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Abstract—Statistical approaches for Functional Data Analy-
sis concern the paradigm for which the individuals are functions
or curves rather than finite dimensional vectors. In this paper,
we particularly focus on the modeling and the classification of
functional data which are temporal curves presenting regime
changes over time. More specifically, we propose a new mixture
model-based discriminant analysis approach for functional data
using a specific hidden process regression model. Our approach
is particularly adapted to both handle the problem of complex-
shaped classes of curves, where each class is composed of
several sub-classes, and to deal with the regime changes within
each homogeneous sub-class. The model explicitly integrates the
heterogeneity of each class of curves via a mixture model formu-
lation, and the regime changes within each sub-class through
a hidden logistic process. The approach allows therefore for
fitting flexible curve-models to each class of complex-shaped
curves presenting regime changes through an unsupervised
learning scheme, to automatically summarize it into a finite
number of homogeneous clusters, each of them is decomposed
into several regimes. The model parameters are learned by
maximizing the observed-data log-likelihood for each class by
using a dedicated expectation-maximization (EM) algorithm.
Comparisons on simulated data and real data with alternative
approaches, including functional linear discriminant analysis
and functional mixture discriminant analysis with polynomial
regression mixtures and spline regression mixtures, show that
the proposed approach provides better results regarding the
discrimination results and significantly improves the curves
approximation.

I. INTRODUCTION

In many areas of application, such as diagnosis of com-

plex systems [5][18], electrical engineering [13], speech

recognition (e.g. the phoneme data studied in [7]), radar

waveform [6], etc, the data are curves or functions rather

than finite dimensional vectors. Statistical approaches for

Functional Data Analysis (FDA) concern the paradigm of

data analysis for which the individuals are entire functions

or curves rather than finite dimensional vectors. The goals

of FDA, as in classical data analysis, include data repre-

sentation for further analysis, data visualization, exploratory

analysis by performing unsupervised approaches, regression,

classification, etc. Additional background on FDA, exam-

ples and analysis techniques can be found in [17]. From

a statistical learning prospective, this can be achieved by

learning adapted statistical models, in different contexts, e.g.,

supervised, unsupervised, etc. The challenge is therefore to

build adapted models to be learned from such data living

in a very high or an infinite dimensional space. In this
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paper, we consider the problem of supervised functional

data classification (discrimination) where the observations

are temporal curves presenting regime changes over time.

We mainly focus on generative approaches which may help

us to understand the process generating the curves. The

generative approaches for functional data are essentially

based on regression analysis, including polynomial regres-

sion, splines and B-splines [10], [3], [11], [14], or also gen-

erative polynomial piecewise regression as in [3], [5]. Non-

parametric statistical approaches have also been proposed for

functional data discrimination as in [9], [7] and clustering

as in [7]. The generative models aim at understanding the

process generating such data to handle both the problem of

heterogeneity between curves and the process governing the

regime changes, in order to fit flexible models that provide

better classification results. In this paper, we propose a new

generative approach for modeling classes of complex-shaped

curves where each class is itself composed of unknown ho-

mogeneous sub-classes. In addition, the model is particularly

dedicated to address the problem when each homogeneous

sub-class presents regime changes over time. We extend

the functional discriminant analysis approach presented in

[5], which relates modeling each class of curves presenting

regime changes with a single mean curve, to a mixture

formulation which leads to a functional mixture-model based

discriminant analysis. More specifically, this approach uses a

mixture of regression models with hidden logistic processes

(RHLP) [3], [18] for each class of functional data and derives

a functional mixture discriminant analysis framework for

functional data classification. The resulting discrimination

approach is therefore a model-based functional discriminant

analysis in which learning the parameters of each class of

curves is achieved through an unsupervised estimation of a

mixture of RHLP (MixRHLP) models.

In the next section we give a brief background on dis-

criminant analysis approaches for functional data classifi-

cation including functional linear and mixture discriminant

analysis, and then we present the proposed mixture model-

based functional mixture discriminant analysis with hidden

process regression for curve classification, which we will

abbreviate as FMDA-MixRHLP, and the corresponding pa-

rameter estimation procedure using a dedicated expectation-

maximization (EM) algorithm.

Let us denote by ((x1, y1), . . . , (xn, yn)) a given labeled

training set of curves issued from G classes where yi ∈
{1, . . . , G} is the class label of the ith curve xi. We assume

that xi consists of m observations (xi1, . . . , xim), regularly
observed at the time points (t1, . . . , tm) with t1 < . . . < tm.



II. BACKGROUND ON FUNCTIONAL DISCRIMINANT

ANALYSIS

In this section, we give a background on generative

discriminant analysis approaches for functional data classifi-

cation.

Functional discriminant analysis extends discriminant

analysis approaches for vectorial data to functional data or

curves. From a probabilistic point a view, the conditional

density of each class of curves is then assumed to be a

(parametric) density defined in the functional space, rather

than in a finite dimensional space of the multidimensional

data vectors, which is the case for discriminant analysis for

vectorial data. The functional discriminant analysis principle

is as follows. Assume we have a labeled training set of

curves and the classes’ parameter vectors (Ψ1, . . . ,ΨG)
where Ψg is the parameter vector of the density of class

g (g = 1, . . . , G) (e.g., provided by an estimation procedure

from a training set). In functional discriminant analysis, a

new curve xi is assigned to the class ŷi using the maximum

a posteriori (MAP) rule, that is:

ŷi = arg max
1≤g≤G

wgp(xi|yi = g, t;Ψg)
∑G

g′=1 wg′p(xi|yi = g′, t;Ψg′ )
, (1)

where wg = p(yi = g) is the prior probability of class g,

which can be computed as the proportion of the class g in the

training set, and p(xi|yi = g, t;Ψg) its conditional density.
There are different ways to model this conditional density.

By analogy to linear or quadratic discriminant analysis for

vectorial data, the class conditional density for each class

of curves can be defined as a density of a single model,

e.g., a polynomial regression model, spline, including B-

spline [14], or a generative piecewise regression model with a

hidden logistic process (RHLP) [5] when the curves further

present regime changes over time. These approaches lead

to Functional Linear (or quadratic) Discriminant Analysis

which we will abbreviate as (FLDA).

The next section briefly recalls the FLDA based on poly-

nomial or spline regression.

A. Functional Linear Discriminant Analysis

Functional Linear (or Quadratic) Discriminant Analysis

(FLDA) [14] arises when we model each class conditional

density of curves with a single model. More specifically, the

conditional density p(xi|y = g, t;Ψg) in Equation (1) can

for example be the one of a polynomial, spline or B-spline

regression model with parameters Ψg , that is:

p(xi|yi = g, t;Ψg) = N (xi;Tβg, σ
2
gIm), (2)

where βg is the coefficient vector of the polynomial or spline

regression model representing class g and σ2
g the associated

noise variance, the matrix T is the matrix of design which

depends on the adopted model (e.g., for polynomial regres-

sion, T is the m× (p+ 1) Vandermonde matrix with rows

(1, tj, t
2
j , . . . , t

p
j ) for j = 1, . . . ,m., p being the polynomial

degree) and N (.;µ,Σ) represents the multivariate Gaussian

density with mean µ and covariance matrix Σ. Estimating

the model for each class in this case consists therefore in

estimating the regression model parametersΨg by maximum

likelihood which is in this case equivalent to performing

least squares estimation. A similar FLDA approach that fits a

specific generative piecewise regression model governed by

a hidden logistic process to homogeneous classes of curves

presenting regime changes has been presented in [5].

However, all these approaches, as they involve a single

model for each class, are only suitable for homogeneous

classes of curves. For complex-shaped classes, when one

or more classes are dispersed, the hypothesis of a single

model description for the whole class of curves becomes

restrictive. This problem can be handled, by analogy to

mixture discriminant analysis for vectorial data [12], by

adopting a mixture model formulation [16], [20] in the

functional space for each class of curves. The functional

mixture can for example be a polynomial regression mixture

or a spline regression mixture [10], [3], [11]. This leads to

Functional Mixture Discriminant Analysis (FMDA) [3], [11].

The next section describes the previous work on FMDA

which uses polynomial regression and spline regression mix-

tures.

B. Functional Mixture Discriminant Analysis with polyno-

mial regression and spline regression mixtures

A first idea on Functional Mixture Discriminant Analysis

(FMDA), motivated by the complexity of the time course

gene expression functional data for which modeling each

class with a single function using FLDA is not adapted,

was proposed in [11] and is based on B-spline regression

mixtures. In the approach of [11], each class g of functions

is modeled as a mixture of Kg sub-classes, each sub-class

k (k = 1, . . . ,Kg) is a noisy B-spline function (can also

be a polynomial or a spline function) with parameters Ψgk .

The model is therefore defined by the following conditional

mixture density:

p(xi|yi = g, t;Ψg)=

Kg
∑

k=1

αgk p(xi|yi = g, zi = k, t;Ψgk)

=

Kg
∑

k=1

αgkN (xi;Tβgk, σ
2
gkIm), (3)

where the αgk’s are the non-negative mixing proportions that

sum to 1 such that αgk = p(zi = k|yi = g) (αgk represents

the prior probability of the sub-class k of class g), zi is

a hidden discrete variable in {1, . . . ,Kg} representing the

labels of the sub-classes for each class. The parameters of

this functional mixture density (Equation (3)) for each class

g, denoted by

Ψg = (αg1, . . . , αgKg
,Ψg1, . . . ,ΨgKg

)

can be estimated by maximizing the observed-data log-

likelihood by using the expectation-maximization (EM) al-

gorithm [8] [15] as in [11].

However, using polynomial or spline regression for class

representation, as studied in [3], [5] is more adapted for



curves presenting smooth regime changes and for the splines

the knots have to be fixed in advance. When the regime

changes are abrupt, capturing the regime transition points

needs to relax the regularity constraints on splines which

leads to piecewise regression for which the knots can be

optimized using a dynamic programming procedure. On the

other hand, the regression model with a hidden logistic

process (RHLP) presented in [5] and used to model each ho-

mogeneous set of curves with regime changes, is flexible and

explicitly integrates the smooth and/or abrupt regime changes

via a logistic process. As pointed in [5], this approach how-

ever has limitations in the case of complex-shaped classes

of curves since each class is only approximated by a single

RHLP model.

In this paper, we extend the discrimination approach pro-

posed in [5] which is based on functional linear discriminant

analysis (FLDA) using a single density model (RHLP) for

each class, to a functional mixture discriminant analysis

framework (FMDA), where each class conditional density

model is assumed to be a mixture of regression models

with hidden logistic processes (which we abbreviate as

MixRHLP). Thus, by using this Functional Mixture Dis-

criminant Analysis approach, We may therefore overcome

the limitation of FLDA (and FQDA) for modeling complex-

shaped classes of curves, via the mixture formulation. Fur-

thermore, thanks to the flexibility to the RHLP model that

approximates each sub-class, as studied in [4], [5], we will

also be able to automatically and flexibly approximate the

underlying hidden regimes.

The proposed functional mixture discriminant analysis

with hidden process regression and the unsupervised learning

procedure for each class through the EM algorithm, are

presented in the next section.

III. PROPOSED FUNCTIONAL MIXTURE DISCRIMINANT

ANALYSIS WITH HIDDEN PROCESS REGRESSION MIXTURE

Let us assume as previously that each class g (g =
1, . . . , G) has a complex shape so that it is composed of Kg

homogeneous sub-classes. Furthermore, now let us suppose

that each sub-class k (k = 1, . . . ,Kg) of class g is itself

governed by Rgk unknown regimes. We let therefore hgkj =
r ∈ {1, . . . , Rgk} denotes the discrete variable representing

the regime label for sub-class k of class g.

A. Modeling the classes of curves with a mixture of regres-

sion models with hidden logistic processes

In the proposed functional mixture discriminant analysis

approach, we model each class of curves by a specific

mixture of regression models with hidden logistic processes

(MixRHLP) as in [3], [18]. According to the MixRHLP

model, each class of curves g is assumed to be composed

of Kg homogeneous sub-groups with prior probabilities

αg1, . . . , αgKg
. Each of the Kg sub-groups is governed

by Rgk hidden polynomial regimes and is modeled by a

regression model with hidden logistic process (RHLP). The

RHLP model [4], [5] assumes that the curves of each sub-

class (or cluster) k of class g are generated byKg polynomial

regression models governed by a hidden logistic process

hgk = (hgk1, . . . , hgkm) that allows for switching from one

regime to another among Rg polynomial regimes over time.

Thus, the distribution of a curve xi belonging to sub-class k

of class g is defined by:

p(xi|yi = g, zi = k, t;Ψgk) =

m
∏

j=1

Rgk
∑

r=1

πgkr(tj ;wgk)N
(

xij ;β
T
gkrtj , σ

2
gkr

)

(4)

where Ψgk = (wgk,βgk1, . . . ,βgkRgk
, σ2

gk1, . . . , σ
2
gkRkg

)
for (g = 1, . . . , G; k = 1, . . . ,Kg) is its parameter vector.

The quantity πgkr(tj ;wgk) represents the probability of

regime r within sub-class k of class g and is modeled by

a logistic distribution, that is:

πgkr(tj ;wgk)=p(hgkj = r|tj ;wgk)

=
exp (wgkr0 + wgk1tj)

∑Rgk

ℓ=1 exp (wgℓr0 + wgℓr1tj)
, (5)

where wgk = (wgk1, . . . ,wgkRgk
) is its parameter vector,

wgkr = (wgkr0, wgkr1)
T being the 2-dimensional coefficient

vector for the rth logistic component. The hidden process

hgk governing each sub-class is therefore assumed to be

logistic. The relevance of the logistic process in terms of

flexibility of transitions has been well detailed in [4], [5].
Thus, the resulting conditional distribution of a curve xi

issued from class g is given by the following conditional
mixture density:

p(xi|yi=g, t;Ψg)=

Kg
∑

k=1

p(zi=k|yi=g)p(xi|yi=g, zi=k, t;Ψgk)

=

Kg
∑

k=1

αgk

m
∏

j=1

Rgk
∑

r=1

πgkr(tj ;wgk)N
(

xij ;β
T
gkrtj , σ

2
gkr

)

(6)

where Ψg = (αg1, . . . , αgKg
,Ψg1, . . . ,ΨgKg

) is the

parameter vector for class g, Ψgk , being the pa-

rameters of each of its RHLP component density
∏m

j=1

∑Rgk

r=1 πgkr(tj ;wgk)N
(

xij ;β
T
gkrtj , σ

2
gkr

)

as given by

Equation (4). Notice that the key difference between the

proposed FMDA with hidden process regression and the

FMDA proposed in [11] is that the proposed approach uses a

generative hidden process regression model (RHLP) for each

sub-class rather than a spline; the RHLP is itself based on

a mixture formulation. Thus, the proposed approach is more

adapted for capturing the regime changes within curves.

Now, once we have defined the model for each class

of curves g, we have to estimate its parameters Ψg . The

next section presents the unsupervised learning of the model

parameters Ψg for each class of curves by maximizing the

observed-data log-likelihood through the EM algorithm.

B. Maximum likelihood estimation via the EM algorithm

Given an independent training set of labeled curves, the
parameter vector Ψg of the mixture density of class g given
by Equation (6) is estimated by maximizing the following



observed-data log-likelihood:

L(Ψg)=log
∏

i|yi=g

p(xi|yi=g, t;Ψg)

=
∑

i|yi=g

log

Kg
∑

k=1

αgk

m
∏

j=1

Rgk
∑

r=1

πgkr(tj ;wgk)N
(

xij ;β
T
gkrtj , σ

2
gkr

)

.

The maximization of this log-likelihood cannot be performed
in a closed form. We maximize it iteratively by using
a dedicated EM algorithm. The EM scheme requires the
definition of the complete-data log-likelihood. The complete-
data log-likelihood for the proposed MixRHLP model for
each class, given the observed data which we denote by D =
({xi|yi = g}, t), the hidden cluster labels z = (z1, . . . , zn),
and the hidden processes hgk = (h1gk, . . . , hmgk), governing
each of the Kg clusters, is given by:

Lc(Ψg)=
∑

i|yi=g

Kg
∑

k=1

zik

[

logαgk+

m
∑

j=1

Rgk
∑

r=1

hjgkr log πgkr(tj ;wgk)

+
m
∑

j=1

Rgk
∑

r=1

hjgkr logN
(

yij ;β
T
gkrtj , σ

2
gkr

)]

. (7)

where zik and hjgkr are indicator binary-valued variables

such that zik = 1 if zi = k (i.e., if the ith curve yi is

generated by the cluster (sub-class) k) and zik = 0 otherwise;
and hjgkr = 1 if hgk = r (i.e., the ith curve belongs to the

sub-class k and its jth point xij belongs to the rth regime),

and hjgkr = 0 otherwise.

The next paragraph shows how the observed-data log-

likelihood L(Ψg) is maximized by the EM algorithm.

C. The dedicated EM algorithm for the unsupervised learn-

ing of the parameters of the MixRHLP model for each class

For each class g, the EM algorithm starts with an initial

parameter Ψ(0)
g and alternates between the two following

steps until convergence:
1) E-step: This step computes the expected complete-data

log-likelihood, given the observations D, and the current

parameter estimation Ψ(q)
g , q being the current iteration

number:

Q(Ψg ,Ψ
(q)
g )=E

[

Lc(Ψg;D, z, {hgk})|D;Ψ(q)
g

]

=
∑

i|yi=g

K
∑

k=1

γ
(q)
igk logαgk+

∑

i|yi=g

Kg
∑

k=1

m
∑

j=1

Rgk
∑

r=1

γ
(q)
igkτ

(q)
ijgkr log πgkr(tj ;wgk)

+
∑

i|yi=g

Kg
∑

k=1

m
∑

j=1

Rgk
∑

r=1

γ
(q)
igkτ

(q)
ijgkr logN

(

xij ;β
T
gkrtj , σ

2
gkr

)

. (8)

As shown in the expression of Q(Ψg,Ψ
(q)
g ), this step simply

requires the calculation of the posterior sub-class probabili-
ties (i.e., the probability that the observed curve xi originates
from sub-class (cluster) k for class g)

γ
(q)
igk=p(zi = k|xi, yi = g, t;Ψ

(q)
gk )

=
α
(q)
gk p(xi|yi = g, zi = k, t;Ψ

(q)
gk )

∑Kg

l=1 α
(q)
gl p(xi|yi = g, zi = l, t;Ψ

(q)
gl )

=
α
(q)
gk

∏m

j=1

∑Rgk

r=1 πgkr(tj ;w
(q)
gk )N

(

xij ;β
T (q)
gkr tj , σ

2(q)
gkr

)

∑Kg

l=1 α
(q)
gl

∏m

j=1

∑Rgl

r=1 πglr(tj ;w
(q)
gl )N (xij ;β

(q)T
glr tj , σ

2(q)
glr )

(9)

and the posterior regime probabilities for each sub-class (i.e.,

the probability that the observed data point xij at time tj
originates from the rth regime of sub-class k for class g),

given by:

τ
(q)
ijgkr=p(hjgk = r|xij , yi = g, zi = k, tj ;Ψ

(q))

=
πgkr(tj ;w

(q)
gk )N (xij ;β

T (q)
gkr tj , σ

2(q)
gkr )

∑Rgk

ℓ=1 πgkℓ(tj ;w
(q)
gk )N (xij ;β

T (q)
gkℓ tj , σ

2(q)
gkℓ )

·(10)

2) M-step: This step updates the value of the parameter

Ψg by maximizing the function Q(Ψg,Ψ
(q)
g ) given by

Equation (8) with respect to Ψg, that is:

Ψ(q+1)
g = argmax

Ψg

Q(Ψg,Ψ
(q)
g ).

It can be shown that this maximization can be performed

by separate maximizations w.r.t the mixing proportions

(αg1, . . . , αgKg
) subject to the constraint

∑Kg

k=1 αgk = 1,
and w.r.t the regression parameters {βgkr , σ

2
gkr} and the

hidden logistic process parameters {wgk}.
The mixing proportions updates are given, as in the case

of standard mixtures, by

α
(q+1)
gk =

1

ng

∑

i|yi=g

γ
(q)
igk, (k = 1, . . . ,Kg), (11)

ng being the cardinal number of class g. The maximization
w.r.t the regression parameters consists in performing sep-
arate analytic solutions of weighted least-squares problems
where the weights are the product of the posterior probability

γ
(q)
igk of sub-class k and the posterior probability τ

(q)
ijgkr of

regime r of sub-class k. Thus, the regression coefficients
updates are given by:

β
(q+1)
gkr =

[

∑

i|yi=g

m
∑

j=1

γ
(q)
igkτ

(q)
ijgkrtjt

T
j

]−1∑

i|yi=g

m
∑

j=1

γ
(q)
igkτ

(q)
ijgkrxijtj (12)

and the updates for the variances are given by:

σ
2(q+1)
gkr =

∑

i|yi=g

∑m

j=1 γ
(q)
igkrτ

(q)
ijgkr(xij − β

T (q+1)
gkr tj)

2

∑

i|yi=g

∑m

j=1 γ
(q)
igkrτ

(q)
ijgkr

· (13)

Finally, the maximization w.r.t the logistic processes parame-
ters {wgk} consists in solving multinomial logistic regression

problems weighted by γ
(q)
igkτ

(q)
ijgkr which we solve with a

multi-class IRLS algorithm (e.g., see [3]). A single update
of the IRLS algorithm at iteration l is given by:

w
(l+1)
gk =w

(l)
gk−

[ ∂2Qwgk
)

∂wgk∂wgk
T

]−1

wgk=w
(l)
gk

∂Qwgk

∂wgk

∣

∣

∣

wgk=w
(l)
gk

. (14)

where Qwgk
denotes the terms in the Q-function (8) that

depend on wgk.

The pseudo code 1 summarizes the EM algorithm for the

proposed MixRHLP model.

D. Curve classification and approximation with the FMDA-

MixRHLP approach

Once we have an estimate Ψ̂g of the parameters of

the functional mixture density MixRHLP (provided by the

EM algorithm) for each class, a new curve xi is then



Algorithm 1 Pseudo code of the proposed algorithm for the

MixRHLP model for a set of curves.

Inputs: Labeled training set of n curves

((x1, y1), . . . , (xn, yn)) sampled at the time points

t = (t1, . . . , tm), the number of sub-classes (clusters) Kg

(g = 1, . . . , G), the number of polynomial regimes Rgk and

the polynomial degree p.

1: Initialize: Ψ(0)
g = (α

(0)
g1 , . . . , α

(0)
gKg

,Ψ
(0)
g1 , . . . ,Ψ

(0)
gKg

)

2: fix a threshold ǫ > 0 (e.g., ǫ = 10−6),

3: set q ← 0 (EM iteration)

4: while increment in log-likelihood > ǫ do

5: // E-Step

6: for k = 1, . . . ,Kg do

7: compute γ
(q)
igk for i = 1, . . . , n using Equation (9)

8: for r = 1, . . . , Rgk do

9: compute τ
(q)
ijgkr for i = 1, . . . , n and j =

1, . . . ,m using Equation (10)

10: end for

11: end for

12: // M-Step

13: for k = 1, . . . ,Kg do

14: compute the update α
(q+1)
gk using Equation (11)

15: for r = 1, . . . , Rgk do

16: compute the update β
(q+1)
gkr using Equation (12)

17: compute the update σ
2(q+1)
gkr using Equation (13)

18: end for

19: //IRLS updating loop (Eq. (14))

20: w
(q+1)
gk ← w

(l)
gk

21: q ← q + 1
22: end for

23: end while

24: Ψ̂ = (α
(q)
g1 , . . . , α

(q)
gKg

,Ψ
(q)
g1 , . . .Ψ

(q)
gKg

)

Output: Ψ̂ the maximum likelihood estimate of Ψ

assigned to the class maximizing the posterior probability

(MAP principle) using Equation (1). This therefore leads

us to the functional mixture discriminant analysis classifica-

tion rule (FMDA-MixRHLP) which is particularly adapted

to deal with the problem of classes composed of several

sub-classes and to further handle the problem of regime

changes within each sub-class. Regarding to curves ap-

proximation, each sub-class k of class g is summarized

by approximating it by a single “mean" curve, which

we denote by x̂gk. Each point x̂gkj (j = 1 . . . ,m) of

this mean curve is defined by the conditional expectation

x̂gkj = E[xij |yi = g, zi = k, tj; Ψ̂gk] given by:

x̂gkj=

∫

R

xijp(xij |yi = g, zi = k, tj; Ψ̂gk)dxij

=

∫

R

xij

K
∑

k=1

πgkr(tj ; ŵgk)N
(

xij ; β̂
T

gkrtj , σ̂
2
gkr

)

dxij

=

Rgk
∑

r=1

πgkr(tj ; ŵgk)β̂
T

gkrtj (15)

which is a sum of polynomials weighted by the logistic

probabilities πgkr that model the regime variability over time.

E. Model selection

The number of sub-classes (clusters) Kg for each class

g (g = 1, . . . , G) and the number regimes Rgk for each

sub-class can be computed by maximizing some information

criteria e.g., the Bayesian Information Criterion (BIC) [19]:

BIC(K,R, p) = L(Ψ̂g)−
νΨg

2
log(n), (16)

where Ψ̂g is the maximum likelihood estimate of the pa-

rameter vector Ψg provided by the EM algorithm, νΨg
=

Kg − 1 +
∑Kg

k=1 νΨgk
is the number of free parameters of

the MixRHLP model, Kg − 1 being the number of mixing

proportions and νΨgk
= (p+4)Rgk−2 represents the number

of free parameters of each RHLP model associated with sub-

class k, and n is the sample size.

IV. EXPERIMENTAL STUDY

This section is dedicated to the evaluation of the proposed

approach on simulated data, the waveform benchmark curves

of Breiman [2] and real data from a railway diagnosis

application [4], [5], [18].

We perform comparisons with alternative functional dis-

criminant analysis approaches using a polynomial regression

(PR) or a spline regression (SR) model [14], and the one

that uses a single RHLP model as in [5]. These alternatives

will be abbreviated FLDA-PR, FLDA-SR and FLDA-RHLP,

respectively. We also consider alternative functional mixture

discriminant analysis approaches that use polynomial regres-

sion mixtures (PRM), and spline regression mixtures (SRM)

as in [11] which will be abbreviated as FMDA-PRM and

FMDA-SRM respectively.

We use two criteria of evaluation. The first one is the mis-

classification error rate computed by a 5-fold cross-validation
procedure and concerns the performance of the approaches

in terms of curve classification. The second one is the mean

square error between the observed curves and the estimated

mean curves, which is equivalent to the intra-class inertia,

and the regards the the performance of the approaches regard-

ing the curves modeling and approximation. For FLDA, as

each class g is approximated by a single mean curve x̂g , this

error criterion is therefore given by
∑

g

∑

i|yi=g ‖ xi−x̂g ‖2,
while for FMDA, each class g is summarised by several

(Kg) mean curves {x̂gk}, each of them summarises a sub-

class k, and the intra-class inertia in this case is therefore

given by
∑

g

∑

i|yi=g

∑Kg

k=1 ‖ xi − x̂gk ‖2. Notice that

each point of the estimated mean curve for each sub-class is

given by a polynomial function or a spline function for the

case of polynomial regression mixture or spline regression

mixture respectively, or by Equation (15) for the case of the

MixRHLP model.

1) Experiments on simulated curves: In this section, we

consider simulated curves issued from two classes of piece-

wise noisy functions. The first class has a complex shape as

it is composed of three sub-classes (see Figure 1), while the



second one is a homogeneous class. Each curve consists of

three piecewise regimes and is composed of 200 points.
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Fig. 1. Simulated curves from a complex-shaped class composed of three
sub-classes, each of them is composed of three piecewise constant regimes.

Figure 2 shows the obtained modeling results for the

complex-shaped class shown in Figure 1. First, it can be

observed that the proposed unsupervised approach accu-

rately decomposes the class into homogeneous sub-classes

of curves. It can also be observed that the approach is able

to automatically determine the underlying hidden regimes

for the sub-classes. Furthermore, the flexibility of the lo-

gistic process used to model the hidden regimes allows for

accurately approximating both abrupt and/or smooth regime

changes within each sub-class. This can be clearly seen on

the logistic probabilities which vary over time according to

both which regime is active or not and how is the transition

from one regime to another over time (i.e., abrupt or smooth

transition from one regime to another). It can also be noticed

that, approximating this class with a single mean curve,

which is the case when using FLDA, fails; the class is clearly

heterogeneous. Using FMDA based on polynomial or spline

regression mixture (i.e., FMDA-PRM or FMDA-SRM) does

not provide significant modeling improvements since, as we

can clearly see on the data, the subclasses present abrupt

and smooth regime changes for which these two approaches

are not well adapted. This can be observed on the obtained

results of mean intra-class inertia given in Table I.

Table I also shows the misclassification error rates ob-

tained with the proposed FMDA-MixRHLP approach and

alternative approaches. As expected, it can be seen that

Approach Classif. error rate (%) Intra-class inertia

FLDA-PR 21 7.1364 × 10
3

FLDA-SR 19.3 6.9640 × 10
3

FLDA-RHLP 18.5 6.4485 × 10
3

FMDA-PRM 11 6.1735 × 10
3

FMDA-SRM 9.5 5.3570 × 10
3

FMDA-MixRHLP 5.3 3.8095 × 10
3

TABLE I

OBTAINED RESULTS FOR THE SIMULATED CURVES.

the FMDA approaches provide better results compared to

FLDA approaches. This is due to the fact that using a single

model for complex-shaped classes (i.e., when using FLDA

approaches) is not adapted. It can also be observed that

the proposed functional mixture discriminant approach based
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Fig. 2. The estimated sub-classes colored according to the partition given
by the EM algorithm for the proposed approach (top); Then are presented
separately each sub-class of curves with the estimated mean curve in bold
line (top sub-plot) and the corresponding logistic probabilities that govern
the hidden regimes (bottom sub-plot).

on hidden logistic process regression (FMDA-MixRHLP)

outperforms the alternative FMDA based on polynomial

regression mixtures (FMDA-PRM) or spline regression mix-

tures (FMDA-SRM). This performance is attributed to the

flexibility of the MixRHLP model thanks to the logistic

process which is well adapted for modeling the regime

changes.

In the second situation, the proposed approach is applied

on the waveform curves of Breiman [2].

2) Waveform curves of Breiman: The waveform data

introduced by [2] consist of a three-class problem where each

curve is generated as follows:



• xi(t) = uf1(t) + (1− u)f2(t) + ǫt for the class 1;

• xi(t) = uf2(t) + (1− u)f3(t) + ǫt for the class 2;

• xi(t) = uf1(t) + (1− u)f3(t) + ǫt for the class 3.

where u is a uniform random variable on (0, 1),
f1(t) = max(6 − |t − 11|, 0); f2(t) = f1(t − 4); f3(t) =
f1(t + 4) and ǫt is a zero-mean Gaussian noise with unit

standard deviation. The temporal interval considered for each

curve is [0; 20] with a constant period of sampling of 1

second. For the experiments considered here, inorder to have

a heterogeneous class, we combine both class 1 and class 2

to form a single class called class 1. Class 2 will therefore

used to refer to class 3 in the previous description of the

waveform data. Figure 3 (top) shows curves from the two

classes.

Figure 3 (middle) shows the obtained modeling results for

each of the two classes by applying the proposed approach.

We can see that the two sub-classes for the first classes are

well identified. These two sub-classes (clusters) are shown

separately on Figure 3 (bottom) with their corresponding

mean curves. We notice that for this data set, all FMDA

approaches provide very similar results regarding both the

classification and the approximation since, as it can be

seen, the complexity for this example is only related to

the dispersion of the first class into sub-classes, and there

are no explicit regime changes; each sub-class can therefore

also be accurately approximated by a polynomial or a spline

function.
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Fig. 3. Modeling results for the waveform curves: (top) the waveforms
(500 curves per class) where the first class is composed of two sub-classes,
(middle) the waveforms and the estimated subclasses for class 1 and the
corresponding mean curves for each class, and (bottom) the two subclasses
of class 1 shown separately with their corresponding mean curves.

3) Experiments on real data: In this section, we use a

database issued from a railway diagnosis application as stud-

ied in [5][4][18]. This database is composed of 120 labeled

real switch operation curves. In [5][4][18], the data were used

to perform classification into three classes : no defect, with

a minor defect and with a critical defect. In this study, we

rather consider two classes where the first one is composed

by the curves with no defect and with a minor defect so

that the decision will be either with or without defect. The

goal is therefore to provide an accurate automatic modeling

especially for Class 1 which is henceforth dispersed into

two sub-classes. The cardinal numbers of the classes are

n1 = 75 and n2 = 45 respectively. Figure 4 shows each

class of curves, where the first class is composed of two

sub-classes. Figure 5 shows the modeling results provided
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Fig. 4. 75 switch operation curves from the first class (left) and 45 curves
from the second class (right).

by the proposed approach for each of the two classes. It

shows the two sub-classes estimated for class 1 and the

corresponding mean curves for the two classes. We also

present the estimated polynomial regressors for each set of

curves and the corresponding probabilities of the logistic

process that govern the regime changes over time. We see

that the proposed method ensure both a decomposition of

the complex shaped class into sub-classes and at the same

time, a good approximation of the underlying regimes within

each homogeneous set of curves. Indeed, it can be seen that

the logistic process probabilities are close to 1 when the

rth regression model seems to be the best fit for the curves

and vary over time according to the smoothness degree of

regime transition. Then, the obtained classification results, by

considering the FLDA approaches and the FMDA approaches

(which are more competitive) and gave the best results for

simulations, are given in Table II.

Approach Classif. error rate (%) Intra-class inertia

FLDA-PR 11.5 10.7350 × 10
9

FLDA-SR 9.53 9.4503 × 10
9

FLDA-RHLP 8.62 8.7633 × 10
9

FMDA-PRM 9.02 7.9450 × 109

FMDA-SRM 8.50 5.8312 × 109

FMDA-MixRHLP 6.25 3.2012 × 109

TABLE II

OBTAINED RESULTS FOR THE REAL CURVES.

We can see that, although the classification results are

similar for the FMDA approaches, the difference in terms of
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Fig. 5. Results obtained with the proposed model for the real curves.
The estimated sub-classes for class 1 (top-left) and the corresponding mean
curves (top) provided by the proposed approach; Then, we show separately
each sub-class of class 1 with the estimated mean curve presented in a
bold line (top sub-plot), the polynomial regressors (degree p = 3), the
corresponding logistic proportions that govern the hidden process, and
finally in the bottom plots we show the same results for class 2.

curves modeling (approximation) is significant, for which the

proposed approach clearly outperforms the alternatives. This

is attributed to the fact that the use of polynomial regression

(mixtures) or spline regression (mixtures) does not fit at

best the regime changes compared to the proposed model.

Finally we notice that the proposed algorithm converges in

approximatively 80 iterations.

V. CONCLUSION

In this paper, we presented a new model-based approach

for functional data classification. It uses a specific func-

tional mixture discriminant analysis incorporating a hidden

process regression model, particularly adapted for modeling

complex-shaped classes of curves presenting regime changes.

The parameters of each class are estimated in an unsuper-

vised way by a dedicated EM algorithm. The experimental

results on simulated data and real data demonstrated the

benefit of the proposed approach as compared to existing

alternative functional discriminant methods. Future work will

concern experiments on additional real data including time

course gene expression curves; We also plan to investigate

more model selection approaches which have been shown

to perform better then BIC in the case of finite mixture

models, such as the one proposed in [1]. We will as well

investigate Bayesian learning techniques from functional data

to explicitly incorporate some prior knowledge on the data

structure to better control the model complexity.
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