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Abstract— This paper introduces a novel model-based clus- Generative models have been developed by Gaffney & Smyth
tering approach for clustering time series which present canges  [3], [4] which consist in clustering time series with mixéur
in regime. It consists of a mixture of polynomial regres- ¢ regressions or random effect models. Liu & Yang [5]

sions governed by hidden Markov chains. The underlying . .
hidden process for each cluster activates successively eesl proposed a clustering approach based on random effecesplin

polynomial regimes during time. The parameter estimation regression where the time series are represented by Besplin
is performed by the maximum likelihood method through basis functions. However, the first approach does not asldres

a dedicated Expectation-Maximization (EM) algorithm. The the problem of changes in regimes and the second one re-
proposed approach is evaluated using simulated time series quires the setting of the spline knots. Another approachdas

and real-world time series issued from a railway diagnosis i . d with clusteri | led
application. Comparisons with existing approaches for tine 0N SP!INES IS concerned with clustering sparsely sample

series clustering, including the stand EM for Gaussian mixares, ~ time series [2]. We note that all these approaches use the
K-means clustering, the standard mixture of regression mode EM algorithm to estimate the model parameters. Another

and mixture of Hidden Markov Models, demonstrate the clustering approach consist in the evolutionary clustgrin

effectiveness of the proposed approach. approach [6], however, in this paper, the structure of the
|. INTRODUCTION model is fixed over time.

T HE work presented in this paper relates to the diagnosisIn this paper, a specific generative mixiure model is

of the railway switches which enable trains to be guide r_opoged o cluster time series presenting regime chahges.
is mixture model, each component density is the one of a

from one track to another at a railway junction. The switc ific rearession model that incorporat hidden Markov
is controlled by an electrical motor and the considered tim ectlic regression model that incorporates a en Marko

series are the time series of the consumed power duriig" allowing for transitions between different polynani

the switch operations. These time series present changesr gression models_ over time. The proposed model can _be
een as an extension of the model-clustering approach using

regime due to successive mechanical motions involved i

a switch operation (see Figure 4). The kind of time serie'g1|Xture of standard HMMs introduced by Smyth [7], by

. T ideri lynomial regression Hidden Markov Model
studied here may also be referred to as longitudinal dat%?nS'de”ng apo . .
Y 9 dther than a standard HMM. In addition, owing to the fact

functional data, curves or signals. The diagnosis task ean 91 tth " . f switch i im t del
achieved through the analysis of these time series issoed fr attherealtime series ot swilch operations we aim to mode
Pon5|st of successive phases, order constraints are ihpose

the switch operations to identify possible faults. Howeve A the hidden states
the large amount of data makes the manual labeling ta : ; o . .
This paper is organized as follows. Section 2 provides

onerous for the experts. Therefore, the main concern of . .
. . . an account of the model-based clustering approaches using
this work is to propose a data preprocessing approach tha

; . o . mixture of regression models and mixture of Hidden Markov
allows for automatically identifying homogeneous groups i ; ) .
a set of time series. Thus, the founded groups can th odels. Section 3 introduces the proposed model-based time

be easily treated and interpreted by the maintenance stﬁzlij (g:tsrt](:mgir?;}? 'tssei‘;’li:)anm4e;eeraﬁsst\'lvmit?]t'&g\gj aegﬂﬁ?a
in order to identify faults. This preliminary task can be 9 ' Y P

: : e .study carried out on simulated time series and real-world
achieved through an unsupervised classification (clusigri . ) . .
lime series of the switch operations to asses the proposed

approach. In this paper, we focus on model-based clusterin o . X . )
PP pap a%proach by comparing it to existing time series clustering

approaches for their well established statistical progeend . . ) .
I - oo . approaches, in particular, the mixture of regression aggro
the suitability of the Expectation-Maximization algorritH1] [3]. [8] and the standard mixture of HMMs [7].

to this unsupervised framework.
In this context, since the time series present regime |l. MODEL-BASED CLUSTERING FOR TIME SERIES

changes, basic polynomial regression models are not &iitaby  nodel-based clustering

An alternative approach may consist in using cubic splines

to approximate each set of time series [2] but this requires

the setting of knots which may a combinatory complex tasl{g

Model-based clustering [9], [10], [11], generally used for
ultidimensional data, is based on the finite mixture model
rmulation [12]. In the finite mixture approach for cluster
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parameters of the assumed mixture model (e.g, estimatingParameter estimation is performed by maximizing the

the mean vectors and the covariance matrices in the caseobserved-data log-likelihood oF:

Gaussian mixtures). The parameters of the mixture density " K

are generally estimated by maximizing the observed-data LB)= log ar N(yi; XBy, 021 ,). )

likelihood via the well-known Expectation-Maximization (®) ; ,; ( o 0l m)

EjEM).talgotrllthn:_ [1],tkE13].b€Af_terdperf?m.1mglth? progzbgty This log-likelihood, which can not be maximized in a closed
ensity estimation, the obtained posterior cluster proibe form, is maximized by the EM algorithm [1]. The details of

are then used to determine the cluster memberships thro%la EM algorithm for the mixture of regressions models and

corresponding updating formula can be found in [3], [8].

Once the model parameters are estimated, a partition of the

Model-based c-lustermg approaches. haYe alsg been INtPsta is then computed by maximizing the posterior cluster
duced to generalize the standard multivariate mixture mOdErobabiIities defined by:

for the analysis of time series data, which are also referred

to as longitudinal data, functional data or sequences.dh th S
case, the individuals are presented as functions or curv@ﬁ:p(hi = hlyi, t; W)=
rather than a vector of a reduced dimension. In that context,
one can distinguish the regression mixture approaches [:ﬁlI
[8], including polynomial regression and spline regressio
Random effects approaches that are based on polynomial
gression [4] or spline regression [5]. Another approacketas

on splines is concerned with clustering sparsely samplé i .
time series [2]. All these approaches use the EM aIgorithl% anges as the knots are generally fixed in advance and the

to estimate the model parameters. In the following sectio?]pt:jm'ﬁ_?'on of their Ior::atlon rltre]edsfa strr(])ng c?mf[)utt_aﬂlonz_i
we will give an overview of these model-based clusterin ad. es? tﬁrﬁ)proaﬁ m?y n?i:we or(; nave i::mrali(r)'r?s '_P
approaches for time series. € case o € series presenting changes egime. 10

. . vercome th limitations, one way i r in th
Let Y = (y1,...,yn) be a set ofn independent time overcome these limitations, one way is to proceed as in the

. . case of sequential data modeling in which it is assumed
series and leths, .. ., hn) be the associated unknown CIUSterthat the observed sequence (in this case a times series) is
labels with h; € {1,...,K}. We assume that each time q

) . . overned by a hidden process which enables for switching
seriesy; consists ofm measurements (or observations
. . ~from one state to another amoiiystates. The used process
vi = (ya1,---,%m), regularly observed at the time points.

b= (t P With < ... <t in general is ank stat_e Markov qhain for each time series.
rrrm o This leads to the mixture of Hidden Markov Models [7]

. _ . which we describe in the following section.
B. Related work on model-based clustering for time series 2) Mixture of HMMs for clustering sequencedn this

1) Mixture of regression modelsin this section we de- section we describe the mixture of Hidden Markov Models
scribe time series clustering approaches based on polahon(HMMSs) initiated by Smyth [7] and used for clustering
regression mixtures and polynomial spline regression mixsequences, which can therefore be applied to time series.
tures [3], [8]. The regression mixture approaches assuate ttfSince the model in this case includes an HMM formulation,
each times series is drawn from one &f clusters of time let us first recall the principle of HMMs.
series which are mixed at random in proportion to the redativ. =~ a) Hidden Markov Models (HMMs)Hidden Markov
cluster sizes(a,...,ax). Each cluster of time series is Models (HMMs) are a class of latent data models appropriate
modeled by either a polynomial regression model or a splirfer sequential data. They are widely used in many applioatio
regression model. Thus, the conditional mixture densitg of domains, including speech recognition, image analysise ti

akN(Yi;XﬁkT,U;%lm)
Zgzl Oék’N(Yi; XBZ’ ’ U]%/ I m)
The mixture of regression models however do not address
e problem of regime changes within times series. Indeed,
ey assume that each cluster present a stationary behavior
escribed by a single polynomial mean function. The spline
%gression mixture does not address automatically thenegi

3)

time seriesy; can be written as: series prediction [14], [15], etc. In an HMM, the observatio
sequence (or a time serieg) = (yi1, - - -, Yim ) iS assumed to
K be governed by a hidden state sequence: (z;1, ..., Zim)
F(yilt @)= ax N(yi; XBy, o), () \Where the discrete random variablg € {1,..., R} repre-
h=t sents the unobserved state associated wjithat instantt;.
where theay's defined bya, = p(h; = k) are the The state sequeneg is generally assumed to be a first order

non-negative mixing proportions that sum to 3, is the homogeneous Markov chain, that is, the current state given
(p+1)-dimensional coefficient vector of theth polynomial the previous state sequence depends only on the previous
regression model being the polynomial degree, and is  state. Formally we have :

the associated noise variance. The maXixs them x (p+1 .
" (p ) p(Zi1|Zi,j7172i,j72, .- -7Zi1) = p(Zij|Zi,j71) Vi > 1. (4)

design matrix with rowst; = (1,tj,t?,...,t§.’) for j =
1,...,m andl,, is the identity matrix of dimensionn. The transition probabilitiep(z;;|z; j—1) do not depend on

The model is therefore described by the parameter vectbin the case of an homogeneous Markov chain. An HMM
U= (ay,...,a ®P1,..., ¥g) with &, = (8, 07). is therefore fully determined by the initial state disttion



w = (m,...,mr) Where m, = p(z; = r) satisfying the complete-data log-likelihood. The resulting clustgri
> m = 1, the matrix of transition probabilitiesA with scheme consists of assigning sequences to clusters at each

elementsA,, = p(z;; = |z ;-1 = ) satisfying) A, = iteration and using only the sequences assigned to a cluster
1 and the parameter@lq,..., ¥y) of the emission prob- for re-estimation of its HMM parameters. The soft clustgrin
abilities p(y;;|z:;; = r; ¥,). The distribution of a particular approach is described in [16] where the model parameters are
configuration of the latent state sequenge= (z;1,...,2:,) estimated in a maximum likelihood framework by the EM
is is given by: algorithm.
m In this standard mixture of HMMs, each state is repre-
p(zi;m, A) = p(zi1; ) Hp(zij|zi,j_1;A), (5) sented by its scalar mean in the case of univariate time
j=2 series. However, in many applications, in particular imaig

and from the conditional independence property of thBrocessing or time series analysis, as in the case of the time
HMM, that is the observation sequence is independent giveFes issued from the switch operations, it is often useful

a particular configuration of the hidden state sequence, tif2 TeéPresent a state by a polynomial rather than a scalar

conditional distribution of the observed sequence is floege  (CONStant function of time). This assumption should be more
suitable for fitting the non-linear regimes governing thedi

given by: - o i o
series. In addition, when the regimes are ordered in time,
i the hidden process governing the time series can be adapted
pyilzi; ¥) = Hp(yij|zij§ ). (6) by imposing order constraints on the states of the Markov
=1 chain. These generalizations are integrated in the propose
From (5) and (6), we can then get the following jointmixture of HMM regression models which we present in the
distributionp(y;, z;; W) = p(zi; ™, A)p(yi|z:; P). following section.
b) Mixture of Hidden Markov ModelsThe mixture of
HMMs integrates the HMM into a mixture framework t0 |||. THE PROPOSED MIXTURE OFHMM REGRESSION
perform sequence clustering [7], [16]. In this probakiist MODELS FOR TIME SERIES CLUSTERING

model-based clustering, an observation sequence (indbis ¢

a time series) is assumed to be generated according toAa Model definition

mixture of K componenfts, e_ach_co_rnponent being an HMM. 110 proposed model assumes that each time sgrids
Formally, each time serieg; is distributed according to the issued from one ofk clusters where, within each cluster
following mixture distribution: k (k = 1,...,K), each time series is generated by

K unobserved polynomial regimes. The transition from one
fly;; ¥) = Zakfk(yi; W), (7)  regime to another is governed by an homogeneous Markov
k=1 Chain of first order. Formally, the distribution of a times
where the component densitfi(y;; %) = p(y;|h; = seriesy; is defined by the following conditional mixture

k;®,) is assumed to be ak state HMM, typically density:

with univariate Gaussian emission probabilities in this K

case of univariate time series. The HMM associated with Flyilt; @) =" anfulyilt; @), 9)
the kth cluster is determined by the parametebs = k=1

(ks Ak, ks - - - kR, Oiqs - - -, O ) Wheremr, is the initial

AR ; . where each component densjty(.) associated with théth
state distribution for the HMM associated with cluster cluster is a polynomial HMM regression model (see [17] for

i i iti i 2
Ay s the gorrespondlng transition matrix am’j"”f’gkr) details on HMM regression for a single time series). In this
are respectively the constant mean and the variance of an

variate G ian densit iated with tate | austering context with HMM regression, given the cluster
Glusert. By using the joit dsuouton of anda which "% = 18 tme Serieg: — (yi.... i) iS assumed to be
' . ner he following regression model :
can be deduced from (5) and (6), the distribution of a tlm(g,e erated by the following regression mode

series issued from thkth cluster is therefore given by: yij = ﬁgzwtj t gy (G=1,...,m) (10)
m
Feyis i)=Y plzismi) [ [ p(2ijlzii-1; Ax) x where3,,. is the (p + 1)-dimensional coefficients vector of
z; j=2 the rth polynomial regression model of cluster o7,. is its
s ) associated noise variance and ¢heare independent random
HN(yijWkZiijkzij)- (8)  variables distributed according to a Gaussian distriloutio
J=1 with zero mean and unit variance. The hidden state sequence
Two different approaches can be adopted for estimating = (z;1,...,2im) IS assumed to be Markov chain of

this mixture of HMMs. Two such techniques are the hardparametergm;, A;). The proposed model is illustrated by
clusteringK -means-like approach and the soft-clustering EMhe graphical representation in Figure 1. Each component
approach. TheK-means-like approach for hard clusteringdensity is therefore parametrized by the parameter vector
have been used in [7] in which the optimized function is¥), = (my, Ak, By1s---,Bkr,Tiqs---,0ip) and is given



4 5 A log-likelihood of ¥ :
? n
v L(®)=logp(y1, .-, ynlt; ¥) =log | | p(y:[t; ¥)
n K m
Zil | Zi2 > o oo —p Zim :izzllog;ak;p(zﬂmk)gp(zmzi’j*l;Ak)x
j=1
N J The maximization of this log-likelihood cannot be perfodne
. nx) in a closed form. We maximize it iteratively by using a

dedicated EM algorithm. With this specification of the EM

Fig. 1. Graphical model structure for the proposed mixtufeHMM algorithm, the complete-data for the proposed model consis

regression models (MixHMMR).

of the observed set of curve¥ = (yi,...,yn), their
corresponding cluster labdls= (h4, ..., h,) and the matrix
of regime (state) labelZ = (z1,...,2z,), z; being the

in a similar way as for (8) by: hidden state sequence associated withThe complete-data

m likelihood of W is therefore given by:
filyilts W) = ;p(z“;"’“)gp(ziﬂzi’j’” AR Y b, 20 ) =p(h)p(Y, Zlh, t ©)
=p(h)p(Z[h, t; ¥)p(Y|h, Z,t; ¥)

j=1 =[ I p(hi)p(zilt; wn., An)p(yilzi, t; On,).
=1

B. A HMMR with order constraints

) ) _ ) ~ Then, by using some elementary calculation details, we get
Since the time series we aim to model here consist ‘i’lf]e complete complete-data log-likelihood:

successive contiguous regimes, we impose order constraint
on the hidden states by imposing the following constraint&c(¥)=logp(Y, h, Z|t; ¥)

on the transition probabilities for each clustér These K o n B
constraints imply that no transitions are allowed for the ZZ [Zhik log ag +Zzhikzi1kr log 7y
phases whose indexes are lower than the current phase and k=1 i=1 i=1r=l1

; ; R
no jumps of more than one state are possible. Formally, we L
have: +D2D D hirZigke ik 10g Aer

i=1 j=2rf=1
Aper = p(zijie = 21y = Lhi = k) =0 if r < ¢ noon B
' K oy ' DN hikzigre log N (i3 Bi, t, 07,) | (13)

and i=1 j=1r=1

where we have used the following indicator binary vari-
Aper = p(zijp = 72— =L, hi = k) =01if r >£+1.  ables for indicating the cluster memberships and the regime
meberships for a given cluster, that is:
This constrained model is a particular case of the wellknown , 5. — 1 if 1, = k (i.e., y; belongs to clustek) and

left-right model [14]. hix = 0 otherwise.
o Zijir = 1 if z, = r (i.e., theith times seriesy;
C. Remark: Link with the polynomial regression mixture belongs to clustek and itsmth observatiory;; belongs

to regimer) and z;;x,, = 0 otherwise.

The particular case for which the proposed model is The next section gives the proposed EM algorithm for the

defined with a single regimé& = 1 for each clusterk, mixture of HMM regression models.

corresponds to the polynomial regression mixture model. 1) The dedicated EM algorithmThe EM algorithm for
The nextl segtion presents the parameter estimation by tﬁ.pe proposed MixHMMR model starts from an initial pa-
maximum likelihood method. rameter®(?) and alternates between the two following steps
until convergence:
D. Parameter estimation a) E Step:Compute the expected complete-data log-
likelihood given the time serie¥, the time vectot and the

The proposed MixHMMR model is described by the P, rrent value of the parametdr denoted bytIl(Q):

rameter vectol = (ay,...,ax, ¥1,..., Pg). Parameter
estimation is performed by maximizing the observed-data Q(T, O )=E[L.(P)[Y,t; 7] (14)



It can be easily shown that this conditional expectation is b) M-step: In this step, the value of the parameter

given by: is updated by maximizing the expected complete-data log-
K likelihood with respect to¥, that is:
Q(\Il,\Il(q) = Q1(ax JFZ {Q2 T, Ak) +Q3(/3kra0k7) gplatl) — argm‘IE}XQ(\II,\II(Q)). (20)
k=1
where . The maximization ofQ can be performed by separately
_ Z Z @ Jog maximizing the functiong);, Q- and@s. The maximization

of )1 w.r.t the mixing proportionsy is the one of a standard
mixture model. The updates are given by:

m R
o(mk, Ag) ZZTZ(;C]) Zi log Trr+ ZZ zgkl'r log Ager], T ()
r=1i=1 j=2 =1 ) = %dc (21)
Q3(Byy, 02)) = ZZZTZ(I?VS% log N (yij; BL t5,0%,) The maximization ofQ, w.rt the parametergm, Ay)
r=1i=1 j=1 correspond to a weighted version of updating the parameters
where of the Markov chain in a standard HMM. The weights in
. T(f) = p(h; = kly:, t; ¥9) is the posterior probability this case are the posterior cluster probabilitigs and the
of clusterk: updates are given by:
. %(% — p(ziji = rlys, t; ¥'?) is the posterior proba- T I OO
bility of the kth polynomial regime for théth cluster, alath) — %@1’”7 (22)
éfflim = (Zz‘_jk = T ZiG-)k = £_|Yi7t;‘1’_§f)) is the 2iz1 Tik
joint probability of having the regime at time¢; and and ( ) @
the regime/ at timet;_; in clusterk. A(q+1)) D 1ZJ 2 Tik Uq/m (23)
As shown in the expression d@, this step requires only kér Y @), (@)
. q (9) () i=1 j=2 Tik ryz_]lw
the computation of the probabllltleélc y Viikr ANAE L _
Th babilities qe@ g h]t " Maximizing Q3 with respect to regression parametgts,
) E lpro abIitesy; i, ant gijkérf I(I)r eaCl4 .|me SENeYi  for k=1 K andr = 1,..., R consists in analytically
(i=1,...,n) are computed as follows [14]: solving K x R weighted least-squares problems where the
@ aggirbgﬁr weights consists in both the posterior cluster probabditj,
Vijkr = Z ) @ (15)  and the posterior regimes probablhtr@%‘;,W for each cluster
=1 ka ijht k. The parameter updates are given by:
and
(a+1) _ (a) (a)
g(q) . %(8_1)@ Al(c%/\/(yij;/@l(c?th’Ulg?z)bgglzr k(i [XT ZTH? Wzkv } XT Z Tik Wl,'; yz
ijker = :
’ Zf@:l ai?}mek A/&%Z-N(yiﬁﬁ(qﬁt U(Q)z) bE_l]JI)W ) (24)
(16) WhereW is anm by m dlagonal matrix whose diagonal
where the quantitiesi;;r» and b, are respectively the elements are the We'gh(%gkwﬂ 1,...,m}.
forward probabilities_ and the backward probabilities, ethi Finally, the maximization ofQ; Wlth respect to noise
are in this context given by: varianceso""") consists in a weighted variant of the

problem of estimating the variance of an univariate Ganssia
density. The updating formula is given by:

bijkr = P(Wi g1, Yim |2k = 7, [6; ®r)  (18) 2gt1) _ it DI WD (v, — XD
and are recursively computed via the well-known forward- —~*" S z(f)traCE(Wm)
backward (Baum-Welch) procedure g18], [14].

The posterior cluster probabilitie%,j that the time series
y; belongs to clustek are computed as follows:

7.(‘1) al(cq)fk (yilt; 11,(‘1)
ik T ’
S 1ak,>fk/<yz|t w7
where the conditional probability distribution of the time

seriesy; given a clusterk, which can be expressed in
function of the forward variables; ., (17) as:

ijkr = P(Yits - - - Yijs Zigk = 7[t; ¥), (17)
and

, (29)

where| - | is the euclidian norm.

The pseudo code 1 summarizes the EM algorithm for the
proposed MixHMMR model.

2) Model selectionThe problem of model selection is the
one of estimating the optimal values of the number of clgster
K, the number of regime® and the polynomial degree
The best value$K, R, p) can be computed by maximizing
the BIC criterion [19] defined by:

R BIC(K, R,p) = L(¥) — (K, R, p)
Filts T) = pit, - Yot OL) = i, ) 2
= whereWw is the maximum likelihood estimate of the param-
is therefore obtained after the forward procedure. eter vector® provided by the EM algorithmy (K, R, p) =

(19)

log(n), (26)



Algorithm 1 Pseudo code of the proposed algorithm.
InpUtS: (y17---7Yn)7(t1,---,tm),K7R,p

1: Initialize: ¥ = (o\”,... o0 @ @)
2: fix a thresholde > 0
3: setq « 0 (EM iteration)

4. while increment in log-likelihood> € do

5.  E-Step

6 fork=1,...,K do

7. forward-backward procedure:

8: for r=1,...,R do

o: computeyi(]‘?,ZT fori=1,...,nandj=1,...,m
using Equation (15)

10: for ¢=1,...,Rdo

1L compute&fj‘?),h for i = 1,...,n and j =

1,...,m using Equation (16)

12: end for

13 end for

14: computeri(,f) for i =1,...,n using Equation (19)

15.  end for

16:  M-Step

17 fork=1,...,K do

18: computea,(f“) using Equation (21)

19: for forr=1,..., R do

20: computeﬂ-,(g’i+13 using Equation (22)

21: computeA '™ using Equation (23)

22: computeﬁl{fl“) using Equation (24)

23: computeo; ™) using Equation (25)

24: end for

25: g+—q—+1

26: end for

27: end while

28— (0. 0@ W@ w0

K-14+KR+KMR+R—-1)+KR(p+1)+ KR is the

M-step of the EM algorithm requires an inversion of a
(p+1) x (p+1) matrix andn multiplications associated with
each observation sequence of lengthwhich is done with a
complexity of O((p + 1)?>nm). The proposed EM algorithm
has therefore a time complexity 6f(Iem K2 R%(p+1)?nm)
where Igy is the number of EM iterationsK being the
number of clusters.

E. Approximating each cluster with a single mean time series

Once the model parameters are estimated, we derive a
time series approximation from the proposed model. This
approximation provides a “mean” times series for each
cluster which can be considered as the cluster representati
or the cluster “centroid”. Each time point of the cluster
representative is computed by combining the polynomial
regression components with both the estimated posterior
regime probabilitiesy; ;. and the corresponding estimated
posterior cluster probability;;,. Formally, each point of the
cluster representative is given by:

S T i Bty
Z?:l Tik
WhereBkl,...,BkR are the polynomial regression coeffi-
cients obtained at convergence of the EM algorithm. This
mean time series can be seen as a weighted empirical mean
of then smoothed time series. The smoothed time series are
computed as a combination between the mean polynomial
regimes and their posterior probabilities. Finally, theteeial
formulation of each cluster approximation is written as

Doy Tik Zfﬁ Wi X By
Z?:l Tik -
IV. EXPERIMENTAL STUDY
A. Experiments with simulated time series

In this section, we study the performance of the developed
MixHMMR model by comparing it the regression mixture
model and the standard mixture of HMMs. We also consider

Chj = L (i=1,...,m) (27)

(28)

Cr =

number of free parameters of the MixHMMR model whichtwo standard multidimensional data clustering algorithms
is respectively composed of the free mixing proportiond1€ EM for Gaussian mixtures arid-means algorithm. The

(K — 1), the number of initial state probabilitiesk(R),
the number of free transitions probabilities (R + R — 1),
the number of regression coefficient& R(p + 1)) and the

number of variancesi{ R), n being the sample size. The

BIC values are computed faK varying from 1 to Kmax

R from 1 to Rmax and p from 0 to pmax. Then, the values

(K, R,p) which maximize BIC are chosen.

3) Time complexityThe proposed EM algorithm includes
forward-backward procedures [18] at the E-step to compuj

models are evaluated in terms of clustering using expettisnen
conducted on synthetic time series with regime changes.

1) Evaluation criteria: Two evaluation criteria are used
in the simulations to judge performance of the proposed
approach. The first criterion is the misclassification error
rate between the true simulated partition and the estimated
partition. The second criterion is the intra-cluster irgert
S " hakllyi — €x]?, where (hi) indicates the esti-
mated cluster membership ¢f and ¢, = (éxj)=1,...,m IS
fie estimated mean series of clusterEach point of the

the joint posterior probabilities for the HMM states an%ean series is given by:

the conditional distribution (the HMM likelihood) for each
time series. The time complexity of the Forward-Backward *
procedure used at the E-Step at each EM iteration is the

one of standard? state HMM for univariaten observation

sequences of size. The complexity of this step is therefore
of O(R?*nm) per iteration. In addition, in this regression
context, the calculation of the regression coefficientshia t

AT . :
¢rj = B t; for the standard mixture of regression
models,
~ ~ R
o Cpj = %ﬂ S Rk Sy Aijkryi; for the standard

i=

mixture of HMMs,

. . R . T
o Crj = ssm—o Doy Tik 2y Yijhr By, t; fOr the pro-
posed model.



Misc. error rate  Intra-cluster inertia

2) Simulation protocol:The simulated data consistedsof

. . . StandardK -means 15 % 503.8434
time series ofn = 100 observations regularly sampled over giandard EM for GMM 13 % 467.9951
the time range0, 5]. Each time series is generated randomly wixture of regressions 7% 495.7951
according to a particular mixture model with uniform mixing Mixture of HMMs 6% 387.9656
proportions {/K). Each component of the mixture is a_Proposed approach 3% 366.2492
piecewise polynomial function corrupted by noise. The used TABLE 1|

simulation parameters are shown in Table | and Figure 2 MISCLASSIFICATION ERROR RATES AND THE VALUES OF
shows an example of simulated time series. INTRA-CLUSTER INERTIA OBTAINED WITH ALL THE ALGORITHMS.

Cluster parameters
k=1 B,=62 B,=55 B;=06 o0=02%
k=2 B,=6 B,=53 B,=63 0=025
k=3 B,=55 [B,=6 By =55 o=025
TABLE |
SIMULATION PARAMETERS.

the problem of time series heterogeneities by the mixture
formulation and the dynamical aspect within each homo-
geneous set of time series, by the underlying unobserved
Markov chain. We can also observe that the standard EM
for GMM and standard<-means are not well suitable for
this kind of longitudinal data. Figure 3 shows partition loét

o time series obtained with the three regression mixturedase
approaches and the corresponding cluster representatives

o9 B. Clustering the real time series of switch operations

s This section is devoted to the application of proposed
clustering approach to real time series.

1) The used databas&he used time series in this section
Fig. 2. A three-class simulated data setof= 60 simulated times series ar€ the real switch operations. These time series present
of sizem = 100. regime changes (see Figure 4) due to the operating process
for the switch mechanism which is composed of several
electromechanical movements.

3) Algorithms settingThe EM algorithm for the proposed
MixHMMR model and the EM (Baum-Welch) algorithm for
Hidden Markov Model Regression are initialized as follows.
The parameter@,, ando; for k = 1,...,K andr =
1,..., R are initialized from a randomly drawn partition of
the time series. For each randomly drawn clugtewe fit R
polynomials of coefficient$3,, from R uniform segments
of the time series of this cluster and then we deduce the
value ofo7,. The initial HMM state probabilities are set to

Power (Watt)

m = (1,0,...,0) and the initial transition probabilities are o T ERNPREN 4 5
set to Ager = 0.5 for £ < r < £+ 1. For the regression
mixture model, the parametef3;, and Ji are directly es- Fig. 4. Time series of the switch operations (115 curves).

timated by fitting R polynomial regression models to the

randomly drawn clusters of data. All the EM algorithms As we mentioned it in the introduction, the aim is to

are stopped when the relative variation of the optimizedetect non-normal times series for a diagnosis prospective
log-likelihood function between two iterations is below aAn important preliminary task of this diagnosis task is

predefined threshold, that |§%| < 10~% or when the automatic identification of groups of switch operations
the iteration number reaches 1000. We Useuns of EM and having similar characteristics. For this purpose, we uge th

the solution providing the highest log-likelihood is chnse proposed EM algorithm for clustering these time series.

4) Obtained resultsTable Il gives the obtained misclassi- With this diagnosis specificity, we assume that the database
fication error rates and the intra-cluster inertias avedtagyer is composed of two clusters, one corresponding to an oper-
10 randomly drawn samples. It can be clearly observed thating state without defect and another corresponding to and
the proposed approach outperforms the other approaches agpierating state with a defect, thatiS = 2. The number of
provides more accurate classification results and sma#-int regression components of the proposed algorithm was set to
class inertias. Indeed, applying the proposed approach f&8r= 6 in accordance with the number of electromechanical
clustering time series with regime changes provides ateurghases of a switch operation and the degree of the polynomial
results, with regard to the identified clusters, as well asegressiorp was set to 3 which is more appropriate for the
for approximating each set (cluster) of time series. This idifferent regimes in the time series.
attributed to the fact that the proposed MixHMMR model, 2) Obtained resultsFigure 5 shows the graphical cluster-
thanks to its flexible formulation, addresses the betteh botng results and the corresponding clusters approximaton f



Fig. 3. Clustering results for the simulated time seriessshim Figure 2 obtained witf K’ = 3, p = 9) for the regression mixture (leftf X = 3, R = 3)
for the mixture of HMMs (middle) and K = 3, R = 3,p = 1) for the proposed approach (right).

2 3
Time (Second)

the

(1]

(2]
(3]

Fig. 5. Clustering results for the switch operation timdesepbtained for
K =6andp=3.

[4]
K-means EMfor GMM MixReg MixHMM  MixHMMR
827.34 715.19 732.25 728.56 695.87 [5]

TABLE IlI [6]
INTRA-CLUSTER INERTIA FOR THE REAL DATA

(7]
the time series of the real switch operation curves. SinCES]
the true class labels are unknown, we only consider th
intra-class inertias which are given in Table Ill. It can be
observed on Figure 5 that the time series of the first obtainekf!
cluster (middle) and the second one (right) does not have the
same characteristics since their shapes are clearly efiffer
Therefore they may correspond to two different stated of tHé?!
switch mechanism. In particular, for the time series beiogg [12]
to the first cluster (middle), it can be observed that somethi
happened at around 4.2 Second of the switch operatidi’ﬁ]
According to the experts, this can be attributed to a default [14)
the measurement process. We note that the average running

time of the EM algorithm for this experiment is about 40 8[15]

V. CONCLUSION AND FUTURE WORKS [16]

In this paper, we introduced a new model-based clusteri o
approach for time series. The proposed model consists in
a mixture of polynomial regression models governed bii8]
hidden Markov chains. The underlying Markov chain allows
for successively activating various polynomial regressio
components over time. The model is therefore particularli}l
appropriate for clustering times series with various clesng

in regime. The experimental results demonstrated the lenefi
of the proposed approach as compared to existing alteenativ
methods, including the regression mixture model and the
standard mixture of Hidden Markov Models. At this stage,
we only gave the theoretical approach for selecting a model
[ structure trough the BIC criterion. Current experiments ar
B concerned with this problem and future works will discuss

problem of model selection.
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