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a b s t r a c t

Time series are used in many domains including finance, engineering, economics and bioinformatics
generally to represent the change of a measurement over time. Modeling techniques may then be used
to give a synthetic representation of such data. A new approach for time series modeling is proposed
in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing
for activating smoothly or abruptly different polynomial regression models. The model parameters are
estimated by the maximum likelihood method performed by a dedicated Expectation Maximization
(EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares
(IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an
experimental study on simulated data and real world data was performed using two alternative
approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based
on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by
the Baum–Welch algorithm. Finally, in the context of the remotemonitoring of components of the French
railway infrastructure, and more particularly the switch mechanism, the proposed approach has been
applied tomodeling and classifying time series representing the conditionmeasurements acquired during
switch operations.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Time series occur in many domains including finance, engi-
neering, economics, bioinformatics, and they generally represent
the change of a measurement over time. Modeling techniques
may then be used to give a synthetic representation of such data.
This work relates to the diagnosis of the French railway switches
(or points) which enable trains to be guided from one track to
another at a railway junction. For this purpose, conditionmeasure-
ments acquired during switch operations are classified into prede-
fined classes. Each measurement represents the electrical power
consumed during a switch operation (see Fig. 1).
The diagnosis task was performed by means of a two-step

process: feature extraction from the switch operation signals and
the implementation of a supervised learning algorithm to learn
the parameters of the operating classes of the switch mechanism.
In this paper we propose a new method for modeling switch
operation signals.
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Switch operation signals can be seen as time series presenting
non-linearities and various changes in regime. In a context of this
type, basic parametric methods based on linear or polynomial
regression are not adapted. A piecewise regression model may
be used as an alternative (Brailovsky & Kempner, 1992; Ferrari-
Trecate & Muselli, 2002; McGee & Carleton, 1970). Piecewise
polynomial regression is a parametrization and segmentation
method that partitions the data into K segments, each segment
being characterized by its mean polynomial curve and its variance.
For this type of modeling, the parameter estimation can be exactly
performed using dynamic programming algorithm (Bellman,
1961) such as Fisher’s algorithm (Fisher, 1958). This algorithm
optimizes an additive cost function over all the segments of
the time series (Brailovsky & Kempner, 1992; Lechevalier, 1990).
However, it is well-known that dynamic programming procedures
are computationally expensive. An iterative algorithm can be
derived to improve the running time of Fisher’s algorithm as
proposed by Samé, Aknin and Govaert (2007). This approach
iteratively estimates the regression model parameters and the
partition of the time series. The standard piecewise regression
model usually assumes that noise variance is uniform in all
the segments (homoskedastic model) (Brailovsky & Kempner,
1992; Ferrari-Trecate & Muselli, 2002; Ferrari-Trecate, Muselli,
Liberati & Morari, 2002; Samé et al., 2007). However, in this
paper we shall consider a heteroskedastic piecewise polynomial
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Fig. 1. A signal showing the electrical power consumed during a switch operation.

regression model. Another alternative approach is to use a Hidden
Markov Regression Model (Fridman, 1993) whose parameters are
estimated by the Baum–Welch algorithm (Baum, Petrie, Soules,
& Weiss, 1970). However the piecewise and Hidden Markov
Regression approaches are more adapted for modeling time series
presenting abrupt changes andmay be less efficient for time series
including regimes with smooth transitions.
The method we propose for time series modeling is based

on a specific regression model incorporating a discrete hidden
process allowing for abrupt or smooth transitions between
different regression models. This approach is related to the
switching regression model introduced by Quandt and Ramsey
(1978) and is very linked to the Mixture of Experts (ME) model
developed by Jordan and Jacobs (1994) by the using of a time-
dependent logistic transition function. TheMEmodel, as discussed
in Waterhouse (1997), uses a conditional mixture modeling
where the model parameters are estimated by the Expectation
Maximization (EM) algorithm (Dempster, Laird & Rubin, 1977;
McLachlan & Krishnan, 1997). Once the model parameters of the
proposed regression model with hidden process are estimated,
they are used as the feature vector for each signal. The parameters
of the different operating classes (no defect, minor defect and
critical defect) are then learnt from a labelled collection of signals
using Mixture Discriminant Analysis (MDA) (Hastie & Tibshirani,
1996). Based on the operating classes parameters, a new signal is
classified by using theMaximumA Posteriori (MAP) rule. The good
performance of the proposed approach has been demonstrated
by an experimental study carried out on real measured signals
covering a wide range of defects.
This paper is organized as follows. Section 2provides an account

of the heteroskedastic piecewise polynomial regressionmodel and
the parameter estimation technique this uses based on a dynamic
programming procedure. Section 3 presents the Hidden Markov
Regression Model whose parameters are estimated by the Expec-
tation Maximization Baum–Welch algorithm. Section 4 introduces
the proposedmodel and describes parameter estimation bymeans
of the EM algorithm. Section 5 deals with the experimental study
that assesses the performance of the proposed approach in terms
of signal modeling and Section 6 describes the application of the
proposed technique to switch operation signalsmodeling and clas-
sification.

2. The piecewise polynomial regression model

Let x = (x1, . . . , xn) be n real observations of a signal or a time
series where xi is observed at time ti. The piecewise polynomial
regression model assumes that the time series incorporates K
polynomial regimes on K intervals whose bounds indices can be
denoted by γ = (γ1, . . . , γK+1) with γ1 = 0 and γK+1 = n. This
defines a partition of the time series into K polynomial segments
(x1, . . . , xK ) of lengths n1, . . . , nK where xk = {xi|i ∈ Ik} is the set
of elements in segment kwhose indices are Ik = (γk, γk+1].
Standard polynomial regression models are homoskedastic

models as they assume that the different polynomial regression
models have the same noise variance. In our case we shall consider
the more general framework of a heteroskedastic model which
allows the noise level to vary between the different polynomial
regression models. It can be defined as follows:

∀i = 1, . . . , n, xi = βTkri + σkεi; εi ∼ N (0, 1), (1)

where k satisfies i ∈ Ik, βk is the (p + 1)-dimensional coefficients
vector of a p degree polynomial associated with the kth segment
with k ∈ {1, . . . , K}, ri = (1, ti, t2i . . . , t

p
i )
T is the time-

dependent (p + 1)-dimensional covariate vector associated with
the parameter βk and the εi are independent random variables
with a standard Gaussian distribution representing the additive
noise in each segment k.

2.1. Maximum likelihood estimation for the piecewise polynomial
regression model

With this model, the parameters can be denoted by (ψ, γ)
where ψ = (β1, . . . ,βK , σ

2
1 , . . . , σ

2
K ) is the set of polynomial

coefficients and noise variances, and γ = (γ1, . . . , γK+1) is the
set of transition points. Parameter estimation is performed by
maximum likelihood. We assume a conditional independence of
the data. Thus, according to the model defined by Eq. (1), it
can be proved that within each segment k, xi has a Gaussian
distribution with mean βTkri and variance σ

2
k , and therefore, the

log-likelihood of the parameter vector (ψ, γ) characterizing the
piecewise regression model is the sum of the local log-likelihoods
over the K segments that can be written as follows:

L(ψ, γ; x) = log p(x;ψ, γ)

=

K∑
k=1

∑
i∈Ik

logN
(
xi;βTkri, σ

2
k

)
. (2)

Maximizing this log-likelihood is equivalent tominimizingwith
respect to ψ and γ the criterion

J(ψ, γ) =
K∑
k=1

[
1
σ 2k

∑
i∈Ik

(
xi − βTk ri

)2
+ nk log σ 2k

]
, (3)

where nk is the number of elements in segment k.
Since the criterion J is additive over the K segments, Fisher’s

algorithm (Fisher, 1958; Lechevalier, 1990), which consists in a
dynamic programming procedure (Bellman, 1961; Brailovsky &
Kempner, 1992), can be used to perform the global minimization.
This dynamic procedure has a time complexity of O(Kp2n2) which
can be computationally expensive for large sample sizes.

2.2. Time series approximation and segmentation with the piecewise
regression model

Once the parameters have been estimated, a segmentation of
the time series, equivalently represented by the classes vector
ẑ = (ẑ1, . . . , ẑn), where ẑi ∈ {1, . . . , K}, can be derived by setting
ẑi = k if i ∈ (γ̂k; γ̂k+1], the parameters (ψ̂, γ̂)being the parameters
provided by the dynamic programming procedure.
An approximation of the time series is then given by

x̂i =
∑K
k=1 ẑikβ̂

T
kri, where ẑik = 1 if ẑi = k and ẑik = 0 otherwise.
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The vectorial formulation of the approximated time series x̂ can be
written as:

x̂ =
K∑
k=1

ẐkTβ̂k, (4)

where Ẑk is a diagonal matrix whose diagonal elements are
(ẑ1k, . . . , ẑnk), and

T =


1 t1 t21 . . . tp1
1 t2 t22 . . . tp2
...

...
...

...
...

1 tn t2n . . . tpn


is the [n× (p+ 1)] regression matrix.

3. The Hidden Markov Regression Model

This section recalls the Hidden Markov Regression Model
(HMRM) (Fridman, 1993). Owing to the fact that the real signals
we want to model consist of successive phases, order constraints
are assumed for the hidden states in the HMRM.

3.1. A general description of Hidden Markov Regression Models

In a Hidden Markov Regression Model, the time series is
represented as a sequence of observed variables x = (x1, . . . , xn),
where xi is observed at time ti and assumed to be generated by the
following regression model (Fridman, 1993):

∀i = 1, . . . , n, xi = βTziri + σziεi; εi ∼ N (0, 1), (5)

where zi is a discrete hidden variable taking its values in the set
{1, . . . , K}.
The HMRM assumes that the hidden sequence z = (z1, . . . , zn)

is a homogeneous Markov chain where the variable zi controls the
switching from one polynomial regression model to another of
K models at each time ti. The distribution of the latent sequence
z = (z1, . . . , zn) is defined as:

p(z;π, A) = p(z1;π)
n∏
i=2

p(zi|zi−1; A)

=

K∏
k=1

π
z1k
k

n∏
i=2

K∏
k=1

[
K∏
`=1

A`kz(i−1)`
]zik

, (6)

where
• π = (π1, . . . , πK ) is the initial distribution of zi, with πk =
p(z1 = k) for k ∈ {1, . . . , K};
• A = (A`k)1≤`,k≤K where A`k = p(zi = k|zi−1 = `) is the matrix
of transition probabilities;
• zik = 1 if zi = k (i.e. if xi is generated by the kth regression
model) and zik = 0 otherwise.

3.2. Parameter estimation of the Hidden Markov Regression Model

From the model defined by Eq. (5), it can be proved that,
conditionally on a regression model k (zi = k), xi has a Gaussian
distribution with mean βTkri and variance σ

2
k . Thus, the HMRM is

parametrized by the parameter vector Ψ = (π, A,β1, . . . ,βK ,
σ 21 , . . . , σ

2
K ). The parameter vectorΨ is estimatedby themaximum

likelihoodmethod. The log-likelihood to bemaximized in this case
is written as:

L(Ψ; x) = log p(x;Ψ)

= log
∑
z
p(z1;π)

n∏
i=2

p(zi|zi−1; A)
n∏
i=1

N (xi;βTzi , σ
2
zi ). (7)
Since this log-likelihood can not bemaximized directly, this is done
by the EM algorithm (Dempster et al., 1977), which is known as
the Baum–Welch algorithm (Baum et al., 1970) in the context of
HMMs. It can easily be verified that, in a regression context, the
Baum–Welch algorithm has a time complexity of O(IKp2n), where
I is the number of iterations of the algorithm.

3.3. A HMRM with order constraints

Since the switch operation signals we aim to model consist
of successive phases, we impose the following constraints on the
transition probabilities:

p(zi = k|zi−1 = `) = 0 if k < `, (8)

and

p(zi = k|zi−1 = `) = 0 if k > `+ 1. (9)

These constraints imply that no transitions are allowed for the
phases whose indices are lower that the current phase (Eq. (8))
and no jumps of more than one state are possible (Eq. (9)). This
constrainedmodel is a particular case of the well-known left–right
model (Rabiner, 1989).

3.4. Time series approximation and segmentation with the HMRM

To approximate the time series, at each time ti we combine
the different regression models using the filtering probabilities
denoted by ωik for the kth regression model. The filtering
probability is the probability ωik = p(zi = k|x1, . . . , xi;Ψ) that xi
will be generated by the regressionmodel k given the observations
(x1, . . . , xi) that occur until time ti. It can be computed using
the so-called ‘‘forward’’ probabilities (Rabiner, 1989). Thus, the
filtered time series x̂ = (x̂1, . . . , x̂n), which is common way to
approximate the time series x, is given by:

x̂i =
K∑
k=1

ω̂ikβ̂
T
kri; i = 1, . . . , n, (10)

where Ψ̂ = (π̂, Â, β̂1, . . . , β̂K , σ̂
2
1 , . . . , σ̂

2
K ) and ω̂ik are respec-

tively the parameter vector and the filtering probability obtained
using the EM (Baum–Welch) algorithm. The vectorial formulation
of the approximated time series x̂ can be written as:

x̂ =
K∑
k=1

ŴkTβ̂k, (11)

where Ŵk is a diagonal matrix whose diagonal elements are
(ω̂1k, . . . , ω̂nk), and T is the [n × (p + 1)] regression matrix. This
approximation will be taken as the denoised signal.
On the other hand, a segmentation of the time series can be

deduced by computing the label ẑi of xi using the Maximum A
Posteriori (MAP) rule as follows:

ẑi = arg max
1 ≤ k ≤ K

τ̂ik; ∀i = 1, . . . , n, (12)

where τik = p(zi = k|x;Ψ) is the posterior probability that xi
originates from the kth regression model. Notice that τik can
be computed using the ‘‘forward’’ and ‘‘backward’’ probabilities
(Rabiner, 1989).

4. The proposed regression model with a hidden logistic
process

The proposed regression model introduced in this section is
defined, as for theHMRMmodel, by Eq. (5),where a logistic process
is used to model the hidden sequence z = (z1, . . . , zn).
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Fig. 2. Variation of πi1(w) over time for different values of the dimension q of w1 , for K = 2 and (a) q = 0 and w1 = 0, (b) q = 1 and w1 = (10,−5)T and (c) q = 2 and
w1 = (−10,−20,−4)T .
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with λ1 = −5.
4.1. The hidden logistic process

This section defines the probability distribution of the process
z = (z1, . . . , zn) that allows the switching from one regression
model to another.
The proposed hidden logistic process assumes that the

variables zi, giventhe vector t = (t1, . . . , tn), are generated
independently according to the multinomial distribution
M(1, πi1(w), . . . , πiK (w)), where

πik(w) = p(zi = k;w) =
exp(wTkvi)
K∑̀
=1
exp(wT`vi)

, (13)

is the logistic transformation of a linear function of the time-
dependent covariate vi = (1, ti, t2i , . . . , t

q
i )
T,wk = (wk0, . . . ,wkq)T

is the (q + 1)-dimensional coefficients vector associated with the
covariate vi and w = (w1, . . . ,wK ). Thus, given the vector t =
(t1, . . . , tn), the distribution of z can be written as:

p(z;w) =
n∏
i=1

K∏
k=1

 exp(wTkvi)
K∑̀
=1
exp(wT`vi)


zik

, (14)

where zik = 1 if zi = k i.e. when xi is generated by the kth
regression model, and 0 otherwise.
The relevance of the logistic transformation in terms of

flexibility of transition can be illustrated through simple examples
withK = 2 components. In this case, only the probabilityπi1(w) =
exp(wT1vi)
1+exp(wT1vi)

should be described, since πi2(w) = 1 − πi1(w). The
first example is designed to show the effect of the dimension q of
wk on the temporal variation of the probabilities πik. We consider
different values of the dimension q (q = 0, 1, 2) ofwk.
As shown in Fig. 2, the dimension q controls the number of
temporal transitions of πik. In fact, the larger the dimension ofwk,
the more complex the temporal variation of πik. More particularly,
if the goal is to segment the signals into contiguous segments, the
dimension q of wk must be set to 1, what will be assumed in the
following.
For a fixed dimension q of the parameter wk, the variation of

the proportions πik(w) over time, in relation to the parameter wk,
is illustrated by an example of 2 classes with q = 1. For this
purpose, we use the parametrizationwk = λk(αk, 1)T ofwk, where
λk = wk1 and αk = wk0

wk1
· As shown in Fig. 3(a), the parameter

λk controls the quality of transitions between classes, the higher
absolute value of λk, the more abrupt the transition between the
zi, while the parameter αk controls the transition time point via
the inflexion point of the curve (see Fig. 3(b)).
In this particular regression model, the variable zi controls the

switching from one regression model to another of K regression
models at each time ti. Therefore, unlike basic polynomial
regression models, which assume uniform regression parameters
over time, the proposedmodel permits the polynomial coefficients
to vary over time by switching from one regression model to
another.

4.2. The generative model for signals

The generative model that produces a signal from a fixed
parameter θ = {wk,βk, σ 2k ; k = 1, . . . , K} consists of 2 steps:

• generate the hidden process z = (z1, . . . , zn) according to the
multinomial distribution zi ∼M(1, πi1(w), . . . , πiK (w)),
• generate each observation xi according to the Gaussian
distributionN (·;βTziri, σ

2
zi ).
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4.3. Parameter estimation

From the proposed model, it can be proved that, conditionally
on a regression model k, xi is distributed according to a normal
densitywithmeanβTkri and variance σ

2
k . Thus, it can be proved that

xi is distributed according to the normal mixture density

p(xi; θ) =
K∑
k=1

πik(w)N
(
xi;βTkri, σ

2
k

)
, (15)

where θ = (w1, . . . ,wK ,β1, . . . ,βK , σ 21 , . . . , σ
2
K ) is the param-

eter vector to be estimated. The parameter θ is estimated by the
maximum likelihood method. As in the classic regression models
we assume that, given t = (t1, . . . , tn), the εi are independent.
This also implies the independence of xi (i = 1, . . . , n). The log-
likelihood of θ is then written as:

L(θ; x) = log
n∏
i=1

p(xi; θ)

=

n∑
i=1

log
K∑
k=1

πik(w)N
(
xi;βTkri, σ

2
k

)
. (16)

Since the direct maximization of this likelihood is not straightfor-
ward, it is maximized with the Expectation Maximization (EM) al-
gorithm (Dempster et al., 1977; McLachlan & Krishnan, 1997).

4.4. The dedicated EM algorithm

The proposed EM algorithm starts from an initial parameter θ(0)

and alternates the two following steps until convergence:

4.4.1. E step (expectation)
This step consists in computing the expectation of the complete

log-likelihood log p(x, z; θ), given the observations and the current
value θ(m) of the parameter θ (m being the current iteration):

Q (θ, θ(m)) = E
[
log p(x, z; θ)|x; θ(m)

]
=

n∑
i=1

K∑
k=1

E(zik|xi; θ(m)) log
[
πik(w)N (xi;βTkri, σ

2
k )
]

=

n∑
i=1

K∑
k=1

τ
(m)
ik log

[
πik(w)N

(
xi;βTkri, σ

2
k

)]
=

n∑
i=1

K∑
k=1

τ
(m)
ik logπik(w)

+

n∑
i=1

K∑
k=1

τ
(m)
ik logN

(
xi;βTkri, σ

2
k

)
, (17)

where

τ
(m)
ik = p(zik = 1|xi; θ

(m))

=
πik(w(m))N (xi;β

T (m)
k ri, σ

2(m)
k )

K∑̀
=1
πi`(w(m))N (xi;β

T (m)
` ri, σ

2(m)
` )

(18)

is the posterior probability that xi originates from the kth
regression model.
As shown in the expression for Q , this step simply requires the
computation of τ (m)ik .
4.4.2. M step (maximization)
In this step, the value of the parameter θ is updated by

computing the parameter θ(m+1) maximizing the conditional
expectation Q with respect to θ. To perform this maximization, it
can be observed that Q is written as:

Q (θ, θ(m)) = Q1(w)+
K∑
k=1

Q2(βk, σ
2
k ), (19)

with

Q1(w) =
n∑
i=1

K∑
k=1

τ
(m)
ik logπik(w), (20)

and

Q2(βk, σ
2
k ) =

n∑
i=1

τ
(m)
ik logN

(
xi;βTkri, σ

2
k

)
= −

1
2

[
1
σ 2k

n∑
i=1

τ
(m)
ik

(
xi − βTkri

)2
+ n(m)k log σ 2k

]

−
n(m)k
2
log 2π; k = 1, . . . , K , (21)

where n(m)k =
∑n
i=1 τ

(m)
ik can be interpreted as the number of

points of the component k estimated at the iteration m. Thus, the
maximization of Q can be performed by separately maximizing
Q1(w) with respect to w and Q2(βk, σ 2k ) with respect to (βk, σ

2
k )

for all k = 1, . . . , K . Maximizing Q2 with respect to βk consists
in analytically solving a weighted least-squares problem. The
estimates are given by:

β
(m+1)
k = argmin

βk

n∑
i=1

τ
(m)
ik (xi − βTk ri)

2

= (TTW (m)
k T)−1TTW (m)

k x, (22)

where W (m)
k is the [n × n] diagonal matrix of weights whose

diagonal elements are (τ (m)1k , . . . , τ
(m)
nk ) and T is the [n × (p + 1)]

regression matrix.
Maximizing Q2 with respect to σ 2k provides the following

updating formula:

σ
2(m+1)
k = argmin

σ 2k

[
1
σ 2k

n∑
i=1

τ
(m)
ik

(
xi − β

T (m+1)
k ri

)2
+ n(m)k log σ 2k

]

=
1

n(m)k

n∑
i=1

τ
(m)
ik (xi − β

T (m+1)
k ri)2. (23)

The maximization of Q1 with respect to w is a multinomial
logistic regression problem weighted by τ (m)ik which we solve
with a multi-class Iterative Reweighted Least-Squares (IRLS)
algorithm (Chamroukhi, Samé, Govaert & Aknin, 2009; Chen, Xu
& Chi, 1999; Green, 1984; Krishnapuram, Carin, Figueiredo &
Hartemink, 2005).
It can be easily verified that the proposed algorithm is

performed with a time complexity of O(IJK 3p2n), where I is the
number of iterations of the EM algorithm and J is the average
number of iterations required by its internal IRLS algorithm.

4.5. Denoising and segmenting a time series

In addition to performing time series parametrization, the
proposed approach can be used to denoise and segment time series
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Table 1
Simulation parameters.

Situation 1 β1 = 0 w1 = [3341.33,−1706.96]
β2 = 5 w2 = [2436.97,−810.07]
β3 = 10 w3 = [0, 0]

Situation 2 β1 = [−0.64, 14.4,−6] w1 = [3767.58,−1510.19]
β2 = [−21.25, 25,−5] w2 = [2468.99,−742.55]
β3 = [−78.64, 45.6,−6] w3 = [0, 0]

(or signals). The denoised time series can be approximated by the
expectation E(x; θ̂) =

(
E(x1; θ̂), . . . , E(xn; θ̂)

)
where

E(xi; θ̂) =
∫

R
xip(xi; θ̂)dxi

=

K∑
k=1

πik(ŵ)
∫

R
xiN

(
xi; β̂

T
kri, σ̂

2
k

)
dxi

=

K∑
k=1

πik(ŵ)β̂
T
kri, ∀i = 1, . . . , n, (24)

and θ̂ = (ŵ, β̂1, . . . , β̂K , σ̂ 21 , . . . , σ̂
2
K ) is the parameter vector

obtained at convergence of the algorithm. The matrix formulation
of the approximated signal x̂ = E(x; θ̂) is given by:

x̂ =
K∑
k=1

Π̂kTβ̂k, (25)

where Π̂k is a diagonal matrix whose diagonal elements are
the proportions (π1k(ŵ), . . . , πnk(ŵ)) associated with the kth
regression model. On the other hand, a signal segmentation can
also be obtained by computing the estimated label ẑi of xi according
to the following rule:

ẑi = arg max
1≤k≤K

πik(ŵ), ∀i = 1, . . . , n. (26)

Applying this rule guarantees the time series are segmented into
contiguous segments if the probabilities πik are computed with a
dimension q = 1 ofwk; k = 1, . . . , K .

4.6. Model selection

In a general application of the proposed model, the optimal
values of (K , p, q) can be computed by using the Bayesian
Information Criterion (BIC) (Schwarz, 1978) which is a penalized
likelihood criterion, defined by

BIC(K , p, q) = L(θ̂; x)−
ν(K , p, q) log(n)

2
, (27)

where ν(K , p, q) = K(p + q + 3) − (q + 1) is the number of
parameters of the model and L(θ̂; x) is the log-likelihood obtained
at convergence of the EM algorithm.

5. Experimental study using simulated signals

This section is devoted to an evaluation of the signal modeling
performed by the proposed algorithm using simulated datasets.
For this purpose, the proposed approach was compared with
the piecewise regression and the Hidden Markov Regression
approaches.
Table 2
The different smoothness levels from abrupt transitions to smooth transitions for
the situations shown in Fig. 4.

Smoothness level of transitions 1 2 3 4 5

(a) |λk| divided by: 1 2 5 10 20
(b) |λk| divided by: 1 10 50 100 150

Smoothness level of transitions 6 7 8 9 10

(a) |λk| divided by: 40 50 80 100 125
(b) |λk| divided by: 200 250 275 300 400

5.1. Evaluation criteria

Two evaluation criteria were used in the simulations. The first
criterion is the mean square error between the true simulated
curve without noise (which is the true denoised signal) and the
estimated denoised signal given by:

• x̂i =
∑K
k=1 πik(ŵ)β̂

T
kri for the proposed model;

• x̂i =
∑K
k=1 ẑikβ̂

T
kri for the piecewise polynomial regression

model;
• x̂i =

∑K
k=1 ωik(Ψ̂)β̂

T
kri for the HMM regression model.

This error criterion is computed by the formula

1
n

n∑
i=1

[E(xi; θ)− x̂i]2.

It is used to assess the models with regard to signal denoising and
is called the denoising error.
The second criterion is the misclassification error rate between

the simulated and the estimated partitions. It is used to assess
the models with regard to signal segmentation. Note that other
comparisons between the proposed approach and two versions
of the piecewise polynomial regression approach including the
running time can be found in Chamroukhi et al. (2009).

5.2. Simulation protocol

The signals were simulated with the proposed regression
model with hidden logistic process and all the simulations were
performed for a number of segments K = 3. We chose the value
q = 1 which guarantees a segmentation into contiguous intervals
for the proposed model. We considered that all the time series
were observed over 5 s with a constant samplingperiod (1t =
ti − ti−1 is constant). Three experiments were performed:

• the first aims to observe the effect of the smoothness level
of transitions on estimation quality. For this purpose two
situations of simulated times series of n = 300 observations
were considered. For the first situation, the time series
consisted of three constant polynomial regimes (K = 3, p = 0)
with a uniform noise level σ = 1. For the second situation,
the time series consisted of three polynomial regimes of order
2 (K = 3, p = 2) with n = 300 and σ = 0.5. The set of
simulation parameters for the two situations is given in Table 1.
The smoothness level of transitions was tuned by means of the
term λk = wk1; k = 1, . . . , K , seen in Section 4.1 and Fig. 3(a).
We used 10 smoothness levels for each situation. Fig. 4 shows
the true denoised curves for situation 1 and situation 2, for the
decreasing values of |λk| shown in Table 2.
• the second aims to observe the effect of the sample size n on
estimation quality. The sample size varied from 100 to 1000
is steps of 100, and the values of the σk were set to σ1 = 1,
σ2 = 1.25, andσ3 = 0.75. Fig. 5 shows an example of simulated
signal for n = 700.
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Fig. 4. The true denoised signals from abrupt transitions to smooth transitions for situation 1 (a) and situation 2 (b).
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Fig. 5. Example of simulated signal (with and without noise) for n = 700 and
σ = 1 for situation 1 with a smoothness level of transition corresponding to the
level 8 in Table 2.

• the third aims to observe the effect of the noise level σ . The
noise level σ was assumed to be uniform for all the segments
and varied from 0.5 to 5 is steps of 0.5, and the sample size was
set to n = 500.

For each value of n, each value of σ and each value of the
smoothness level of transitions we generated 20 samples and the
values of assessment criteria were averaged over the 20 samples.

5.3. Initialization strategies and stopping rules

The proposed algorithm and the Hidden Markov regression
algorithm were initialized as follows:

• In the proposed modelwwas set to the null vector;
• In the HMRM the initial probabilities were set to π =

(1, 0, . . . , 0) and A`k = 0.5 for ` ≤ k ≤ `+ 1;
• to initialize βk and σ

2
k , for k = 1, . . . , K , several random seg-

mentations of the signal into K segments were used as well as a
uniform segmentation. On each segment k we fitted a polyno-
mial regression model and then deduced the valued βk and σ

2
k .

The solution providing the highest likelihood was chosen.

The two algorithms were stopped when the relative variation
of the log-likelihood function between two iterations | L

(m+1)
−L(m)

L(m)
|

was below 10−6 or after 1500 iterations.

5.4. Simulation results

Fig. 6 shows the denoising error and the misclassification
error rate in relation to the smoothness level of transitions for
the first situation (left) and for the second situation (right). It
can be seen that the proposed approach performs the signals
segmentation and denoising better than the piecewise regression
and the HMRM approaches. While the results are closely similar
when the transitions are abrupt (until level 3), the proposed
approach provides more accurate results than the two alternatives
for smooth transitions for the two situations.
Fig. 7 shows the denoising error and the misclassification error

rate in relation to the sample size n and the noise level σ . It can
be seen in Fig. 7(a) and (b) that the segmentation error decreases
when the sample size n increases for the proposed model which
provides more accurate results than the piecewise and the HMRM
approaches. Fig. 7(c) and (d) show that when the noise level
increases the proposed approach providesmore stable results than
to the two other alternative approaches.

6. Application to real signals

This section presents the results obtained by the proposed ap-
proach for the switch operation signals modeling and classifica-
tion. Several types of signals were considered (with and without
defects). The number of regression components was chosen in ac-
cordancewith the number of electromechanical phases of a switch
operation (K = 5). The value of q was set to 1, which guarantees
segmentation into contiguous intervals for the proposed approach,
and the degree of the polynomial regression p was set to 3 which
is appropriate for the different regimes in the signals.

6.1. Real signal modeling

The proposed regression approach were applied to real signals
of switch operations.
Fig. 8 (top) shows the original signals and the denoised signals

(the denoised signal provided by the proposed approach is given by
Eq. (25)). Fig. 8 (bottom) shows the variation of the probabilitiesπik
over time. It can be seen that these probabilities are very closed to
1 when the kth regression model seems to be the most faithful to
the original signal.

6.2. Real signal classification

This part is devoted to an evaluation of the classification accu-
racy of the proposed approach. A database of N = 119 real sig-
nals with known classes was used. This database was divided into
two groups: a training base of 84 signals for learning the classes
parameters and a test base of 35 signals for evaluating the classi-
fier. The three parametrizationmethodswere applied to applied to
all the signals of the database, and the estimated parameters pro-
vided by each approach were used as the signal feature vector. Af-
ter the parametrization step, the MDA was applied to the features
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Fig. 6. Denoising error (top) and misclassification error rate (bottom) with the error bars in the range of errors standard deviation, in relation to the smoothness level of
transitions, obtained with the proposed approach (triangle), the piecewise polynomial regression approach (circle) and the HMRM approach (square) for the first situation
(left) and for the second situation (right).
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Fig. 7. Denoising error (left) and misclassification error rate (right) with the error bars in the range of errors standard deviation, in relation to the sample size n for
(σ1 = 1, σ2 = 1.25, σ3 = 0.75 (a, b) and the noise level σ for n = 500 (c, d), obtained with the proposed approach (triangle), the piecewise polynomial regression
approach (circle) and the HMRM approach (square).
extracted from the signals in the training dataset. After the learning
step, each signal, represented by its feature vector was classified
using the Maximum A Posteriori (MAP) rule.

Three different classes of signals indexed by g = 1, . . . , 3,
corresponding to the different operating states of the switch
mechanism were considered. Thus, the considered classes were
• g = 1: no defect class;
• g = 2: minor defect class;
• g = 3: critical defect class.

In what follows we shall use yj to denote the feature vector
θ extracted from the signal xj, where the index j = 1, . . . ,N
corresponds to the signal number.
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Fig. 8. Results obtained with the proposed approach for a signal without defect (a) and a signal with defect (b) with the original signal (in blue) and the estimated signal (in
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6.2.1. Modeling the operating classes with mixture models
Given a labelled collection of extracted features, the parameters

of each class are learned using the Mixture Discriminant Analysis
(MDA) (Hastie & Tibshirani, 1996). In this approach, the density of
each class g = 1, . . . ,G with G = 3 is modeled by a Gaussian
mixture distribution (Hastie & Tibshirani, 1996; McLachlan & Peel,
2000) defined by

p(yj|Cj = g;Θg) =
Rg∑
r=1

αgrN
(
yj;µgr ,Σgr

)
, (28)

where Cj is the discrete variable which takes its value in the set
{1, . . . , 3} representing the class of the signal xj,

Θg = (αg1, . . . , αgRg ,µg1, . . . ,µgRg , . . . ,Σg1, . . . ,ΣgRg )

is the parameter vector of themixture density of the class g with Rg
is the number of mixture components and the αgr (r = 1, . . . , Rg)
are the mixing proportions satisfying

∑Rg
r=1 αgr = 1. The optimal

number of Gaussian distributions Rg for each class g is computed
by maximizing the BIC criterion (Schwarz, 1978):

BIC(Rg) = L(Θ̂g)−
νRg

2
log(ng), (29)

where Θ̂g is the maximum likelihood estimate ofΘg provided by
the EM algorithm, νRg is the dimension of the parameter vectorΘg ,
and ng is the cardinal number of class g .
Given the parameter vectors Θ̂1, Θ̂2, Θ̂3 estimated by the EM

algorithm for the three classes of signals, each new signal designed
by the feature vector yj is assigned to the class ĝ thatmaximizes the
posterior probability that yi belongs to the class g , with respect to
g = 1, . . . ,G:

ĝ = arg max
1≤g≤G

p(Cj = g|yj; Θ̂g), (30)
with

p(Cj = g|yj; Θ̂g) =
p(Cj = g)p(yj|Cj = g; Θ̂g)

G∑
g ′=1
p(Cj = g ′)p(yi|Cj = g ′; Θ̂g ′)

(31)

where p(Cj = g) is the prior probability of the class g estimated
by the proportion of the signals belonging to class g in the learning
phase.

6.2.2. Classification results
The results in terms of correct classification rates are given in

Table 3 and the number of mixture components estimated by the
BIC criterion for each class g , for the proposed modeling method,
is given in Table 4.
The correct classification rates clearly show that using the

proposed regression approach for signals modeling outperforms
the two alternative approaches.
The number of mixture components Rg = 3 selected with the

BIC criterion for the third class (critical defect class) is attributed
to the fact that this class contains signals covering a wide range of
defects.

Table 3
Correct classification rates.

Modeling approach Correct classification rate (%)

Piecewise regression model 83
HMRM 89
Proposed regression model 91

Table 4
Number of mixture components selected with the BIC criterion.

Class g 1 2 3

Number of mixture components Rg 1 1 3
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7. Conclusion

This paper proposes a new approach for time series modeling,
in the context of the railway switch mechanism diagnosis. It
is based on a regression model incorporating a discrete hidden
logistic process. The logistic probability function used for the
hidden variables allows for smooth or abrupt transitions between
various polynomial regression components over time. In addition
to time series parametrization, the proposed model can provide
accurate signal segmentation and denoising. The performance of
this approach in terms of signal modeling has been evaluated by
comparing it to the piecewise polynomial regression approach and
the Hidden Markov Regression Model using simulated data and
real data. Based on the proposed modeling approach, a mixture
discriminant approach has been implemented to classify real
signals.
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