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Abstract— Mixture of Experts (MoE) is a popular framework
for modeling heterogeneity in data for regression, classification
and clustering. For continuous data, MoE usually uses normal
experts, that is, expert components following the Gaussian
distribution. However, for a set of data containing a group
or groups of observations with asymmetric distribution, the
use of normal experts may be unsuitable. In this paper, we
introduce the skew-normal MoE (SNMoE) which can deal
with the issue regarding possibly skewed data distribution.
We develop a dedicated expectation conditional maximization
(ECM) algorithm to estimate the parameters of the proposed
model by monotonically maximizing the observed data log-
likelihood. We describe how the presented model can be used
in prediction and in model-based clustering of regression data.
Numerical experiments carried out on simulated data show the
effectiveness of the proposed model in terms modeling non-
linear regression functions as well as in model-based clustering.
The proposed model is applied to two real-world data sets: the
tone perception data and the temperature anomalies data.

I. INTRODUCTION

Mixtures of experts (MoE) introduced by [14] is widely
studied in statistics and machine learning. It consists in a
fully conditional mixture model where both the mixing pro-
portions, known as the gating functions, and the component
densities, known as the experts, are conditional on some
covariates (inputs). MoE has been investigated, in its simple
form, as well as in its hierarchical form [15] (e.g Section
5.12 of [19]) for regression and model-based cluster and
discriminant analyses and in different application domains.
A complete review of the MoE models can be found in [26].
For continuous data, which we consider here in the context
of non-linear regression and model-based cluster analysis,
MoE usually uses normal experts, that is, expert components
following the Gaussian distribution. Along this paper, we will
call it the normal MoE, abbreviated NMoE. However, for
a set of data containing a group or groups of observations
with asymmetric behavior, the use of normal experts may be
unsuitable and can unduly affect the fit of the MoE model.

In this paper, we attempt to overcome this limitation
in NMoE by proposing more adapted MoE model which
can deal with skewed data distribution by relying on the
skew-normal distribution. Indeed, in these last years, the
use of the skew normal distribution, firstly proposed by [2],
[3], has been shown beneficial in dealing with asymmetric
data in various theoretic and applied problems. This prob-
lem has been also studied in the finite mixture literature
by namely [17] for modeling asymmetric univariate data
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with the univariate skew-normal mixture. Recently, [27]
introduced the scale mixtures of skew-normal distributions
for mixture of regressions. The inference in the previously
described mixtures and standard MoE is performed by maxi-
mum likelihood estimation via the expectation-maximization
(EM) algorithm or extensions [10], [18], in particular the
expectation conditional maximization (ECM) algorithm [20].
In this paper, we attempt to overcome the limitation in NMoE
by proposing more adapted MoE model which can deal with
skewed data distribution. We investigate the use of the skew-
normal distribution for the experts and consider the MoE
framework for non-linear regression problems and model-
based clustering of regression data. We therefore propose
the skew-normal MoE (SNMoE) to accommodate data with
possible asymmetric behavior. The model corresponds to
an extension of the unconditional mixture of skew-normal
distributions [17] to the MoE framework, where the mixture
means are regression functions and the mixing proportions
are covariate-varying. We call the proposed MoE model
the skew-normal MoE (SNMoE). Unlike our proposed SN-
MoE model, the regression mixture model of [27] does
not consider conditional mixing proportions, that is, mixing
proportions depending on some input variables, as in the case
of MoE, which we investigate here.

For the model inference, we develop a dedicated expecta-
tion conditional maximization (ECM) algorithm to estimate
the parameters of the proposed models by monotonically
maximizing the observed data log-likelihood. The EM al-
gorithms are indeed very popular and successful estimation
algorithms for mixture models in general and for MoE in
particular. Moreover, the EM algorithm for MoE has been
shown by [21] to be monotonically maximizing the MoE
likelihood. The authors have shown that the EM (with IRLS
in this case) algorithm has stable convergence and the log-
likelihood is monotonically increasing when a learning rate
smaller than one is adopted for the IRLS procedure within
the M-step of the EM algorithm. They have further proposed
an expectation conditional maximization (ECM) algorithm
to train MoE, which also has desirable numerical properties.
The mixture models and the MoE models have also been
considered in the Bayesian framework, but in this paper, we
focus on the maximum likelihood estimation framework.

This paper is organized as follows. In Section II we briefly
recall the MoE framework and the NMoE model. In Section
III, we present the SNMoE model and in Section IV we
present its inference technique using the ECM algorithm.
Section V is dedicated to the use of the MoE in regression,
clustering and to the model selection problem. In Section VI,
we perform experiments on simulated and real data to assess
the proposed model.



II. MIXTURE OF EXPERTS (MOE) FOR CONTINUOUS DATA

Mixture of experts [14], [15] are used in regression,
classification and clustering. Here we consider the MoE
framework for fitting (non-linear) regression functions and
for clustering of univariate continuous data.

A. The MoE model
The univariate MoE model for regression assumes that the

observed pairs of data (x, y) where y ∈ R is the response
for some covariate vector x ∈ Rp, are generated from K
regressors (experts) and are governed by a hidden categorical
random variable Z indicating from which component each
observation is generated. MoE for regression analysis [14],
[15] thus decompose the nonlinear regression model density
as follows:

f(y|x, r;Ψ) =

K∑
k=1

πk(r;α)fk(y|x;Ψk) (1)

where the mixing proportions, known as the gating network,
are function of some covariates r ∈ Rq and are modeled by
the multinomial logistic model as follows:

πk(r;α) = P(Z = k|r;α) =
exp (αTk r)∑K
`=1 exp (αT` r)

(2)

where αk is the q-dimensional coefficients vector associated
with r and α = (αT1 , . . . ,α

T
K−1)T is the parameter vector

of the gating network, with αK being the null vector. The
parameter vector of the MoE model is given by Ψ =
(αT ,ΨT1 , . . . ,Ψ

T
K)T , Ψk being the parameter vector of the

kth component density (expert).

B. The normal MoE (NMoE) model
In MoE for regression, it is usually assumed that the

experts are normal, that is, follow a normal distribution. A K-
component NMoE (K > 1) has the following formulation:

f(y|x, r;Ψ) =

K∑
k=1

πk(r;α) N
(
y;µ(x;βk), σ2

k

)
(3)

which involves, in the semi-parametric case, component
means defined as parametric (non-)linear regression functions
µ(x;βk).

The NMoE model parameters Ψ are estimated by max-
imizing the observed data log-likelihood by using the EM
algorithm [10], [14], [15], [16], [21], [18].

However, the normal distribution is not adapted to deal
with asymmetric data. In the proposal, we address the issue
regarding the skewness by proposing the skew-normal MoE
(SNMoE) model.

III. THE SKEW-NORMAL MOE (SNMOE) MODEL

The skew-normal MoE (SNMoE) model uses the skew-
normal distribution as density for the expert components.
We first recall the skew-normal distribution and describe its
stochastic and hierarchical presentations, to then derive them
for the proposed SNMoE model.

A. The skew-normal distribution

As introduced by [2], [3], a random variable Y follows a
univariate skew-normal distribution with location parameter
µ ∈ R, scale parameter σ2 ∈ (0,∞) and skewness parameter
λ ∈ R if it has the density

f(y;µ, σ2, λ)=
2

σ
φ(
y − µ
σ

)Φ

(
λ(
y − µ
σ

)

)
(4)

where φ(.) and Φ(.) denote, respectively, the probability den-
sity function (pdf) and the cumulative distribution function
(cdf) of the standard normal distribution. It can be seen from
(4) that when λ = 0, the skew-normal reduces to the normal
distribution. As presented by [3], [13], if

Y = µ+ δ|U |+
√

1− δ2E (5)

where δ = λ√
1+λ2

, U and E are independent random
variables following the normal distribution N(0, σ2), then Y
follows the skew-normal distribution with pdf SN(µ, σ2, λ)
given by (4). In the above, |U | denotes the magnitude
of U . This stochastic representation of the skew-normal
distribution leads to the following hierarchical representation
in an incomplete data framework, as presented in [17]:

Y |u ∼ N
(
µ+ δ|u|, (1− δ2)σ2

)
,

U ∼ N(0, σ2).
(6)

This hierarchical representation greatly facilitates the infer-
ence for the model, namely in the skew-normal mixture
model. Introduced by [17], a K-component skew-normal
mixture model is given by:

f(y;Ψ) =

K∑
k=1

πk SN(y;µk, σ
2
k, λk) (7)

where the mixture components have a skew-normal density
given by (4). For the skew-normal mixture, the mixing
proportions and the means of the mixture components are
assumed to be constant.

In the following section, we present the skew-normal MoE
(SNMoE) which extends the skew-normal mixture model
to the case of MoE framework, by considering conditional
distributions for both the mixing proportions and the means
of the mixture components.

B. The skew-normal MoE (SNMoE)
The proposed skew-normal MoE (SNMoE) is a K-

component MoE model with skew-normal experts. It is
defined by:

f(y|x, r;Ψ) =

K∑
k=1

πk(r;α)SN
(
y;µ(x;βk), σ2

k, λk
)
. (8)

In the SNMoE model, each expert component k has
a skew-normal distribution, whose density is defined
by (4). The parameter vector of the model is Ψ =
(αT1 , . . . ,α

T
K−1,Ψ

T
1 , . . . ,Ψ

T
K)T with Ψk = (βTk , σ

2
k, λk)T

the parameter vector for the kth skewed-normal expert com-
ponent. It is obvious to see that if the skewness parameter
λk = 0 for each k, the SNMoE model (8) reduces to the
NMoE model (3). Before going on the model inference, we
first present its stochastic and hierarchical representations,
which will serve to derive the ECM algorithm for maximum



likelihood parameter estimation. The SNMoE model is char-
acterized as follows.

1) Stochastic representation of the SNMoE: By using the
stochastic representation (5) of the skew-normal distribution,
the stochastic representation for the SNMoE is as follows.
Let U and E be independent univariate random variables
following the standard normal distribution N(0, 1) with pdf
φ(.). Given some covariates xi and ri, a random variable Yi
is said to follow the SNMoE model (8) if it has the following
representation:

Yi = µ(xi;βzi) + δziσzi |Ui|+
√

1− δ2zi σziEi. (9)

In (9), we have δzi =
λzi√
1+λ2

zi

where zi ∈ {1, . . . ,K} is a

realization of the categorical variable Zi which follows the
multinomial distribution, that is:

Zi|ri ∼ Mult(1;π1(ri;α), . . . , πK(ri;α)) (10)

where each of the probabilities πzi(ri;α) = P(Zi = zi|ri)
is given by the multinomial logistic function (2). In this
incomplete data framework, zi represents the hidden label
of the expert component generating the ith observation.

The stochastic representation (9) of the SNMoE leads to
the following hierarchical representation, which, as it will be
presented in Section IV, facilitates the model inference.

2) Hierarchical representation of the SNMoE: By in-
troducing the binary latent component-indicators Zik such
that Zik = 1 iff Zi = k, a hierarchical representation
of the SNMoE model can be derived from its stochastic
representation (9) and is as follows:

Yi|ui, Zik = 1,xi∼N
(
µ(xi;βk) + δk|ui|, (1− δ2k)σ2

k

)
,

Ui|Zik = 1 ∼N(0, σ2
k), (11)

Zi|ri ∼Mult (1;π1(ri;α), . . . , πK(ri;α))

where Zi = (Zi1, . . . , ZiK) and δk = λk√
1+λ2

k

.

IV. MAXIMUM LIKELIHOOD ESTIMATION OF THE
SNMOE MODEL

The unknown parameter vector Ψ of the SNMoE model
can be estimated by maximizing the observed-data log-
likelihood. Given an observed i.i.d sample of n observa-
tions (y1, . . . , yn) with their respective associated covariates
(x1, . . . ,xn) and (r1, . . . ,xr), under the SNMoE model (8),
the observed data log-likelihood of Ψ is given by:

logL(Ψ) =

n∑
i=1

log
K∑
k=1

πk(ri;α)SN
(
yi;µ(xi;βk), σ2

k, λk
)
.

(12)
The maximization of this log-likelihood can not be per-
formed in a closed form. However, in this latent data frame-
work, the maximization can be performed via expectation-
maximization (EM)-type algorithms [18]. More specifically,
we propose a dedicated Expectation Conditional Maximiza-
tion (ECM) algorithm to monotonically maximize (12). The
ECM algorithm [20] is an EM variant that mainly aims at
addressing the optimization problem in the M-step of the EM
algorithm. In ECM, the M-step is performed by several con-
ditional maximization (CM) steps by dividing the parameter
space into sub-spaces. The parameter vector updates are then
performed sequentially, one coordinate block after another in
each sub-space.

A. ECM-algorithm for the SNMoE model
Deriving the ECM algorithm requires the definition of the

complete-data log-likelihood. From the hierarchical represen-
tation (11) of the SNMoE, the complete-data log-likelihood
Ψ , where the complete-data are {yi, zi, ui,xi, ri}ni=1, is
given by:

logLc(Ψ)=logLc(α)+

K∑
k=1

logLc(Ψk), (13)

with logLc(α) =
∑n
i=1

∑K
k=1Zik log πk(ri;α), logLc(Ψk) =∑n

i=1Zik
[
− log(2πσ2

k)− 1
2

log(1 − δ2k)− d2ik
2(1−δ2

k
)

+ δk dik ui
(1−δ2

k
)σk
−

u2
i

2(1−δ2
k
)σ2
k

]
, where dik = yi−µ(xi;βk)

σk
. Then, the proposed

ECM algorithm for the SNMoE model performs as follows.
It starts with an initial parameter vector Ψ (0) and alternates
between the E- and CM- steps until a convergence criterion
is satisfied.

1) E-Step: The E-Step of the ECM algorithm for the
SNMoE calculates the Q-function, that is the conditional
expectation of the complete-data log-likelihood (13), given
the observed data {(yi,xi, ri)}ni=1 and a current parameter
estimation Ψ (m), m being the current iteration:

Q(Ψ ;Ψ (m)) = E
[

logLc(Ψ)|{yi,xi, ri}ni=1;Ψ (m)]. (14)

From (13), it follows that the Q-function is given by:

Q(Ψ ;Ψ (m)) = Q1(α;Ψ (m)) +

K∑
k=1

Q2(Ψk;Ψ (m)), (15)

with

Q1(α;Ψ (m)) =

n∑
i=1

K∑
k=1

τ
(m)
ik log πk(ri;α), (16)

Q2(Ψk;Ψ (m))=

n∑
i=1

τ
(m)
ik

[
− log(2π)− log(σ2

k)− 1

2
log(1− δ2k)

+
δk dik e

(m)
1,ik

(1− δ2k)σk
−

e
(m)
2,ik

2(1− δ2k)σ2
k

− d2ik
2(1− δ2k)

]
(17)

for k = 1, . . . ,K, where the required conditional expecta-
tions are given by:

τ
(m)
ik =EΨ(m) [Zik|yi,xi, ri] ,
e
(m)
1,ik=EΨ(m) [Ui|Zik = 1, yi,xi, ri] ,

e
(m)
2,ik=EΨ(m)

[
U2
i |Zik = 1, yi,xi, ri

]
. (18)

The τ (m)
ik ’s represent the posterior distribution of the hidden

class labels Zi and correspond to the posterior memberships
of the observed data. They are given by:

τ
(m)
ik =

πk(ri;α
(m))SN

(
yi;µ(xi;β

(m)
k ), σ2

k
(m)

, λ
(m)
k

)
f(yi|xi, ri;Ψ (m))

· (19)

The conditional expectations e(m)
1,ik and e

(m)
2,ik correspond to

the posterior distribution of the hidden variables Ui and U2
i ,

respectively. From the hierarchical representation (11), as
shown by [17] in the case of the skew-normal mixture model,
by Bayes’ theorem, the posterior distribution of Ui is the
following half normal:

Ui|Zik = 1, yi,xi, ri ∼ HN[0,∞)

(
µuik , σ

2
uk

)



where the posterior mean and variance in this case of SNMoE
are respectively given by:

µuik = δk(yi − µ(xi;βk)) and σ2
uk = (1− δ2k)σ2

k.

Then the two conditional expectations of Ui and U2
i are

respectively given by:

e
(m)
1,ik=µuik

(m) + σuk
(m)

φ
(
λ
(m)
k dik

(m)
)

Φ
(
λ
(m)
k dik

(m)
) , (20)

e
(m)
2,ik=µ2

uik

(m)
+ σ2

uk

(m)
+ µuik

(m)σuk
(m)

φ
(
λ
(m)
k dik

(m)
)

Φ
(
λ
(m)
k dik

(m)
) ·(21)

From (15), (16), and (17), it can be seen that the Q-function
is calculated by analytically calculating the conditional ex-
pectations (19), (20) and (21).

2) M-Step: Then, the M-step calculates the parameter
vector Ψ (m+1) by maximizing the Q-function (15) with re-
spect to Ψ . This can be performed by separately maximizing
Q1(α;Ψ (m)) with respect to α and, for each component k
(k = 1, . . . ,K), the function Q(Ψk;Ψ (m)) with respect to
Ψk where Ψk = (βTk , σ

2
k, λk)T . We adopt the ECM exten-

sion of the EM algorithm. The M-step in this case consists
of four conditional maximization (CM)-steps, corresponding
to the decomposition of the vector Ψ into four sub-vectors
Ψ = (αT ,βT ,σT ,λT )T . This leads to the following CM
steps.

a) CM-Step 1: Calculate α(m+1) as:

α(m+1) = arg max
α

Q1(α;Ψ (m)). (22)

Contrarily to the case of the standard skew-normal mix-
ture model and skew-normal regression mixture model, this
maximization in the case of the proposed SNMoE does not
exist in closed form. It is performed iteratively by Iteratively
Reweighted Least Squares (IRLS).

b) The Iteratively Reweighted Least Squares (IRLS)
algorithm: The IRLS algorithm is used to maximize
Q1(α,Ψ (m)) given by (16) with respect to the parameter
α in the M step at each iteration m of the ECM algorithm.
The IRLS is a Newton-Raphson algorithm, which consists
in starting with a vector α(0), and, at the l + 1 iteration,
updating the estimation of α as follows:

α(l+1) = α(l)−
[∂2Q1(α,Ψ (m))

∂α∂αT

]−1

α=α(l)

∂Q1(α,Ψ (m))

∂α

∣∣∣
α=α(l)

(23)
where ∂2Q1(α,Ψ

(m))
∂α∂αT

and ∂Q1(α,Ψ
(m))

∂α are respectively the
Hessian matrix and the gradient vector of Q1(α,Ψ(m)).
At each IRLS iteration the Hessian and the gradient are
evaluated at α = α(l) and are computed similarly as in
[8][7]. The parameter update α(m+1) is taken at convergence
of the IRLS algorithm (23). Then, for k = 1 . . . ,K,

c) CM-Step 2: Calculate β
(m+1)
k by maximizing

Q2(Ψk;Ψ (m)) given by (17) w.r.t βk. Here we focus on
the common linear case for the experts where each expert-
component mean function is the one of a linear regression
model and has the form µ(xi;βk) = βTk xi. It can be easily
shown that the maximization problem for the resulting skew-
normal mixture of linear of experts (SNMoLE) can be solved

analytically and has the following solution:

β
(m+1)
k =

[ n∑
i=1

τ
(m)
ik xix

T
i

]−1
n∑
i=1

τ
(q)
ik

(
yi − δ(m)

k e
(m)
1,ik

)
xi. (24)

d) CM-Step 3: Calculate σ2
k
(m+1) by maximizing

Q2(Ψk;Ψ (m)) given by (17) w.r.t σ2
k. Similarly to the update

of βk, the analytic solution of this problem is given by:

σ
2
k

(m+1)
=

∑n
i=1τ

(m)
ik

[(
yi − βTk

(m+1)
xi
)2
− 2δ

(m+1)
k e

(m)
1,ik(yi − β

T
k

(m+1)
xi) + e

(m)
2,ik

]
2
(
1− δ2k

(m)
)∑n

i=1 τ
(m)
ik

·

(25)

e) CM-Step 4: Calculate λ
(m+1)
k by maximizing

Q2(Ψk;Ψ (m)) given by (17) w.r.t λk, with βk and σ2
k

fixed at β(m+1)
k and σ2

k
(m+1), respectively. This consists

in solving the following equation for δk to obtain δ
(m+1)
k

(k = 1, . . . ,K) as the solution of:

σ2
k
(m+1)

δk(1− δ2k)
n∑
i=1

τ
(m)
ik + (1 + δ2k)

n∑
i=1

τ
(m)
ik (yi − βTk

(m+1)
xi) e

(m)
1,ik

−δk
n∑
i=1

τ
(m)
ik

[
e
(m)
2,ik +

(
yi − βTk

(m+1)
xi
)2 ]

= 0· (26)

Then, given the update δ(m+1)
k , the update of the skewness

parameter λk is calculated as λ(m+1)
k =

δ
(m+1)
k√

1−δ2k
(m+1)

.

It is obvious to see that when the skewness parameter
λk = δk = 0 for all k, the parameter updates for the SNMoE
corresponds to those of the NMoE. Hence, compared to
the standard NMoE, the SNMoE model has an additional
flexibility feature, that is the one to handle possibly skewed
data.

V. PREDICTION, CLUSTERING AND MODEL SELECTION

In regression analysis using MoE, one can predict the
response y given new values of the predictors (x, r), on the
basis of a MoE model characterized by a parameter vector
Ψ̂ inferred from a set of training data, here, by maximum
likelihood via ECM. These predictions can be expressed
in terms of the predictive distribution of y obtained by
substituting the estimated parameter Ψ̂ into (1) to give:

f(y|x, r; Ψ̂) =

K∑
k=1

πk(r; α̂)fk(y|x; Ψ̂k). (27)

Using f , we might then predict y for a given set of x’s
and r’s as the expected value under f , that is by calculating
the prediction ŷ = EΨ̂ (Y |x, r). It is easy to show that for
the NMoE model, the normal expert means and variances
are respectively given by EΨ̂ (Y |Z = k,x) = β̂

T

k x and
VΨ̂ (Y |Z = k,x) = σ̂2

k. Then, it follows that the mean of

the NMoE is given by EΨ̂ (Y |x, r) =
∑K
k=1 πk(r; α̂n)β̂

T

k x.
Then, similarly, the expected value for the proposed SNMoE
model is EΨ̂ (Y |Z = k,x) = β̂

T

k x +
√

2
π δ̂k σ̂k and the

expert variance is VΨ̂ (Y |Z = k,x) =
(

1− 2
π δ̂

2
k

)
σ̂2
k where

δ̂k = λ̂k√
1+λ̂2

k

. It follows that the mean of the SNMoE



model is given by: EΨ̂ (Y |x, r) =
∑K
k=1 πk(r; α̂)

(
β̂
T

k x +√
2
π δ̂kσ̂k

)
. Finally, the variance for each MoE model is

obtained easily from these specific expert mean and variance
calculated in the above.

Model-based clustering using the SNMoE consists in
assuming that the observed data {xi, ri, yi}ni=1 are generated
from a K component SNMoE with parameter vector Ψ .
Once the parameters are estimated (here by E(C)M), the
provided posterior membership probabilities τik given by
(19) represent a fuzzy partition of the data. A hard partition of
the data can then be obtained from the posterior memberships
by applying the Bayes’ allocation rule:

ẑi = arg
K

max
k=1

τ̂ik (28)

where ẑi is the estimated cluster label for the ith observation.
The problem of model selection for MoE is equivalent

to the one of choosing the optimal number of experts
K, the value of p related to the polynomial regression
and the value of q for the logistic regression. The opti-
mal value of (K, p, q) can be computed by using some
model selection criteria such as the Akaike Information
Criterion AIC(K, p, q) = logL(Ψ̂) − ηΨ [1], the Bayesian
Information Criterion BIC(K, p, q) = logL(Ψ̂) − ηΨ log(n)

2
[24], or the Integrated Classification Likelihood criterion
ICL(K, p, q) = logLc(Ψ̂) − ηΨ log(n)

2 [5]. In the above,
logL(Ψ̂) and logLc(Ψ̂) are respectively the observed data
log-likelihood and the complete data log-likelihood, obtained
at convergence of the E(C)M algorithm for the corresponding
MoE model. The number of free parameters ηΨ is given
by ηΨ = K(p + q + 2) − q for the NMoE model and
ηΨ = K(p+ q + 3)− q for the proposed SNMoE model.

However, note that in MoE it is common to use mixing
proportions modeled as logistic transformation of linear
functions of the covariates, that is the covariate vector in
(2) is given by ri = (1, ri)

T (corresponding to q = 2), ri
being a univariate covariate variable. This is also adopted in
this work. Moreover, for the case of linear experts (linear
regressors corresponding to p = 2), the model selection
reduces to choosing the number of experts K.

VI. EXPERIMENTAL STUDY

A. An illustrative example

We first start by an illustrative example by considering
a data set generated from an arbitrary non-linear function,
which was analyzed by [6] and elsewhere. This data set
consists of n = 250 values of input variables xi generated
uniformly in (0, 1) and output variables yi generated as
yi = xi + 0.3 sin(2πxi) + εi, with εi drawn from a zero
mean Normal distribution with standard deviation 0.05. To
apply the MoE models, we set the covariate vectors (xi, ri)
to xi = ri = (1, xi)

T . We considered mixture of three linear
experts as in [6].

Figure 1 shows the fitted expert mean functions, the
corresponding partitions obtained by using the Bayes’ rule,
and the gating network outputs. One can observe that the
SNMoE model is successfully applied and provides results
very close to those obtained by the NMoE.
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Fig. 1. Fitting the NMoE model and the proposed SNMoE to the toy data
set analyzed in [6].

B. Experiments on simulation data sets

In this section we perform an experimental study on
simulated data sets to apply and assess the proposed model.
The aims is to observe the effect of the sample size on
the estimation quality. Each simulated sample consisted of
n observations with increasing values of the sample size
n : 50, 100, 200, 500, 1000. The simulated data are generated
from a two component mixture of linear experts, that is
K = 2. The covariate variables (xi, ri) are simulated such
that xi = ri = (1, xi)

T (i.e p = q = 2) where xi is
simulated uniformly in (−1, 1). We consider each of the
two models for data generation (NNMoE, SNMoE), that is,
given the covariates, the response yi|{xi, ri;Ψ} is simulated
according to the generative process of the models (3) and
(8). We consider the mean square error (MSE) between each
component of the true parameter vector and the estimated
one, which is given by ‖ Ψ j − Ψ̂ j ‖2. The squared errors
are averaged on 100 trials. The used simulation parameters
Ψ for each model are given in Table I.

parameters

comp. 1 α1 = (0, 10)T β1 = (0, 1)T σ1 = 0.1 λ1 = 3

comp. 2 α2 = (0, 0)T β2 = (0,−1)T σ2 = 0.1 λ2 = −10

TABLE I
PARAMETER VALUES USED IN SIMULATION.

Table II shows the obtained results in terms of the MSE for
the SNMoE model. One can observe that the parameter esti-
mation error is decreasing as n increases, which confirms the
convergence property of the maximum likelihood estimator.
One can also observe that the error decreases significantly for
n ≥ 500, especially for the regression coefficients and the
scale parameters. In addition to the previously shown results,
we show in Figures 2 and 3 the estimated quantities provided
by applying the proposed SNMoE model and their true
counterparts for a data set (n = 500) generated according



param. α10 α11 β10 β11 β20 β21 σ1 σ2 λ1 λ2
n

50 1.10105 4.1882 0.00916 0.004890 0.007370 0.00348000 0.001647 0.002234 3.000 4.999
100 0.28074 1.0663 0.008301 0.0006118 0.006360 0.00007904 0.001314 0.001650 2.999 5.000
200 0.03893 0.9343 0.004709 0.0000398 0.005962 0.00005873 0.001142 0.001552 2.999 5.000
500 0.02340 0.0908 0.004475 0.0000195 0.005803 0.00000796 0.001026 0.001521 3.000 4.999
1000 0.00025 0.0613 0.003912 0.0000012 0.005499 0.00000344 0.000667 0.001517 2.999 3.999

TABLE II
MSE BETWEEN THE ESTIMATED SNMOE PARAMETERS AND THE

ACTUAL ONES FOR A VARYING SAMPLE SIZE n.

the NMoE model and the SNMoE model, respectively.
One can clearly see that the estimated experts and mean

functions provided by the proposed model are very close
to the true ones, including when the data are generated
according to the NMoE model. This provides an additional
support to the fact that the proposed algorithm performs well
and the proposed SNMoE model is a good generalization
of the NMoE model, since it clearly approaches the NMoE
as shown in this simulated example. One can also clearly
see that the partitions estimated by the SNMoE model are
close the actual partitions. The proposed SNMoE model can
therefore be used as alternative to the NMoE model for both
regression and model-based clustering.
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Fig. 2. Fitted SNMoE to data generated according to the NMoE.

C. Application to two real-world data sets

In this section, we consider an application to two real-
world data sets: the tone perception data set and the temper-
ature anomalies data set shown in Figure 4.

1) Tone perception data set: The first analyzed data set
is the real tone perception data set1 which goes back to
[9]. It was recently studied by [4] and [25]. In the tone
perception experiment, a pure fundamental tone was played
to a trained musician. Electronically generated overtones
were added, determined by a stretching ratio (“stretch ratio"
= 2) which corresponds to the harmonic pattern usually heard

1Source: http://artax.karlin.mff.cuni.cz/r-help/
library/fpc/html/tonedata.html
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Fig. 3. Fitted SNMoE to data generated according to the SNMoE.
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Fig. 4. Scatter plot of the tone perception data (left) and the temperature
anomalies data (right).

in traditional definite pitched instruments. The musician was
asked to tune an adjustable tone to the octave above the
fundamental tone and a “tuned” measurement gives the ratio
of the adjusted tone to the fundamental. The obtained data
consists of n = 150 pairs of “tuned” variables, considered
here as predictors (x), and their corresponding “stretch ratio”
variables considered as responses (y). To apply the MoE
models, we set the response yi(i = 1, . . . , 150) as the
“stretch ratio” variables and the covariates xi = ri =
(1, xi)

T where xi is the “tuned” variable of the ith observa-
tion. We first follow the study in [4] and [25] by using two
expert components and then perform model selection (see
Table IV).

Figure 5 shows the scatter plots of the tone perception
data and the linear expert components of the fitted NMoE
model and the proposed SNMoE model. One can observe
that we obtain a good fit with the two models. The NMoE
and SNMoE solutions are quasi-identical. The two regression
lines may correspond to correct tuning and tuning to the
first overtone, respectively, as analyzed in [4]. The values
of estimated parameters for the tone perception data set are
given in Table III. One can see that the SNMoE model
parameters are identical to those of the NMoE, with a
skewness close to zero, which tends to promote a non skewed
distribution.

We also performed a model selection procedure on this
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Fig. 5. Fitting the NMoE model (left) and the SNMoE model (right) to
the tone perception data. The predictor x is the actual tone ratio and the
response y is the perceived tone ratio.

param. α10 α11 β10 β11 β20 β21 σ1 σ2 λ1 λ2

model

NMoE -2.690 0.796 -0.029 0.995 1.913 0.043 0.137 0.047 - -
SNMoE -2.694 0.797 -0.029 0.995 1.913 0.043 0.137 0.047 5.2e-13 -1.65e-13

TABLE III
ESTIMATED MOE PARAMETERS FOR THE TONE PERCEPTION DATA SET.

data set to choose the best number of MoE components
for a number of components between 1 and 5. We used
BIC, AIC, and ICL. Table IV gives the obtained values
of the model selection criteria. One can see that for the
NMoE model overestimate the number of components. AIC
performs poorly for the two models. BIC provides the correct
number of components for the proposed model. ICL also
estimated the correct number of components for the SNMoE
model. One can conclude that the BIC and the ICL are the
criteria to be suggested for the analysis of this data, with the
SNMoE model, which is more adapted.

NMoE SNMoE
K BIC AIC ICL BIC AIC ICL

1 1.8662 6.3821 1.8662 -0.6391 5.3821 -0.6391
2 122.8050 134.8476 107.3840 117.7939 132.8471 102.4049
3 118.1939 137.7630 76.5249 122.8725 146.9576 98.0442
4 121.7031 148.7989 94.4606 109.5917 142.7087 97.6108
5 141.6961 176.3184 123.6550 107.2795 149.4284 96.6832

TABLE IV
MODEL SELECTION FOR THE TONE PERCEPTION DATA.

2) Temperature anomalies data set: In this experiment,
we examine another real-world data set related to climate
change analysis. The NASA GISS Surface Temperature
(GISTEMP) analysis provides a measure of the changing
global surface temperature with monthly resolution for the
period since 1880, when a reasonably global distribution of
meteorological stations was established. The GISS analysis
is updated monthly, however the data presented here2 are
updated annually as issued from the Carbon Dioxide In-
formation Analysis Center (CDIAC), which has served as
the primary climate-change data and information analysis
center of the U.S. Department of Energy since 1982. The
data consist of n = 135 yearly measurements of the global

2source: from [23], http://cdiac.ornl.gov/ftp/trends/
temp/hansen/gl_land.txt

annual temperature anomalies (in degrees C) computed using
data from land meteorological stations for the period of
1882−2012. These data have been analyzed earlier by [11],
[12] and recently by [22] by using the Laplace mixture of
linear experts (LMoLE).

To apply the two MoE models, we consider mixtures of
two experts as in [22]. This number of components is also the
one provided by the model selection criteria as shown later
in Table VI. We set the response yi(i = 1, . . . , 135) as the
temperature anomalies and the covariates xi = ri = (1, xi)

T

where xi is the year of the ith observation.
Figure 6 shows, for each of the two MoE models, the two

fitted linear expert components, the corresponding means and
confidence regions computed as plus and minus twice the
estimated (pointwise) standard deviation. One can observe
that the model is successfully applied on the data set and
provide very similar results to the NMoE model. The values
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Fig. 6. Fitting the NMoE model (left) and the SNMoE model (right) to
the temperature anomalies data set. The shaded region represents plus and
minus twice the estimated (pointwise) standard deviation. The predictor x
is the year and the response y is the temperature anomaly.

of estimated MoE parameters for this data set are given in
Table V. One can see that the parameters common for the
two models are quasi-identical. It can also be seen that the
SNMoE model provides a fit with a skewness very close
to zero. This may support the hypothesis of non-asymmetry
for this data set. As mentioned by [22], [12] found that the
data could be segmented into two periods of global warming
(before 1940 and after 1965), separated by a transition period
where there was a slight global cooling (i.e. 1940 to 1965).
Documentation of the basic analysis method is provided by
[11], [12].

We performed a model selection procedure on the temper-
ature anomalies data set to choose the best number of MoE
components from values between 1 and 5. Table VI gives
the obtained values of the used model selection criteria, that
is BIC, AIC, and ICL. One can see that, except the result
provided by AIC for the NMoE model which provides a



param. α10 α11 β10 β11 β20 β21 σ1 σ2 λ1 λ2

model

NMoE 946.48 -0.481 -12.805 0.006 -41.073 0.020 0.115 0.110 - -
SNMoE 950.95 -0.484 -12.805 0.006 -41.074 0.020 0.115 0.110 -8.7e-13 -9.2e-13

TABLE V
ESTIMATED MOE PARAMETERS FOR THE TEMPERATURE ANOMALIES.

high number of components, all the others results provide
evidence for two components in the data.

NMoE SNMoE
K BIC AIC ICL BIC AIC ICL

1 46.0623 50.4202 46.0623 43.6096 49.4202 43.6096
2 79.9163 91.5374 79.6241 75.0116 89.5380 74.7395
3 71.3963 90.2806 58.4874 63.9254 87.1676 50.8704
4 66.7276 92.8751 54.7524 55.4731 87.4312 41.1699
5 59.5100 92.9206 51.2429 45.3469 86.0207 41.0906

TABLE VI
MODEL SELECTION FOR THE TEMPERATURE ANOMALIES DATA.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a new non-normal MoE model,
which generalizes the normal MoE. It is based on the skew-
normal distribution. The SNMoE model is suggested for non-
symmetric data. We developed an ECM algorithm to infer the
model parameters and described the use of the model in non-
linear regression and prediction as well as in model-based
clustering. The results obtained on simulated data confirm the
good performance of the model in terms of non-linear regres-
sion function approximation and clustering. The proposed
model was also successfully applied to two different real data
sets. Note that however both the NMoE and the proposed
SNMoE can be affected by atypical observations. The use of
MoE based on for example the t or the Laplace distribution
is more robust. The model selection for the studied data tends
to promote using BIC with the proposed SNMoE against in
particular AIC which may perform poorly in the analyzed
data, as well as against using BIC with the NMoE.

Here we only considered the MoE in their non-hierarchical
version. One interesting future direction is therefore to extend
the proposed model to the hierarchical MoE framework [15].
Furthermore, a natural future extension of this work is to
consider the case of MoE with multivariate outputs.

REFERENCES

[1] H. Akaike, “A new look at the statistical model identification,” IEEE
Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[2] A. Azzalini, “A class of distributions which includes the normal ones,”
Scandinavian Journal of Statistics, pp. 171–178, 1985.

[3] ——, “Further results on a class of distributions which includes the
normal ones,” Scandinavian Journal of Statistics, pp. 199–208, 1986.

[4] X. Bai, W. Yao, and J. E. Boyer, “Robust fitting of mixture regression
models,” Computational Statistics & Data Analysis, vol. 56, no. 7, pp.
2347 – 2359, 2012.

[5] C. Biernacki, G. Celeux, and G. Govaert, “Assessing a mixture
model for clustering with the integrated completed likelihood,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
no. 7, pp. 719–725, 2000.

[6] C. Bishop and M. Svensén, “Bayesian hierarchical mixtures of ex-
perts,” in In Uncertainty in Artificial Intelligence, 2003.

[7] F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin, “Time series
modeling by a regression approach based on a latent process,” Neural
Networks, vol. 22, no. 5-6, pp. 593–602, 2009.

[8] ——, “A hidden process regression model for functional data descrip-
tion. application to curve discrimination,” Neurocomputing, vol. 73,
no. 7-9, pp. 1210–1221, March 2010.

[9] E. A. Cohen, “Some effects of inharmonic partials on interval percep-
tion,” Music Perception, vol. 1, 1984.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” Journal of The Royal
Statistical Society, B, vol. 39(1), pp. 1–38, 1977.

[11] J. Hansen, R. Ruedy, J. Glascoe, and M. Sato, “Giss analysis of surface
temperature change,” Journal of Geophysical Research, vol. 104, pp.
30 997–31 022, 1999.

[12] J. Hansen, R. Ruedy, S. M., M. Imhoff, W. Lawrence, D. Easterling,
T. Peterson, and T. Karl, “A closer look at united states and global
surface temperature change,” Journal of Geophysical Research, vol.
106, pp. 23 947–23 963, 2001.

[13] N. Henze, “A probabilistic representation of the skew-normal distri-
bution,” Scandinavian Journal of Statistics, pp. 271–275, 1986.

[14] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive
mixtures of local experts,” Neural Computation, vol. 3, no. 1, pp. 79–
87, 1991.

[15] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the EM algorithm,” Neural Computation, vol. 6, pp. 181–214, 1994.

[16] M. I. Jordan and L. Xu, “Convergence results for the EM approach to
mixtures of experts architectures,” Neural Networks, vol. 8, no. 9, pp.
1409–1431, 1995.

[17] T. I. Lin, J. C. Lee, and S. Y. Yen, “Finite mixture modelling using
the skew normal distribution,” Statistica Sinica, vol. 17, pp. 909–927,
2007.

[18] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions,
2nd ed. New York: Wiley, 2008.

[19] G. J. McLachlan and D. Peel., Finite mixture models. New York:
Wiley, 2000.

[20] X. L. Meng and D. B. Rubin, “Maximum likelihood estimation via
the ECM algorithm: A general framework,” Biometrika, vol. 80, no. 2,
pp. 267–278, 1993.

[21] S.-K. Ng and G. J. McLachlan, “Using the em algorithm to train
neural networks: misconceptions and a new algorithm for multiclass
classification.” IEEE Transactions on Neural Networks, vol. 15, no. 3,
pp. 738–749, 2004.

[22] H. D. Nguyen and G. J. McLachlan, “Laplace mixture of linear
experts,” Computational Statistics & Data Analysis, vol. 93, pp. 177–
191, 2016.

[23] R. Ruedy, M. Sato, and K. Lo, “NASA GISS surface temperature
(GISTEMP) analysis,” DOI: 10.3334/CDIAC/cli.001, center for Cli-
mate Systems Research, NASA Goddard Institute for Space Studies.

[24] G. Schwarz, “Estimating the dimension of a model,” Annals of
Statistics, vol. 6, pp. 461–464, 1978.

[25] W. Song, W. Yao, and Y. Xing, “Robust mixture regression model
fitting by laplace distribution,” Computational Statistics & Data Anal-
ysis, vol. 71, no. 0, pp. 128 – 137, 2014.

[26] S. E. Yuksel, J. N. Wilson, and P. D. Gader, “Twenty years of mixture
of experts.” IEEE Trans. Neural Netw. Learning Syst., vol. 23, no. 8,
pp. 1177–1193, 2012.

[27] C. B. Zeller, V. H. Lachos, and C. Cabral, “Robust mixture regression
modelling based on scale mixtures of skew-normal distributions,” Test
(revision invited), 2015.


