8, and 9) are poorly separated and are designed to be seen as almost
merged into one cluster. The clusters 10, 11, and 12 are quite well separated.

Figure 7 shows the obtained results for data simulated according to the second scenario. It can
be seen that the actual partition with 12 clusters is correctly retrieved. The clusters which are not
well separated are retrieved with success. We note that for the two scenarios, we used the proposed
EM-like algorithm for the PRMmodel with linear mean functions, as well as the SRM and the bSRM
models with linearmean functions and only two boundary knots, which is equivalent to linear fitting.
The obtained results for the three models are quasi-identical.

4.2. Experiments on real data

In this section, we consider real data sets to apply and evaluate the proposed approach. The considered
data are curves issued from three different application domains: the phonemes data, the yeast cell cycle
data, and the Topex/Poseidon satellite data. The curves of each data set are shown in Figure 8.

4.2.1. Phonemes data
In this section, we use the phonemes data set used in [18]2 which is a part of the original one avail-
able at http://www-stat.stanford.edu/ElemStatLearn and was described and used namely in [51]. The
application context related to this data set is a phoneme classification problem. The phonemes data

Figure 8. Real data: Phonemes of the classes ‘ao’, ‘aa’, ‘iy’, ‘dcl’, ‘sh’ (left), the yeast cell cycle data (middle) and the Topex/Poseidon
satellite data (right).
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correspond to log-periodograms y constructed from recordings available at different equispaced fre-
quencies x for different phonemes. The data set contains five classes corresponding to the following
five phonemes: ‘sh’ as in ‘she’, ‘dcl’ as in ‘dark’, ‘iy’ as in ‘she’, ‘aa’ as in ‘dark’, and ‘ao’ as in ‘water’. For
each phoneme we have 400 log-periodograms at a 16-kHz sampling rate. We only retain the first 150
frequencies from each subject as in [18]. This data set has been considered in a phoneme discrimina-
tion problem as in [18,51] where the aim is to predict the phoneme class for a new log-periodogram.
Here we reformulate the problem into a clustering problem where the aim is to automatically group
the phonemes data into classes. We therefore assume that the cluster labels are missing. We also
assume that the number of clusters is unknown. Thus, the proposed algorithm will be assessed in
terms of estimating both the actual partition and the optimal number of clusters from the data.
Figure 8 (left) shows the used 1000 log-periodograms (200 per cluster) and Figure 9 shows the curves
of the actual five phoneme classes, class by class.

Figures 10 and 11 show the clustering results for the phonemes log-periodograms obtained by,
respectively, the PRM and the bSRM. The SRM results are closely similar to those provided by the
bSRM model. The number of phoneme classes (five) is correctly estimated by the three models. The
spline regression models provide better results in terms of clusters approximation than the PRM
(here p = 7). Notice that the value of p = 7 corresponds to the PRM model with the best error rate
for p varying from 4 to 8. The corresponding misclassification error rate is 14.29 %. The values of the
estimated number of clusters and the misclassification error rate corresponding to each of the three
models are given in Table 3. One can see that the spline regression mixtures perform better than the
PRM. In a general use of functional data modelling, splines are indeed more adapted than simple
polynomial modelling. In a similar way as previously, in Figure 12, one can see the variation of the
estimated number of clusters as well as the value of the objective function as the learning proceeds.
It can be observed that the number of clusters decreases very rapidly from 1000 to 51 for the PRM
model, and to 44 for the SRM and bSRM models. The grand majority of invalid clusters is discarded
at the beginning of the learning process. Then, the number of clusters gradually decreases from one
iteration to another for the three models and the algorithm converges toward a partition with the
actual number of clusters for the three models after at most 43 iterations. We can also see from the
curve of the number of clusters and the objectives functions that the algorithm for the SRM and

Figure 9. Phonemes data classes: ‘ao’, ‘aa’, ‘yi’, ‘dcl’, ‘sh’.
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Figure 10. Clustering results obtained by the proposed robust EM-like algorithm and the PRM model (polynomial degree p = 7)
for the phonemes data. Each sub-figure corresponds to a cluster.

Figure 11. Clustering results obtained by the proposed robust EM-like algorithm and the bSRM model with a cubic B-spline of
seven knots for the phonemes data. Each sub-figure corresponds to a cluster.

Table 3. Clustering results for the phonemes data.

EM–PRM EM–SRM EM–bSRM

K̂ 5 5 5
Misc. error rate 14.29 % 14.09 % 14.2 %

bSRM models behaves in a very similar way. We can also notice that the objective function becomes
horizontal once the number of clusters is stabilized.

D
ow

nl
oa

de
d 

by
 [

U
ST

L
 U

ni
ve

rs
ity

 o
f 

Sc
ie

nc
e 

&
 T

ec
hn

ol
og

y]
 a

t 0
7:

33
 2

4 
N

ov
em

be
r 

20
15

 



20 F. CHAMROUKHI

Figure 12. Variation of the number of clusters and the value of the objective function during the iterations of the algorithm for the
PRMmodel (left), the SRMmodel (middle), and the bSRMmodel (right) for the phonemes data.

4.2.2. Yeast cell cycle data
In this experiment, we consider the yeast cell cycle data set.[52] The original yeast cell cycle data
represent the fluctuation of expression levels of approximately 6000 genes over 17 time points
corresponding to two cell cycles.[52] This data set has been used to demonstrate the effectiveness of
clustering techniques for time course Gene expression data in bio-informatics such as model-based
clustering as in [53]. We used the standardized subset constructed by Yeung et al. [53] available in
http://faculty.washington.edu/kayee/model/.3 This data set referred to as the subset of the 5-phase
criterion in [53] contains 384 gene expression levels over 17 time points. The usefulness of the cluster
analysis in this case is therefore to automatically reconstruct this five class partition. Figure 8 (mid-
dle) shows the 384 curves of the yeast cell cycle data and Figure 13 shows the curves of each of the
five clusters. The clustering results are shown in Figures 14 and 15, respectively, for the SRM and
bSRM models. Both the PRM and the SRMmodels provide similar partitions with four clusters. The
second and third clusters in Figure 13 (from left to right) look to be merged into the second cluster
in Figure 14 (from left to right). Note that some model selection criteria in [53] also provide four
clusters in some situations. However, the bSRMmodel (Figure 15) correctly infers the actual number
of clusters. The Rand index (RI)4 for the obtained partition is 0.7914 which indicates that the par-
tition is quite well defined. Figure 16 shows the variation of the number of clusters and the value of
the objective function during the iterations of the algorithm for three models. We can see that the
number of clusters starts with n = 384 clusters and more than half is discarded after one iteration.
Then, it gradually decreases and is stabilized until convergence. The shape of the objective function
also becomes horizontal when the partition is converged.

4.2.3. Topex/Poseidon satellite data
The last considered real data set is the Topex/Poseidon radar satellite data set5 namely used in [9,12].
This data set was registered by the satellite Topex/Poseidon around an area of 25 km upon the Ama-
zon River. The data contain n = 472 waveforms of the measured echoes, sampled atm = 70 number
of echoes. The curves of this data set are shown in Figure 8 (right). The actual number of clusters and
the actual partition are unknown for this data set.

Figure 17 shows the obtained clustering results for the bSRMmodel. The provided solution for the
PRM is rather an overall rough approximation and provides three clusters. The polynomial fitting
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for this type of curves is not adapted. This is because the curves present in particular peaks and
transitions. The solutions provided by the SRMand the bSRM are very close and aremore informative
about the underlying structure of this data set. We used a linear (B-)spline for this data set in order
to allow piecewise linear function approximation and thus to better recover the possible peaks and
transitions in the curves. As a result, both the SRM and the bSRM provide a five class partition. The
partitions are quasi-identical and contain clearly informative clusters. We can see different shapes
of waves that summarize the general underlying structure governing this data. We can observe that
the first and the second clusters in Figure 17 contain curves presenting one narrow peak. The two
clusters however differ with the peak location in x. The third cluster contains curves with one less
narrow peak. Then, the fourth cluster contains curves that look to have two large peaks. Finally, the

Figure 13. The five actual clusters of the used yeast cell cycle data.

Figure 14. Clustering results obtained by the proposed robust EM-like algorithm and the SRMmodel with a cubic spline of seven
knots for the yeast cell cycle data. Each sub-figure corresponds to a cluster.
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Figure 15. Clustering results obtained by the proposed robust EM-like algorithm and the bSRM model with a cubic B-spline of
seven knots for the yeast cell cycle data. Each sub-figure corresponds to a cluster.

Figure 16. Variation of the number of clusters and the value of the objective function during the iterations of the algorithm for the
PRMmodel (left), the SRMmodel (middle), and the bSRMmodel (right) for the yeast data.

fifth cluster looks to contain curves without peaks and with a part rather flat. Furthermore, we can
see that the structure is more clear with the cluster mean (prototypes) than with the raw curves. The
SRM models thus help to better understand the underlying structure of the data as well as to recover a
plausible number of clusters from the data. In addition, the found number of clusters (five) also equals
the one found by Dabo-Niang et al. [12] by using another hierarchical non-parametric kernel-based
unsupervised classification technique. The mean curves for the five terminal groups reflecting the
hidden structure provided by the proposed approach for both the SRM and the bSRM are similar to
those in [12]. On the other hand, one can also see that this result is similar to the one found in [9];
Most of the profiles are indeed present in the two results. The slight difference can be attributed to
the fact that the results in [9] are provided from a two-stage scheme which includes an additional
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Figure 17. Clustering results obtained by the proposed robust EM-like algorithm and the bSRM model with a linear B-spline of 8
knots for the satellite data. Each sub-figure corresponds to a cluster.

pre-clustering step using the self organizing map (SOM), rather by directly applying the piecewise
regression model to the raw data. We also notice that, in the study of Hébrail et al. [9], the number
of clusters was set to 20 and the clustering procedure was two-fold. The authors first performed a
topographic clustering step using the SOM, and then applied a K-means-like approach to the results
of the SOM. However, in our approach, we directly apply the proposed algorithm to the raw satellite
data without a preprocessing step. In addition, the number of clusters is automatically inferred from
the data.We also can observe that, the found five clusters here do summarize the general behaviour of
the 20 clusters in [9] which can be summarized in clusters with one narrow shifted peak, less narrow
peak, two large peaks, and finally a cluster containing curves with sharp increase followed by a slow
decrease.

Figure 18. Variation of the number of clusters and the value of the objective function during the iterations of the algorithm for the
PRMmodel (left), the SRMmodel (middle), and the bSRMmodel (right) for the satellite data.
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Figure 18 shows that the algorithms converge after at most 35 iterations. The variation of the num-
ber of clusters during the iterations of the algorithm shows that after starting with n = 472 clusters,
the number of clusters rapidly decreases to 59 for the PRM and to 95 for both the SRM and the
bSRMmodels. Then it gradually decreases until the number of clusters is stabilized. The variation of
the value of the objective function during the iterations of the algorithm also shows that it becomes
horizontal at convergence which corresponds to the stabilization of the partition.

5. Conclusions and discussion

We presented a new robust EM-like algorithm for model-based clustering using regression mixtures.
It optimizes a penalized observed-data log-likelihood and overcomes both the problem of sensitiv-
ity to initialization and determining the optimal number of clusters for standard EM for regression
mixtures. We note that the proposed algorithm, as it proceeds to the estimation of the number of
components, does not guarantee the ascent property of the objective function, and, thus, is not a
true EM algorithm. The experimental results on simulated data and real-world data demonstrate the
benefit of the proposed approach for applications in curve clustering. For the PRM, the choice of
the polynomial degree can be performed in such a way to obtain the best partition. In practice, we
varied the polynomial degree from 3 to 7 for the simulated data and from 4 to 7 for the waveform
data. The obtained clustering results are closely similar and the number of clusters was always cor-
rectly selected. For the phonemes data and the yeast cell cycle data, the polynomial degree with the
best solution was retained. However, for a more general use in functional data clustering and approx-
imation, the splines are clearly more adapted. In practice, for the SRM and bSRM, we used cubic
(B-)splines because cubic splines, which correspond to a spline of order 4 which are are sufficient to
approximate smooth functions. However, when the data present irregularity, such as a kind of piece-
wise non-continuous functions, which is the case of the the Topex/Poseidon satellite data, we use a
linear (B-)spline approximation. We also note that the algorithm is fast for the three models. It con-
verged after a few number of iterations, and took at most less than 45 seconds for the phonemes data.
For the other data, it took only few seconds. This makes it useful for real practical situations.

In this paper, we considered the problem of unsupervised fitting of regression mixtures with
unknownnumber of components. The regressionmixturemodels are similar to themixture of experts
(MEs) model.[54] Although similar, MEs differ from curve clustering models in many respects. One
of the main differences is that the ME model consists in a fully conditional mixture while in the
regression mixture, only the component densities are conditional. Indeed, the mixing proportions
are constant for the regression mixture, while in ME, where they are known as the gating functions,
they are modelled as a function of the inputs, generally as a logistic or a softmax function. One inter-
esting future direction is to extend the proposed approach to the problem of fitting MEs [54] and
hierarchical MEs [55] with unknown number of experts.

Notes

1. The MATLAB codes are available upon request from the author.
2. Data from http://www.math.univ-toulouse.fr/staph/npfda/
3. The complete data are from http://genome-www.stanford.edu/cellcycle/.
4. The RI measures the similarity between two data clusterings. It has a value between 0 and 1, with 0 indicating that

the two partitions do not agree on any pair of observations and 1 indicating that the data clusters are exactly the
same. For more details on the RI, see [56].

5. Available at http://www.lsp.ups-tlse.fr/staph/npfda/npfda-datasets.html.
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Appendix 1. Construction of B-splines basis functions
Given the sequence of knots ξ0 < ξ1 < · · · < ξL+1 (ξ0 and ξL+1 are the two bounds of x), let us define the augmented
knot sequence ζ such that

• ζ1 ≤ ζ2 . . . ≤ ζM ≤ ξ0;
• ζM+	 = ξ	, 	 = 1, . . . , L;
• ξL+1 ≤ ζL+M+1 ≤ ζKL+M+2 . . . ≤ ζL+2M .

The actual values of these additional knots beyond the boundary are arbitrary, and a common choice is to make
them all the same and equal to ξ0 and ξL+1 , respectively. Let us denote by B	,M(t) the 	th B-spline basis function
of orderM for the knot-sequence ζ1 ≤ ζ2 · · · ≤ ζM ≤ ξ0 < ξ1 < · · · < ξL < ξL+1 ≤ ζL+M+1 ≤ ζL+M+2 · · · ≤ ζL+2M .
These basis functions are defined recursively as follows:

• B	,1(xij) = 1[ζj ,ζj+1], ∀	 = 1, . . . , L+ 2M − 1;
• B	,M(xij) = ((xij − ζ	)/(ξ	+M−1 − ζ	))B	,M−1(xij)+ ((ζ	+M − xij)/(ζ	+M − ζ	+1))B	+1,M−1(xij), ∀	 = 1, . . . ,

L+M.
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For the B-spline regression model, the jth row bj (j = 1, . . . ,mi) of themi × (L+M) B-spline regression matrix Bi
for the ith curve is then constructed as follows:

bj = [B1,M(xij), B2,M(xij), . . . ,BL+M,M(xij)].

Appendix 2. Estimation of themixing proportions
Consider the problem of finding the maximum of the function (21)

Qπ (λ,π1, . . . ,πK ; θ (q)) =
n∑

i=1

K∑
k=1

τ
(q)
ik logπk + λn

K∑
k=1

πk logπk (A1)

with respect to themixing proportions (π1, . . . ,πK) subject to the constraint
∑K

k=1 πk = 1. To perform this constrained
maximization, we introduce the Lagrange multiplier α and the resulting Lagrangian function is given by:

L(π1, . . . ,πK) =
n∑

i=1

K∑
k=1

τ
(q)
ik logπk + λn

K∑
k=1

πk logπk + α(1−
K∑

k=1
πk). (A2)

Taking the derivatives of the Lagrangian with respect to πk for k = 1, . . . ,K, we obtain:

∂L(π1, . . . ,πK)

∂πk
=
∑n

i=1 τ
(q)
ik

πk
+
(

λ

n∑
i=1

(logπk + 1)

)
− α. (A3)

Then, setting these derivatives to zero yields:∑n
i=1 τ

(q)
ik

πk
+ nλ logπk + nλ = α. (A4)

By multiplying each hand side of Equation (A4) by πk and summing over k we get

K∑
k=1

πk ×
(∑n

i=1 τ
(q)
ik

πk
+ nλ logπk + nλ

)
=

K∑
k=1

α × πk, (A5)

which implies that

n+ nλ
K∑

k=1
πk logπk + nλ = α. (A6)

Then, from Equation (A4), it follows that

n∑
i=1

τ
(q)
ik + nλπk logπk + nλπk = nπk + nλπk

K∑
h=1

πh logπh + nλπk (A7)

and hence

nπk =
n∑

i=1
τ

(q)
ik + nλπk logπk − nλ

K∑
h=1

πh logπk, (A8)

and we therefore get the updating formula for the mixing proportions πk’s:

π
(q+1)
k =

∑n
i=1 τ

(q)
ik

n
+ λπ

(q)
k

(
logπ

(q)
k −

K∑
h=1

π
(q)
h logπ

(q)
h

)
∀k ∈ {1, . . . ,K}. (A9)
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