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Abstract—Using supervised machine learning approaches to recognize
human activities from on-body wearable accelerometers generally requires
alarge amount of labeled data. When ground truth information is not avail-
able, too expensive, time consuming or difficult to collect, one has to rely
on unsupervised approaches. This paper presents a new unsupervised ap-
proach for human activity recognition from raw acceleration data mea-
sured using inertial wearable sensors. The proposed method is based upon
joint segmentation of multidimensional time series using a Hidden Markov
Model (HMM) in a multiple regression context. The model is learned in
an unsupervised framework using the Expectation-Maximization (EM) al-
gorithm where no activity labels are needed. The proposed method takes
into account the sequential appearance of the data. It is therefore adapted
for the temporal acceleration data to accurately detect the activities. It al-
lows both segmentation and classification of the human activities. Experi-
mental results are provided to demonstrate the efficiency of the proposed
approach with respect to standard supervised and unsupervised classifica-
tion approaches.

Note to Practitioners—This paper was motivated by the problem of au-
tomatic recognition of physical human activities using on-body wearable
sensors in a health-monitoring context. Three wearable sensors (accelerom-
eters) are placed at the chest, the right thigh and the left ankle of the sub-
ject. The studied activities concern the static ones, the dynamic ones as
well as transitions between those activities. Since the goal is to recognize
human activities from only the raw acceleration data, the acquired acceler-
ation signals are seen as multidimensional time series with regime changes
due to the changes of activities over time. The activity recognition problem
is formulated as a problem of multidimensional time series segmentation.
Segmenting the time series according to different unknown regimes over
time is equivalent to classifying the acceleration data into one set of activi-
ties; each activity being associated with a regime. The proposed approach
does not require any annotation of the raw accelerations by experts to learn
the model parameters. However, it assumes that the number of activities is
known. This assumption can be a constraint in a context of exploratory
data mining where the aim is to automatically cluster a large amount of
data into different group of activities. To tackle this limitation, a selection
criterion can be used to determine the number of the groups of activities.

Index Terms—Activity recognition, hidden Markov model (HMM), mul-
tivariate regression, unsupervised learning, wearable computing.
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1. INTRODUCTION

The aging population has recently gained an increasing attention
due to its socio-economic impact. By 2050, the number of people
in the European Union aged 65 and above is expected to grow
by 70% and the number of people aged over 80 by 170%.! This
demographic change poses increasing challenges for healthcare ser-
vices and their adaptation to the needs of this aging population.
Facing this problem or reducing its effect would have a great so-
cietal impact by improving the quality of life and regaining people
independence to make them active in society. The aim is therefore
to facilitate the daily activity lives of elderly or dependent people
at home, to increase their autonomy and to improve their safety. In
fact, most elderly prefer to stay at home in the so-called “aging in
place” [1]. The emergence of novel adapted technologies such as
wearable and ubiquitous technologies is becoming a privileged so-
lution to provide assistive services to humans, such as health mon-
itoring, well being, security, etc. Among which, activity recognition
has a wide range of promising applications in security monitoring
as well as human machine interaction [2]. A large amount of work
has been done in this active topic over the past decades; neverthe-
less it is still an open and challenging problem [3].

Several techniques have been used to quantify these activities
such as video-based sensors [4], wearable-based sensors, environ-
mental sensors and object sensors (smart phones, RFID, etc.). Re-
cently, the Kinect sensor that contains both RGB and Infra red (IR)
cameras has been released by Microsoft [5]. This sensor has been
used for human activity detection and recognition [6]. Even though
this sensor has several advantages such as low cost, depth infor-
mation and ability to operate in the day as well as night, it has
however some disadvantages [7]. In fact, the Kinect sensor has
limited field of view, poor performances in natural lighting, de-
pendence on surface texturing and occlusion problem in cluttered
environment. The wearable inertial-based system used in this study
for activity recognition overcomes the above mentioned limitations.
Recently, the use of wearable sensors-based systems for activity
recognition has gained more attention on a large number of techno-
logical fields such as navigation, monitoring and control of aircrafts
[8], [9], medical application [10], [11], localization and robots [12],
[13]. Among the inertial sensors used for activity recognition, the
accelerometers are the most commonly used [14]. They have shown
satisfactory results to measure the human activities in both labora-
tory/clinical and free-living environment settings [15]. In addition,
the latest advances in Microelectromechanical Systems (MEMS)
technology have greatly promoted the use of accelerometers thanks
to the considerable reduction in size, cost and energy consumption.
Early studies in activity recognition used uniaxial accelerometers,
while recent studies use mainly triaxial accelerometers [16], [17].

II. RELATED WORK ON HUMAN ACTIVITY RECOGNITION

Regarding the human activity classification, one can make the
distinction between supervised and unsupervised classification ap-
proaches. Supervised classification techniques consist of inferring a
decision rule from labeled training data. The use of the supervised
activity classification approaches has shown promising results [18].
Some supervised approaches have enhanced the activity recognition

Thttp://ec.curopa.eu/health-eu/my _health/elderly/

1545-5955/$31.00 © 2013 IEEE



830 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 10, NO. 3, JULY 2013

process performances by using spatio-temporal information [19].
Regarding the algorithms used in the supervised context, one can
cite k-Nearest Neighbor (£-NN) algorithm [20], multiclass Support
Vector Machines (SVM) [21], and Artificial Neural Networks (ANN)
including both MultiLayer Perceptron (MLP) [22], [23] and Radial
Basis Function (RBF) networks [24].

Nevertheless, the collection of sufficient amounts of labeled data
for a various and rich set of free-living activities may be sometimes
difficult to achieve and computationally expensive [25]. On the other
hand, unsupervised classification techniques try to directly construct
models from unlabeled data either by estimating the properties of their
underlying probability density (called density estimation) or by discov-
ering groups of similar examples (called clustering). The unsupervised
learning techniques are of particular interest for an exploratory anal-
ysis of large amounts of unlabeled data. They can also consist of a
preliminary task to further run a supervised classifier based on the ob-
tained partition of the data. The use of an unsupervised approach may
be needed in such a context of activity recognition when it is difficult
to have labels for the data.

Regarding the approaches used in the unsupervised context, one can
cite the well-known k-Means algorithm [26], the Gaussian Mixture
Models (GMM) approach [27] and the one based on Hidden Markov
Model (HMM) [28], [29] or HMM with GMM emission probabilities
[30]. Both the GMM and the HMM approaches use the EM algorithm
[31].

The HMM has shown good results in earlier exploratory studies
thanks to their main advantage of suitability to model sequential data
which is the case of monitoring human activities. Indeed, the accelera-
tion data are measured over time during physical human activities of a
person and are therefore sequential over time. The EM algorithm [31]
(also called Baum-Welch [32]) in the context of HMM is particularity
adapted for unsupervised learning.

In this study, an unsupervised approach for human activity recogni-
tion is proposed. It combines an HMM-based model with the use of
acceleration data acquired during sequences of different human activ-
ities. More specifically, the proposed approach is based on a Hidden
Markov Model in a multiple regression context and will be denoted by
MHMMR.

As the sequences of acceleration data consist in multidimensional
time series where each dimension is an acceleration, the activity recog-
nition problem is therefore formulated through the proposed MHMMR
model as the one of joint segmentation of multidimensional time series;
each segment is associated with an activity. In the proposed model,
each activity is represented by a regression model and the switching
from one activity to another is governed by a hidden Markov chain.
The MHMMR parameters are learned in an unsupervised way from
unlabeled raw acceleration data acquired during human activities.

The most likely sequence of activities is then estimated using the
Viterbi algorithm [33]. The proposed technique is then evaluated on
real-world acceleration data collected from three sensors placed at the
chest, the right thigh, and the left ankle of the subject.

This study is an extension of the paper [34], where additional tech-
nical implementations are shown: Twelve activities and transitions are
studied and performances of the proposed approach are evaluated and
compared to those of some well known unsupervised and supervised
techniques for activity recognition.

This paper is organized as follows. Section III presents the ex-
perimental protocol and the data acquisition platform. Section IV
presents the proposed model and its unsupervised parameter estima-
tion technique from unlabeled acceleration data. In Section V, the
performances of the proposed approach are evaluated and compared
to those of some well known unsupervised and supervised techniques
for activity recognition.

Chest sensor

Right thigh ™~ \gh

Fig. 1. MTx-Xbus inertial tracker and sensors placement.
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Fig. 2. Data gathering from the MTx-Xbus acquisition system.

III. DATA COLLECTION

In this study, human activities are classified using three sensors
placed at the chest, the right thigh, and the left ankle, respectively, as
shown in Fig. 1. Sensors placement is chosen to represent predomi-
nantly upper-body activities such as standing up, sitting down, etc.,
and predominantly lower body activities such as walking, stair ascent,
stair descent, etc. The sensor’s placement guarantees at the same time
less constraint and better comfort for the wearer. The attachment
of the sensors to the human body should be well fitted and secured
(Fig. 1). These sensors consist of three MTx 3-DOF inertial trackers
developed by Xsens Technologies [35]. Each MTx unit consists of
a triaxial accelerometer measuring the acceleration in the 3-D space
(with a dynamic range of 5g, where g represents the gravitational
constant). Our experiences show also that the measured ankle-sensor
accelerations during the different activities do not exceed the limit
of £5¢. The sampling frequency is set to 25 Hz, which is sufficient
and larger than 20 Hz the required frequency to assess daily physical
activity [36]. The sensors were fixed on the subject with the help of
an assistant before the beginning of the measurement operation. Raw
acceleration data are therefore collected over time when performing
the activities. The MTx units are connected to a central unit called
Xbus Master that is attached to the subject’s belt. Fig. 2 shows the
data gathering process from the Xbus-MTx acquisition system to the
host PC. The Xbus Master is directly connected to the chest MTx
unit while the remaining MTx units (thigh and ankle) are connected
in series. Data transmission between the Xbus Master and the PC is
carried out through a Bluetooth wireless link.

The experiments were performed at the LISSI Lab, University of
Paris-Est Créteil (UPEC), by six different healthy subjects of different
ages (who are not the researchers) in the office environment. In order
to gather various and rich dataset, the recruited volunteer subjects have
been chosen in a given margin of age (25-30) and weight (55-70) kg.
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(a)

Fig. 3. Examples of some considered activities. (a) Climbing stairs down.
(b) Climbing stairs Up. (c) Walking. (d) Sitting. (¢) Standing up. (f) Sitting on
the ground.

Twelve activities and transitions were studied and are listed as follows:
Stairs down (A1) — Standing (A2) — Sitting down (A3) — Sitting (A4) —
From sitting to sitting on the ground (AS) — Sitting on the ground (A6)
— Lying down (A7) — Lying (A8) — From lying to sitting on the ground
(A9) — Standing up (A10) — Walking (A11) — Stairs up (A12). The ac-
tivities were chosen to have an appropriate representation of everyday
activities involving different parts of the body (Fig. 3). The recognized
activities and transition differ in duration and intensity level. Note that
the activities As, A5, A7, Ag, and 49 represent dynamic transitions
between static activities. Each subject was asked to perform the twelve
activities in his own style and was not restricted on how the activities
should be performed but only with the sequential activities order. In
addition, the duration of each activity is not restricted to be the same
as it may vary from one subject to another.

With three MTx sensor units, each one with a tri-axial accelerom-
eter, a total of nine accelerations are therefore measured and recorded
overtime for each activity. Since the goal is to recognize human ac-
tivities from only the raw acceleration data, the acquired acceleration
signals can be seen as multidimensional time series (of dimension 9)
with regime changes due to the changes of activities over time. The
activity recognition problem can therefore be formulated as a problem
of multidimensional time series segmentation. Indeed, segmenting the
time series according to different unknown regimes over time is equiv-
alent to classifying the acceleration data into one set of activities; each
activity being associated with a regime. This will be detailed in the
next section that is dedicated to the proposed Hidden Markov Model
Regression (HMMR) approach.

IV. SEGMENTATION WITH MULTIPLE HIDDEN
MARKOV MODEL REGRESSION — MHMMR

In this section, the problem of activity recognition (classification) is
formulated as the one of joint segmentation of multidimensional time
series. Indeed, the acceleration data are presented as multidimensional
time series presenting various regime changes. In such context, the goal
is to provide an automatic partition of the data into different segments
(regimes), each segment being considered afterwards as an activity.

Various modeling approaches of time series presenting regime
changes have been proposed in literature. One can cite, in partic-
ular, the piecewise regression as one of the most adapted modeling
approaches [37], [38]. The piecewise model has been applied in
many domains including finance, engineering, economics, and bioin-
formatics [39]. In the piecewise regression model [38], data are
partitioned into several segments, each segment being characterized
by its mean polynomial curve and its variance. However, the parameter
estimation in such method requires the use of dynamic programming
algorithm [40], [41], which may be computationally expensive espe-
cially for time series with large number of observations. Moreover,

the standard piecewise regression model usually assumes that noise
variance is uniform for all the segments (homoskedastic model).
An alternative approach extended in this paper is based on HMMR
[42]. This approach can be seen as an extension of the standard
HMM [29] to regression analysis. Each regime is described by a
regression model rather than a simple constant mean over time, while
preserving the Markov process modeling for the sequence of unknown
(hidden) activities. Indeed, standard HMM-based approaches use
simple Gaussian densities as density of observation. However, in
the HMM regression context, each observation is assumed to be a
noisy polynomial function to better model very structured data as the
acceleration data. The approach we propose further extends the HMM
model to a multiple regression setting. This is due to the fact that the
observed acceleration data are multidimensional. In the following,
the Hidden Markov Regression Model for time series modeling is
used by formulating its basic and multiple regression setting. In
this framework, each observation, denoted by ¥, represents the ith
acceleration measurement while the associated state (class), denoted
by z;, represents its corresponding activity.

A. General Description of the Multiple Hidden Markov Model
Regression (HMMR)

In Hidden Markov Model Regression (HMMR), each time se-
ries is represented as a sequence of observed univariate variables
(y1.y2....,yn), where the observation y; at time ¢; is assumed to be
generated by the following regression model [42]:

g =8t +o.e g ~NO1, (i=1....,n ()
where z; € {1...., L'} is a hidden discrete-valued variable. In this
application case, z; represents the hidden class label (activity) of each
acceleration data point and KA~ corresponds to the number of considered
activities. The variable z; controls the switching from one polynomial
regression model associated to one activity, to another of A" models at
time ¢;. The vector 3., = (3.,0....,3=,p)" is the one of regression
coefficients of the p-order polynomial regression model z; and o, is
its corresponding standard deviation, t; = (1,%;, 7‘7) .. ,ff)T is the
p + 1 dimensional covariate vector at time #; and the €;’s are stan-
dard Gaussian variables representing an additive noise. The HMMR
assumes that the hidden sequence z = (z;. ..., z, ) is a homogeneous
Markov chain of first-order parameterized by the initial state distribu-
tion 7w and the transition matrix A. It can be shown that, conditionally
on a regression model k (z; = k), y; has a Gaussian distribution with
mean A7 ¢; and variance ¢ . Regarding the multiple regression case,
the model can be formulated as follows:

g =80Tt ol

y =80T 4 0, @

where d represents the dimension of the time series (sequence) and the
latent process z simultaneously governs all the univariate time series
components. The model (2) can be rewritten in a matrix form as fol-
lows:

y, =Bt +e

e, ~N(,E.), (=1,....n) (3

(n y(dj)
ries in R, B, = [/35‘,1), . .;5’5‘_'1)] isa(p+ 1) x d dimensional ma-

where y, = (y )T is the ith observation of the time se-

trix of the multiple regression model parameters associated with the
regime (class) z; = k and X, its corresponding covariance matrix.

i
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The Multiple HMMR model is therefore fully parameterized by the pa-
rameter vector® = (m, A,B;,....Bx.X,...., . X ). The next sub-
section gives the parameter estimation technique by maximizing the
observed data likelihood through the Expectation-Maximization (EM)
algorithm. The parameter vector # is estimated using the well-known
maximum likelihood method thanks to its very well-known attractive
properties of consistency, asymptotic normality, and efficiency. Indeed,
in our experiments, a considerable number of data points is acquired
during time, which makes the sample size suitable to take advantage
of the limiting properties of the maximum likelihood estimator. The
log-likelihood to be maximized in this case is written as follows:

L(8)= logply, -,y,,~9)

10gZp ~.,T)Hp EAETNE A)H N(y;:Blt,. %),

“4)
Since this log-likelihood cannot be maximized directly, this can be
performed using the EM algorithm [31], [43], that is known as the
Baum-Welch algorithm in the HMM context [32], [29]. This algorithm
alternates between the two following steps.
1) E-Step: This step computes the conditional expectation of the
complete-data log-likelihood given the observed data Y, time t and a
current parameter estimation denoted by ot

Q8.6) = E| log p(Y. z[t: 8)[ Y, t: 87 |. )

It can be easily shown that this step only requires the calculation of:
* the posterior probability

_(‘1) _P( — k|Y t: g(q)) (6)

Vi=1,...,nand k = 1,..., K which is the posterior proba-
bility thaty, orlgmates from the kth polynomial regression model
given the whole observation sequence and the current parameter
estimation 8% ;

« the joint posterior probability of the state % at time ¢ and the state £
attime s — 1 given the whole observation sequence and the current
parameter estimation ) , that is

55(; =plz =k, zic1 = (|Y,t;g(q)) @

Vi=2,...,nandk,{=1,... K.

These posterior probabilities are computed by the forward—back-
ward procedures in the same way as for a standard HMM [29]. More
calculation details on this step can be found in [29].

2) M-Step: In this step, the value of the parameter 8 is updated
by computing the parameter #4T") that maximizes the conditional ex-
pectation (5) with respect to #. It can be shown that this maximization
leads to the following updating rules. The updates of the parameters
governing the hidden Markov chain z are the ones of a standard HMM
and are given by:

et =y ®)
z 3
A(i<1+lﬁ) _a=2 ke ©)
o Z @)
ik

=2
Updating the regression parameter consists of performing A" weighted
multiple polynomial regressions. The regression parameter matrices

updates are given by:

B = [Z i tt!

i=1

}_li (q)t y

=1

=X"wrx)"'x"wiy (10)

where W(q) is an x n diagonal matrix of weights whose diagonal

elements are the posterior probabilities (qu), .. ,T:‘l'i_) ) and X is the
n.x (p41) regression matrix given by (t, ..., t,)” . The updating rule

for the covariance matrices is written as a weighted variant of the es-
timation of a multivariate Gaussian density with the polynomial mean
B} "¢, such as:
+1 1 - T{g+1 L
Ef\»q V= Z ‘i(}?)(yi _Bk(q )ti,) (v,
Z (q) Py

i,:l

—B/,l\,‘(qjq)t,;)

(Y XB(q+1))1 W(q)(Y XB(Q+1)) (11)

ZT

V. RESULTS AND DISCUSSIONS

This section presents experiments carried out to validate the two
main ideas explored throughout this paper, i.e., the segmentation and
the classification of the human activity from raw acceleration data using
a MHMMR approach within an unsupervised learning framework.2 Se-
ries of experiments were conducted to evaluate the performance of the
proposed approach and also to perform comparisons with well-known
unsupervised and supervised classification approaches.

A. Performance Evaluation

Given a set of 9-acceleration data from three tri-axial accelerometer
modules mounted on the chest, the right thigh, and the left ankle, the
proposed approach allows both segmentation and classification of the
12 activities. Each obtained segment is indeed considered as an activity,
achieving thus a classification task. We chose to take as a ground truth
about the class of an activity, labeling obtained thanks to an expert.
While the different subjects were performing the sequence of activi-
ties, an independent operator was asked to annotate the activities, thus
providing a labeling of the dataset.3 The provided partition is indeed
matched to the true labels (ground truth) by evaluating all the possible
label switchings. The label switching leading to the minimum error rate
is selected as the best class prediction. For the supervised classification
approaches, data labels were used to both train and test the models. In
this case, the performance was estimated through a 10-fold cross-vali-
dation procedure. Regarding the classification problem, confusion ma-
trices between the annotated classes and the estimated classes for all
the subjects in the database are computed. The criteria used to evaluate
the performance of an approach are the correct classification rate and
the prediction accuracy in terms of precision and recall.

In the following, the results of the MHMMR approach obtained on
real acceleration data of human activities are first detailed, then they
are compared to those of standard unsupervised and supervised classi-
fication approaches.

B. Classification Performance of the MHMMR

The following experiments were conducted to qualitatively assess
the performances of the proposed approach in terms of automatic seg-
mentation of human activity on the basis of raw acceleration signals.
From the sequence of nine observed variables y, = (yfl) y,(;g))
at each time step i for¢ = 1,....n corresponding to the three-axis
accelerations measured by the three sensors, the MHMMR is used to

2Note that, in this study, the raw acceleration data are directly used without
any feature extraction. Indeed, in many areas of application, a feature extraction
step is needed before running the classifier and may itself lead to an additional
computational cost, which can be penalizing in real-time applications.

3Note that the labels were not used to train unsupervised models; they were
only used afterwards for the evaluation of classification errors.
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Fig. 4. MHMRM segmentation for the sequence (Standing A2 — Sitting down
A3 — Sitting A4 — From sitting to sitting on the ground A5 — Sitting on the
ground A6 — Lying down A7- Lying A8) for the seven classesk = (1,...,7).

identify the latent sequence z = (z1,..., zn) corresponding to the 12
activities. The number of classes K is fixed to 12 and the order of re-
gression p is fixed empirically to three as it gives the best performance
among several values of p. Model parameters are estimated from the
data using the algorithm detailed in Section IV-A. Figs. 4 and 5 show
the performance of the proposed method to segment the two following
sequences:

* Sequence 1: Standing — Sitting down — Sitting — From sitting to
sitting on the ground — Sitting on the ground — Lying down —
Lying,

* Sequence 2: Standing — Walking — Climbing up stairs — Standing.
These figures represent the evolution of the acceleration data and the
corresponding posterior probabilities for the two different sequences.
Note that the posterior probability is the probability that a sample ¢
will be generated by the regression model k£ given the whole sequence
of observations (y,,....¥, ). It can be observed that the obtained se-
quences are interesting and promising despite some confusion between
activities such as (All1, A12).

Table II shows that the MHMMR gives 91.4% as a mean correct
classification rate averaged over all observations. It highlights the po-
tential benefit of the proposed approach in terms of automatic segmen-
tation and classification of human activity. Both the transitions and the
stationary activities are well identified. Exhaustively, Table I gives the
percentage of precision and recall for each activity. Indeed, one can
observe that static activities (A2, A4, A6, and A7) are easier to rec-
ognize than dynamic activities (A1, Al11, A12). In order to focus on
the efficiency ratio of the three sensors used for activity recognition,
the MHMMR algorithm has been evaluated using data from only two
sensors. The classification results, given in Table II, show as expected,
that the percentage of correctly classified instances decreases with the
number of data sources. The worst result is obtained when the sensor
placed at the thigh is not taken into account.

A2 I

True Labels
>
N

& =
o o,

[¢)]

Acceleration (m/?2)

Probability

50 55 60
Time (s)

Fig. 5. MHMMR segmentation for the sequence (Standing A2 — Walking A11
— Climbing up stairs A12 — Standing A2) for the three classesk = 1,...,3.

C. Comparison With Unsupervised and Supervised Classification
Approaches

Correct classification rates and the standard deviations obtained with
standard unsupervised and supervised classification approaches as well
as the MHMMR approach are given in Tables III and IV. Compared to
standard unsupervised classifiers, the proposed MHMMR outperforms
them since it provides a classification rate of 91.4%, while only 60%,
72%, and 84% of instances are well classified with, respectively, the
%-Means, the GMM, and the standard HMM approaches. Notice that,
the GMM and K-means approaches are not well suitable for this kind
of longitudinal data. In Table IV, it can be observed that the k-NN
(k = 1) gives the highest classification rates with 95.8%, followed by
the Random Forest with 93.5%. Then, the SVM gives 88.1% and the
MLP gives 83.1%. However, the Naive Bayes gives the lowest classifi-
cation rate with 80.6%. Table IV shows also that the £-NN (% = 1) has
the best classification algorithm in terms of prediction accuracy since
it achieves 95.9% of precision and recall. Compared to standard su-
pervised classification techniques (using class labels), these results are
very encouraging since the proposed approach performs in an unsuper-
vised way. The main errors are due to the confusions located in tran-
sition segments. This is due to the fact that the transitions lengths are
much shorter than the activities ones. Since the confusion matrix was
computed using real labels supplied by a human expert, the obtained
labels may not correspond perfectly to the expert labels, particularly,
during transitions. Indeed, it is difficult to have the ground truth of the
limit between an activity and a transition. Furthermore, the aforecited
supervised classification approaches require a labeled collection of data
to be trained. Besides, they do not explicit the temporal dependence in
their model formulation as they assume an independent hypothesis for
the data; the data are treated as several realizations in the multidimen-
sional space (R”) without considering possible dependencies between
the activities. Moreover, it can be noticed that assigning a new sample
to a class using the £-NN approach requires the computation of as many
distances as there are examples in the dataset, which may lead to a sig-
nificant computation time. Using the proposed approach, classification
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TABLE 1
RECALL VERSUS PRECISION OF THE MHMMR
Class Al A2 A3 A4 A5 A6 A7 A8 A9 Al10 | A1l | Al2
Precision (%) | 719 | 964 | 784 | 957 | 923 | 989 | 976 | 925 | 82.6 | 82.6 | 832 | 956
Recall (%) 95 878 | 834 94 973 | 946 | 954 | 909 | 985 | 922 | 98.1 | 823
TABLE II model which will be useful for any kind of complex activities and in

EFFECTS OF REDUCING THE NUMBER OF SENSORS WHEN USING MHMMR

Sensors Percentage of correctly classified instances
Chest, thigh, ankle 91.4% + 1.65
Chest, ankle 83.9% + 1.98
Chest, thigh 86.2% + 2.03
Thigh, ankle 84% £2.21
TABLE III

COMPARISON OF THE PERFORMANCE IN TERMS OF CORRECT CLASSIFICATION,
RECALL AND PRECISION OF THE FOUR UNSUPERVISED CLASSIFIERS

Correct Classification (%) | Precision (%) | Recall (%)
k-Means 60.2 + 2.48 60.4 59.8
GMM 72.3 £ 2.05 71.8 73.5
HMM 84.1+1.84 83.8 84
MHMMR 91.4+1.65 89 95.6
TABLE IV

COMPARISON OF THE PERFORMANCE IN TERMS OF CORRECT CLASSIFICATION,
RECALL AND PRECISION OF THE FIVE SUPERVISED CLASSIFIERS

Correct Classification Precision | Recall
(%) (%) (%)
Naive Bayes 80.6 £ 0.91 80.9 80.6
MLP 83.1 £0.45 82.8 83.2
SVM 88.1 £1.32 87.6 88.3
k-NN 95.8 £ 0.32 95.9 95.9
Random Forest 93.5+0.78 93.5 93.5

needs the computation of the posterior probabilities, as many as there
are activities. On the other hand, comparison with the unsupervised
classification approaches (%#-Means and the GMM) and the standard
HMM shows that the proposed method gives relatively a high rate and
better performances.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a statistical approach based on hidden
Markov models in a regression context for the joint segmentation of
multivariate time series of human activities. It is based upon the use
of raw accelerometer data acquired from body mounted inertial sen-
sors in a health-monitoring context. The main advantage of the pro-
posed approach comes from the fact that the statistical model takes
into account the regime changes over time through the hidden Markov
chain; each regime being interpreted as an activity (a class). Further-
more, learning with this statistical model is performed in an unsu-
pervised way using unlabeled examples only; parameter estimates are
computed by maximizing a likelihood criterion, using a dedicated EM
algorithm. Considering human activity recognition within an unsuper-
vised learning framework can be particularly interesting within an ex-
ploratory data-mining context in order to automatically cluster a large
amount of unlabeled acceleration data into different groups of activity.
The comparison with well-known supervised classification approaches
shows that the proposed method is competitive even when performed
in an unsupervised way. This work can be extended in several direc-
tions, namely, integrating the model into a Bayesian context to better
control the model complexity via choosing suitable prior distributions
on the models parameters. Then, and perhaps more interestingly, an-
other step to explore is to built a fully non Bayesian nonparametric

which the number of activities will not have to be fixed. In terms of
application, a promising perspective in a rehabilitation context would
be to use the proposed approach for recognizing in an unsupervised
framework the undesirable compensatory physical behaviors observed
with stroke and injury patients.
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