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Abstract

The parsimonious Gaussian mixture models, which exploit an eigenvalue de-
composition of the group covariance matrices of the Gaussian mixture, have
shown their success in particular in cluster analysis. Their estimation is in
general performed by maximum likelihood estimation and has also been con-
sidered from a parametric Bayesian prospective. We propose new Dirichlet
Process Parsimonious mixtures (DPPM) which represent a Bayesian non-
parametric formulation of these parsimonious Gaussian mixture models. The
proposed DPPM models are Bayesian nonparametric parsimonious mixture
models that allow to simultaneously infer the model parameters, the optimal
number of mixture components and the optimal parsimonious mixture struc-
ture from the data. We develop a Gibbs sampling technique for maximum
a posteriori (MAP) estimation of the developed DPMM models and provide
a Bayesian model selection framework by using Bayes factors. We apply
them to cluster simulated data and real data sets, and compare them to the
standard parsimonious mixture models. The obtained results highlight the
effectiveness of the proposed nonparametric parsimonious mixture models as
a good nonparametric alternative for the parametric parsimonious models.

∗Corresponding author: Faïcel Chamroukhi
Normandie Univ, UNICAEN, UMR CNRS LMNO, Department of Mathematics and Com-
puter Science, 14000 Caen, France
Tel: +33(0) 2 31 56 73 67 ; Fax: +33(0) 2 31 56 73 20

Email address: faicel.chamroukhi@unicaen.fr (Faïcel Chamroukhi )

Preprint submitted to Elsevier October 18, 2018

ar
X

iv
:1

50
1.

03
34

7v
2 

 [
st

at
.M

L
] 

 1
7 

O
ct

 2
01

8



1. Introduction

Clustering is one of the essential tasks in statistics and machine learning.
Model-based clustering, that is the clustering approach based on the para-
metric finite mixture model [49], is one of the most popular and successful
approaches in cluster analysis [7, 29, 47]. The finite mixture model decom-
poses the density of the observed data as a weighted sum of a finite number
of K component densities. Most often, the used model for multivariate real
data is the finite Gaussian mixture model (GMM) in which each mixture
component is Gaussian. This chapter will be focusing on Gaussian mixture
modeling for multivariate real data.

In [7] and [21], the authors developed a parsimonious GMM clustering
approach by exploiting an eigenvalue decomposition of the group covariance
matrices of the GMM components, which provides a wide range of very flexi-
ble models with different clustering criteria. It was also demonstrated in [29]
that the parsimonious mixture model-based clustering framework provides
very good results in density estimation as well as in cluster and discriminant
analyses.

In model-based clustering using GMMs, the parameters of the Gaussian
mixture are usually estimated in a maximum likelihood estimation (MLE)
framework by maximizing the observed data likelihood. This is usually per-
formed by the EM algorithm [23, 48] or EM extensions [48]. The parameters
of the parsimonious Gaussian mixture models can also be estimated in a
MLE framework by using the EM algorithm [21].

However, a possible issue in the MLE approach using the EM algorithm
for normal mixtures is that it may fail due to singularities or degeneracies, as
highlighted namely in [30, 66–68] and [31]. The Bayesian estimation methods
for mixture models have lead to intensive research in the field for dealing
with the problems encountered in MLE for mixtures [12, 13, 24, 26, 36, 46,
61, 62, 68] which rely on a Bayesian formulation of the the mixture model.
They allow to avoid these problems by replacing the MLE by the maximum
a posterior (MAP) estimator. This is namely achieved by introducing a
regularization over the model parameters via prior parameter distributions,
which are assumed to be uniform in the case of MLE.

The MAP estimation for the Bayesian Gaussian mixture is performed by
maximizing the posterior parameter distribution. This can be performed,
in some situations by an EM-MAP scheme as in [30] and [31] where the
authors proposed an EM algorihtm for estimating Bayesian parsimonious
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Gaussian mixtures. However, the common estimation approach in the case of
Bayesian mixtures is still the one based on Bayesian sampling such as Markov
Chain Monte Carlo (MCMC), namely Gibbs sampling [12, 24, 68] when the
number of mixture components K is known, or by reversible jump MCMC
introduced by [39, 61] and [68], when K is unknown. The flexible eigenvalue
decomposition of the group covariance matrix described previously was also
exploited in Bayesian parsimonious model-based clustering by [12, 13] where
the authors used a Gibbs sampler for the model inference.

For these model-based clustering approaches, the number of mixture com-
ponents is usually assumed to be known. Another issue in the finite mixture
model-based clustering approach, including the MLE approach as well as
the MAP approach, is therefore the one of selecting the optimal number of
mixture components, that is the problem of model selection. The model se-
lection is in general performed through a two-fold strategy by selecting the
best model from pre-established inferred model candidates. For the MLE
approach, the choice of the optimal number of mixture components can be
performed via penalized log-likelihood criteria such as the Bayesian Infor-
mation Criterion (BIC) [64], the Akaike Information Criterion (AIC) [1],
the Approximate Weight of Evidence (AWE) criterion [7], or the Integrated
Classification Likelihood criterion (ICL) [14], etc. For the MAP approach,
this can still be performed via modified penalized log-likelihood criteria such
as a modified version of BIC [31] computed for the posterior mode, and
more generally the Bayes factors [44] as in [12] for parsimonious mixtures.
Bayes factors are indeed the natural Bayesian criterion for model selection
and comparison in the Bayesian framework and for which the criteria such
as BIC, AWE, etc represent indeed approximations. There is also Bayesian
extensions for mixture models that analyze mixtures with unknown number
of components, for example as mentioned before the one of [61] using RJM-
CMC and the one of [68, 69] using the birth and death process. They are
referred to as fully Bayesian mixture models [61] as they consider the number
of mixture components as a parameter to be inferred from the data, jointly
with the mixture model parameters, based on the posterior distributions.

However, these standard finite mixture models, including the non-Bayesian
and the Bayesian ones, are parametric and may not be well adapted in the
case of unknown and complex data structure. Recently, the Bayesian-non
parametric (BNP) formulation of mixture models, that goes back to [27] and
[3], have took much attention as a nonparametric alternative for formulating
mixtures. The BNP methods [41, 62] have indeed recently become popular
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due to their flexible modeling capabilities and advances in inference tech-
niques, in particular for mixture models, by using namely MCMC sampling
techniques [53, 59] or variational inference ones [17]. BNP methods for clus-
tering, including Dirichlet Process Mixtures (DPM) and Chinese Restaurant
Process (CRP) mixtures [3, 27, 57, 63, 71] which can be represented as infinite
Gaussian mixture models as in [59], provide a principled way to overcome the
issues in standard model-based clustering and classical Bayesian mixtures for
clustering. They are fully Bayesian approaches that offer a principled alter-
native to jointly infer the number of mixture components (i.e clusters) and
the mixture parameters, from the data. By using general processes as pri-
ors, they allow to avoid the problem of singularities and degeneracies of the
MLE, and to simultaneously infer the optimal number of clusters from the
data, in a one-fold scheme, rather than in a two-fold approach as in stan-
dard model-based clustering. They also avoid assuming restricted functional
forms and thus allow the complexity and accuracy of the inferred models to
grow as more data is observed. They also represent a good alternative to
the difficult problem of model selection in parametric mixture models. Note
that the term non-parametric does not mean that there are no parameters, it
rather means that one would have more and more parameters, as more data
are observed.

In this paper, we present a new BNP formulation of the Gaussian mix-
ture with the eigenvalue decomposition of the group covariance matrix of each
Gaussian component which has proven its flexibility in cluster analysis for the
parametric case [7, 12, 21, 29]. We develop new Dirichlet Process mixture
models with parsimonious covariance structure, which results in Dirichlet
Process Parsimonious Mixtures (DPPM). They represent a Bayesian non-
parametric formulation of these parsimonious Gaussian mixture models. The
proposed DPPM models are Bayesian parsimonious mixture models with a
Dirichlet Process prior and thus provide a principled way to overcome the
issues encountered in the parametric Bayesian and non-Bayesian case and
allow to automatically and simultaneously infer the model parameters and
the optimal model structure from the data, from different models, going
from simplest spherical ones to the more complex standard general one. We
develop a Gibbs sampling technique for maximum a posteriori (MAP) esti-
mation of the various models and provide an unifying framework for model
selection and models comparison by using namely Bayes factors, to simul-
taneously select the optimal number of mixture components and the best
parsimonious mixture structure. The proposed DPPM are more flexible in
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terms of modeling and their use in clustering, and automatically infer the
number of clusters from the data.

The paper is organized as follows. Section 2 describes and discusses pre-
vious work on model-based clustering. Then, Section 3 presents the proposed
models and the learning technique. In Section 4, we give experimental results
to evaluate the proposed models on simulated data and real data. Finally,
Section 5 is devoted to a discussion and concluding remarks.

2. Parametric model-based clustering

Let X = (x1, . . . ,xn) be a sample of n i.i.d observations in Rd, and let
z = (z1, . . . , zn) be the corresponding unknown cluster labels where zi ∈
{1, . . . , K} represents the cluster label of the ith data point xi, K being the
possibly unknown number of clusters.

2.1. Model-based clustering
Parametric Gaussian clustering, also called model-based clustering [29,

47], is based on the finite GMM [49] in which the probability density function
of the data is given by:

p(xi|θ) =
K∑
k=1

πk N (xi|θk) (1)

where the πk’s are the mixing proportions, θk = (µk,Σk) are respectively
the mean vector and the covariance matrix for the kth Gaussian component
density and

θ = (π1, . . . , πK−1,µ
T
1 , . . . ,µ

T
K , vech(Σ1)T , . . . , vech(ΣK)T )T

is the GMM parameter vector. From a generative point of view, the genera-
tive process of the data for the finite mixture model can be stated as follows.
First, a mixture component zi is sampled independently from a Multinomial
distribution given the mixing proportions π = (π1, . . . , πK). Then, given
the mixture component zi = k, and the corresponding parameters θk, the
individual xi is generated independently from a Gaussian with parameters
θk, that is:

zi ∼ M(π) (2)
xi|θzi ∼ N (xi|θzi). (3)
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The mixture model parameters θ is usually estimated in a Maximum Likeli-
hood Estimation (MLE) framework by maximizing the observed data likeli-
hood (4):

L(θ|X) =
n∏
i=1

K∑
k=1

πk N (xi|θk). (4)

via the EM algorithm [23, 48] or EM extensions [48].

2.2. Bayesian model-based clustering
As mentioned in the introduction, the MLE approach using the EM algo-

rithm for normal mixtures may fail in some situations due to singularities or
degeneracies [30, 31, 68]. The Bayesian approach of mixture models avoids
the problems associated with the MLE via a MAP estimation framework by
maximizing the posterior parameter distribution

p(θ|X) = p(θ)L(θ|X), (5)

p(θ) being a chosen prior distribution over the model parameters θ. The
prior distribution in general takes the following form for the GMM:

p(θ) = p(π|α)p(µ|Σ,µ0, κ0)p(Σ|µ,Λ0, ν) = p(π|α)
K∏
k=1

p(µk|Σk)p(Σk).

where (α,µ0, κ0,Λ0, ν0) are hyperparameters. A common choice for the
GMM is to assume conjugate priors, that is Dirichlet distribution for the
mixing proportions as in [61] and [54], and a multivariate normal Inverse-
Wishart prior distribution for the Gaussian parameters, that is a multivariate
normal for the means and an Inverse-Wishart for the covariance matrices, for
example as in [12], [30] and [31].

From a generative point of view, to generate data from the Bayesian
GMM, a first step is to sample the model parameters from the prior, that is
to sample the mixing proportions from their conjugate Dirichlet prior distri-
bution, and the mean vectors and the covariance matrices of the Gaussian
components from the corresponding conjugate multivariate normal Inverse-
Wishart prior. Then, the generative procedure remains the same as in the
previously described generative process for the non-Bayesian finite mixture,
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and is summarized by the following steps:

π|α ∼ D(α)

zi|π ∼ M(π) (6)
θzi |G0 ∼ G0

xi|θzi ∼ N (xi|θzi)

where α are hyperparameters of the Dirichlet prior distribution, and G0 is
a prior distribution for the parameters of the Gaussian component, that is a
multivariate Normal Inverse-Wishart:

Σk ∼ IW(ν0,Λ0) (7)

µk|Σk ∼ N (µ0,
Σ

κ0

) (8)

where the IW stands for the Inverse-Wishart distribution.
The parameters θ of the Bayesian Gaussian mixture are estimated by

MAP estimation by maximizing the posterior parameter distribution (5).
The MAP estimation can still be performed by EM, namely in the case
of conjugate priors where the prior distribution is only considered for the
parameters of the Gaussian components, as in [30] and [31]. However, in
general, the common estimation approach in the case the Bayesian GMM
described above, is the one using Bayesian sampling such as MCMC sampling
techniques, namely the Gibbs sampler [12, 24, 37, 52, 54, 68].

2.3. Parsimonious Gaussian mixture models
The GMM clustering has been extended to parsimonious GMM cluster-

ing [7, 21] by exploiting an eigenvalue decomposition of the group covariance
matrices, which provides a wide range of very flexible models with differ-
ent clustering criteria. In these parsimonious models, the group covariance
matrix Σk for each cluster k is decomposed as

Σk = λkDkAkD
T
k (9)

where λk = |Σk|1/d, Dk is an orthogonal matrix of eigenvectors of Σk and
Ak is a diagonal matrix with determinant 1 whose diagonal elements are the
normalized eigenvalues of Σk in a decreasing order. As described in [21], the
scalar λk determines the volume of cluster k, Dk its orientation and Ak its
shape. Thus, this decomposition leads to several flexible models going from
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simplest spherical models to the complex general one and hence is adapted
to various clustering situations.

The parameters θ of the parsimonious Gaussian mixture models are esti-
mated in a MLE framework by using the EM algorithm. The details of the
EM algorithm for the different parsimonious finite GMMs are given in [21].
The parsimonious GMMs have also took much attention under the Bayesian
prospective. For example, in [12], the authors proposed a fully Bayesian
formulation for inferring the previously described parsimonious finite Gaus-
sian mixture models. This Bayesian formulation was applied in model-based
cluster analysis [12, 13]. The model inference in this Bayesian formulation
is performed in a MAP estimation framework by using MCMC sampling
techniques, see for example [12, 13]. Another Bayesian regularization for
the parsimonious GMM was proposed by [30, 31] in which the maximization
of the posterior can still be performed by the EM algorithm in the MAP
framework (EM-MAP).

2.4. Model selection in finite mixture models
Finite mixture model-based clustering requires to specify the number of

mixture components (i.e., clusters) and, in the case of parsimonious models,
the type of the model. The main issues in this parametric model are there-
fore the one of selecting the number of mixture components (clusters), and
possibly the type of the model, that fit at best the data. This problem can
be tackled by penalized log-likelihood criteria such as BIC [64] or penalized
classification log-likelihood criteria such as AWE [7] or ICL [14], etc, or more
generally by using Bayes factors [44] which provide a general way to select
and compare models in (Bayesian) statistical modeling, namely in Bayesian
mixture models.

Further, we consider the parsimonious GMMs (PGMMs) mainly in a
Bayesian non-parametric framework, instead of into a finite (Bayesian) mix-
ture. This helps namely to tackle the problem of model selection from the
non-parametric prospective.

3. Dirichlet Process Parsimonious Mixtures

The Bayesian and non-Bayesian finite mixture models described previ-
ously are however in general parametric and may not be well adapted to
represent complex and realistic data sets. Recently, the Bayesian-non para-
metric (BNP) mixtures, in particular the Dirichlet Process Mixture (DPM)
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[3, 27, 63, 71] or by equivalence the Chinese Restaurant Process (CRP) mix-
ture [2, 58, 63], which can be seen as an infinite mixture model [59], provide
a principled way to overcome the issues in standard model-based cluster-
ing and classical Bayesian mixtures for clustering. They are fully Bayesian
approaches and offer a principled alternative to jointly infer the number of
mixture components (i.e clusters) and the mixture parameters, from the data.
BNP mixture approaches for clustering assume general process as prior on
the infinite possible partitions, which is not restrictive as in classical Bayesian
inference. Such a prior can be a Dirichlet Process [3, 27, 63] or, by equiv-
alence, a Chinese Restaurant Process [58, 63]. In the next section, we rely
on the Dirichlet Process Mixture (DPM) formulation to derive the proposed
Bayesian non-parametric formulation of the parsimonious models.

3.1. Dirichlet Process Parsimonious Mixtures
A Dirichlet Process (DP) [27] is a distribution over distributions and has

two parameters, the concentration parameter α0 > 0 and the base measure
G0. We denote it by DP(α,G0). Assume there is a parameter θ̃i following
a distribution G, that is θ̃i|G ∼ G. Modeling with DP means that we
assume that the prior over G is a DP, that is, G is itself generated from a
DP: G ∼ DP(α,G0). This can be summarized by the following generative
process:

θ̃i|G ∼ G, ∀i ∈ 1, . . . , n (10)
G|α,G0 ∼ DP(α,G0)· (11)

The DP has two properties [27]. First, random distributions drawn from
DP, that is G ∼ DP(α,G0), are discrete. Thus, there is a strictly positive
probability of multiple observations taking identical values within the set
(θ̃1, · · · , θ̃n). Suppose we have a random distribution G drawn from a DP
followed by repeated draws (θ̃1, . . . , θ̃n) from that random distribution, [16]
introduced a Pólya urn representation of the joint distribution of the random
variables (θ̃1, . . . , θ̃n), that is

p(θ̃1, . . . , θ̃n) = p(θ̃1)p(θ̃2|θ̃1)p(θ̃3|θ̃1, θ̃2) . . . p(θ̃n|θ̃1, θ̃2, . . . , θ̃n−1), (12)

which is obtained by marginalizing out the underlying random measure G:

p(θ̃1, . . . , θ̃n|α,G0) =

∫ ( n∏
i=1

p(θ̃i|G)

)
dp(G|α,G0) (13)
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and results in the following Pólya urn representation for the calculation of
the predictive terms of the joint distribution (12):

θ̃i|θ̃1, ...θ̃i−1 ∼
α0

α0 + i− 1
G0 +

i−1∑
j=1

1

α0 + i− 1
δθ̃j (14)

∼ α0

α0 + i− 1
G0 +

Ki−1∑
k=1

nk
α0 + i− 1

δθk (15)

where Ki−1 is the number of clusters after i − 1 samples, nk denotes the
number of times each of the parameters {θk}∞k=1 occurred in the set {θ̃i}ni=1.
The DP therefore places its probability mass on a countability infinite col-
lection of points, also called atoms, that is an infinite mixture of Dirac deltas
[27, 63, 65]:

G =
∞∑
k=1

πkδθk θk|G0 ∼ G0, k = 1, 2, ..., (16)

where πk represents the probability assigned to the kth atom, and the set sat-
isfy

∑∞
k=1 πk = 1, and θk is the location or value of that component (atom).

These atoms are drawn independently from the base measure G0. Hence, ac-
cording to the DP process, the generated parameters θ̃i exhibit a clustering
property, that is, they share repeated values with positive probability where
the unique values of θ̃i shared among the variables are independent draws for
the base distribution G0 [27, 63]. The Dirichlet process therefore provides a
very interesting approach for a clustering perspective, when we do not have
a fixed number of clusters, in other words having an infinite mixture, say K
tends to infinity. Consider a set of observations (x1, . . . ,xn) to be clustered.
Clustering with DP adds a third step to the DP (11), that is we assume that
the random variables xi, given the distribution parameters θ̃i which are gen-
erated from a DP, are generated from a conditional distribution f(.|θ̃i). This
is the DP mixture (DPM) model [3, 25, 63, 71]. The DPM adds therefore
a third step to the DP, that is the of generating random variables xi given
the distribution parameters θ̃i. The generative process of the DP Mixture
(DPM) is therefore as follows:

G|α,G0 ∼ DP(α,G0) (17)
θ̃i|G ∼ G (18)
xi|θ̃i ∼ f(xi|θ̃i) (19)
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where f(xi|θ̃i) is a cluster-specific density, for example a multivariate Gaus-
sian density in the case of DP multivariate Gaussian mixture, in which θ̃i is
composed of a mean vector and a covariance matrix. In that case, the base
measure G0 corresponds to the prior parameters distribution which may be
a multivariate normal Inverse-Wishart conjugate prior. When K tends to
infinity, it can be shown that the finite mixture model (1) - (6) converges to
a Dirichlet process mixture model [42, 53, 59]. The Dirichlet process has a
number of properties which make inference based on this nonparametric prior
computationally tractable. It also has a interpretation in term of the CRP
mixture [58, 63] which explicitly shows its suitability to clustering thanks to
the integration of the hidden component labels zi in the generative process.
Indeed, the second property of the DP, that is the fact that random param-
eters drawn from a DP share identical values and thus exhibit a clustering
property, connects the DP to the CRP. Consider a random distribution drawn
from a DP G ∼ DP (α,G0) followed by repeated draws from that random
distribution θ̃i ∼ G, ∀i ∈ 1, . . . , n. The structure of the shared values defines
a partition of the integers from 1 to n, and the distribution of this partition
is a CRP [27, 63]. This is defined in the following section.

3.2. Chinese Restaurant Process parsimonious mixtures
Consider the unknown cluster labels z = (z1, . . . , zn) where each value zi

is an indicator random variable that represents the label of the unique value
θzi of θ̃i such that θ̃i = θzi for all i ∈ {1, . . . , n}. The CRP provides a
distribution on the infinite partitions of the data, that is a distribution over
the positive integers 1, . . . , n. Consider the following joint distribution of the
unknown cluster assignments (z1, . . . , zn):

p(z1, . . . , zn) = p(z1)p(z2|z1) . . . p(zn|z1, z2, . . . , zn−1)· (20)

From the Pólya urn distribution (15), each predictive term of the joint dis-
tribution (20) can be computed as:

p(zi = k|z1, ..., zi−1;α0) =
α0

α0 + i− 1
δ(zi,Ki−1 + 1) +

Ki−1∑
k=1

nk
α0 + i− 1

δ(zi, k)·

(21)
where nk =

∑i−1
j=1 δ(zj, k) is the number of indicator random variables taking

the value k after i−1 observations, andKi−1+1 is the previously unseen value.
From this distribution, one can therefore allow assigning new data to possibly
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previously unseen (new) clusters as the data are observed, after starting
with one cluster. The distribution on partitions induced by the sequence of
conditional distributions in Eq. (21) is commonly referred to as the Chinese
Restaurant Process (CRP). It can be interpreted as follows. Suppose there
is a restaurant with an infinite number of tables and in which customers are
entering and sitting at these tables. We assume that customers are social,
so that the ith customer sits at table k with probability proportional to the
number of already seated customers nk (k ≤ Ki−1 being a previously occupied
table), and may choose a new table (k > Ki−1, k being a new table to be
occupied) with a probability proportional to a small positive real number α,
which represents the CRP concentration parameter.

In clustering with the CRP, customers correspond to data points and
tables correspond to clusters. In CRP mixture, the prior CRP(z1, . . . , zi−1;α)
(21) is completed with a likelihood with parameters θk for each table (cluster)
k (i.e., a multivariate Gaussian likelihood with mean vector and covariance
matrix in the GMM case), and a prior distribution (G0) for the parameters.
For example, in the GMM case, one can use a conjugate multivariate normal
Inverse-Wishart prior distribution for the mean vectors and the covariance
matrices. This process therefore corresponds to the fact that the ith customer
sits at table zi = k, chooses a dish (the parameter θzi) from the prior of
that table (cluster). The CRP mixture can be summarized according to the
following generative process.

zi ∼ CRP(z1, . . . , zi−1;α) (22)
θzi |G0 ∼ G0 (23)
xi|θzi ∼ f(.|θzi)· (24)

where the CRP distribution is given by Eq. (20), G0 is a base measure (the
prior distribution) and f(xi|θzi) is a cluster-specific density. In the DPM
and CRP mixtures with multivariate Gaussian components, the parameters
θ of each cluster density are composed of a mean vector and a covariance
matrix. In that case, a common base measure G0 is a multivariate normal
Inverse-Wishart conjugate prior.

We note that in the proposed DP parsimonious mixture, or by equiva-
lence, CRP parsimonious mixture, the cluster covariance matrices are parametrized
in terms of an eigenvalue decomposition to provide more flexible clusters with
possibly different volumes, shapes and orientations. In terms of a CRP inter-
pretation, this can be seen as a variability of dishes for each table (cluster).
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We indeed use the eigenvalue value decomposition described in section 2.3
which until now has been considered only in the case of parametric finite mix-
ture model-based clustering (eg. see [21] and [7]), and Bayesian parametric
finite mixture model-based clustering (eg. see [12], [13], [30], and [31]). We
investigate twelve parsimonious models and implemented and experimented
the following nine models, covering the three families of the mixture models:
the general, the diagonal and the spherical family. The parsimonious models
therefore go from the simplest spherical one to the more general full model.
Table 1 summarizes the considered parsimonious Gaussian mixture models,
the corresponding prior distribution for each model and the corresponding
number of free parameters for a mixture model with K components for data
of dimension d.

# Model Type Prior Applied to # free parameters
1 λI Spherical IG λ υ + 1
2 λkI Spherical IG λk υ + d
3 λA Diagonal IG diagonal elements of λA υ + d
4 λkA Diagonal IG diagonal elements of λkA υ + d+K − 1

5 λDADT General IW Σ = λDADT υ + ω
6 λkDADT General IG and IW λk and Σ = DADT υ + ω +K − 1
7 λDAkD

T * General IG diagonal elements of λAk υ + ω + (K − 1)(d− 1)
8 λkDAkD

T * General IG diagonal elements of λkAk υ + ω + (K − 1)d
9 λDkADT

k General IG diagonal elements of λA υ +Kω − (K − 1)d
10 λkDkADT

k General IG diagonal elements of λkA υ +Kω − (K − 1)(d− 1)
11 λDkAkD

T
k * General IG and IW λ and Σk = DkAkD

T
k υ +Kω − (K − 1)

12 λkDkAkD
T
k General IW Σk = λkDkAkD

T
k υ +Kω

Table 1: Considered Parsimonious models, the associated prior for the covariance
structure and the corresponding number of free parameters. I denotes an inverse
distribution, G a Gamma distribution and W a Wishart distribution.

We used conjugate priors, that is Dirichlet distribution for the mixing
proportions [54, 61], and a multivariate Normal for the mean vectors and
and an Inverse-Wishart or an Inverse-Gamma prior for the covariance matrix
depending on the parsimonious model as in [31] and [12].

3.3. Bayesian inference via Gibbs sampling
Given a sample of n i.i.d observations X = (x1, . . . ,xn) modeled by one

of the proposed Dirichlet process parsimonious mixture models (DPPMs),
the aim is to infer the number K of latent clusters underlying the observed
data, their parameters Θ = (θ1, . . . ,θK) and the latent cluster labels z =
(z1, . . . , zn). We developed an MCMC Gibbs sampling technique, as in [53],
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[59], and [71] for the Bayesian inference of the nonparametric parsimonious
mixture models.

The Gibbs sampler for mixtures performs in an iterative way as follows.
Given an initial mixture parameters θ(0), and the prior over the missing
labels z (here the CRP), the Gibbs sampler draws the missing labels z(t)

from their posterior distribution p(z|X,θ(t)) at each iteration t, which is
in this case a Multinomial distribution whose parameters are the posterior
component probabilities. Then, given the completed data and the prior dis-
tribution p(θ) over the mixture parameters, the Gibbs sampler generates
the mixture parameters θ(t+1) from the corresponding posterior distribution
p(θ|X, z(t+1)), which is in this conjugate prior case a multivariate Normal
Inverse-Wishart, or a Normal-Inverse-Gamma distribution, depending on the
parsimonious model. This Bayesian sampling procedure produces namely an
ergodic Markov chain of samples (θ(t)) with a stationary distribution p(θ|X).
Therefore, after initial M burn-in samples in N Gibbs samples, the variables
(θ(M+1), ...,θ(N)), can be considered to be approximately distributed accord-
ing to the posterior distribution p(θ|X). The Gibbs sampler consists in
sampling the couple (Θ, z) from their corresponding posterior distribution.
The posterior distribution for θk given all the other variables is given by

p(θk|z,X,Θ−k, α;H) ∝
∏
i|zi=k

f(xi|zi = k;θk)p(θk;H) (25)

where Θ−k = (θ1, . . . ,θk−1,θk+1, . . . ,θKi−1
) and p(θk;H) is the prior distri-

bution for θk, that is G0, with H being the hyperparameters of the model.
The cluster labels zi are similarly sampled from the posterior distribution
which is given, up to a constant, by:

p(zi = k|z−i,X,Θ, α) ∝ f(xi|zi; Θ)p(zi|z−i;α) (26)

where z−i = (z1, . . . , zi−1, zi+1, . . . , zn), and p(zi|z−i;α) is the prior predic-
tive distribution corresponds which to the CRP distribution computed as in
Equation (21). The prior distribution, and the resulting posterior distribu-
tion, for each of the considered models, are close to those in [12] and are
provided in detail in Appendix A.

3.3.1. Sampling the hyperparameter α of the DPPM
The number of mixture components in the models depends on the concen-

tration hyperparameter α of the Dirichlet Process [3]. We therefore choose
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to sample it to avoid fixing an arbitrary value for it. We follow the method
introduced by [26] which consists in sampling it by assuming a prior Gamma
distribution α ∼ G(a, b) with a shape hyperparameter a > 0 and scale hyper-
parameter b > 0. Then, a variable η is introduced and sampled conditionally
on α and the number of clusters Ki−1, according to a Beta distribution,
that is, η|α,Ki−1 ∼ B(α + 1, n). The resulting posterior distribution for the
hyperparameter α is given by:

p(α|η,K) ∼ ϑηG (a+Ki−1, b− log (η)) + (1− ϑη)G (a+Ki−1 − 1, b− log (η))

where the weights ϑη = a+Ki−1−1
a+Ki−1−1+n(b−log(η))

. The developed Gibbs sampler is
summarized by the pseudo-code (1). Finally, after a sufficiently large number
of samples, the retained solution is the one corresponding to the posterior
mode of the number of mixture components, that is the one that appears the
most frequently during the sampling.

3.3.2. Complexity of the algorithm
The complexity of the method is mainly related to the sampling of the

labels zi and hence to the sample size and the number of components, and
model parameters θi. More specifically, the complexity related to each Gibbs
sample is proportional to the current value of the number of mixture com-
ponents K and hence varies randomly from one iteration to another. Since
asymptotically K tends to α log(n) when n tends to infinity [3], therefore,
each sample requires O(αn log(n)) operations for sampling the class labels
zi. The parameter simulation (the mean vector and the covariance matrix)
requires in the worst case (when the covariance matrix is full, that is a non-
parsimonious model) approximatively O (α log(n) (d+ d3)). This gives us a
complexity in O (αn log(n)d3).

3.3.3. The label switching problem
The statistical inference of the model parameters meaningful if the model

is identifiable. It is well known that mixture models are not identifiable in
the strict sense, but a weak identifiability up to a permutation can be estab-
lished for them. As discussed for example in [49, Section 1.14], this problem
is not of concern in maximum likelihood fitting of mixtures via the EM al-
gorithm. However, identifiably in mixtures is of concern in the Bayesian
framework where in the posterior simulation the mixture component labels
can be interchanged from one sample to another. This problem is known as
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Algorithm 1 Gibbs sampling for the proposed DPPM
Inputs: Data set (x1, . . . ,xn) and # Gibbs samples
1: Initialize the model hyperparameters H.
2: Start with one cluster K1 = 1,θ1 = {µ1,Σ1}
3: for t = 2, . . . ,#samples do
4: for i = 1, . . . , n do
5: for k = 1, . . . ,Ki−1 do
6: if (nk =

∑N
i=1 zik)− 1 = 0 then

7: Decrease Ki−1 = Ki−1 − 1; let {θ(t)} ← {θ(t)} \ θzi
8: end if
9: end for
10: Sample a cluster label z(t)

i from the posterior:
p(zi|z\zi ,X,θ

(t), H) ∝ p(xi|zi,θ(t))CRP(z\zi ;α)

11: if z(t)
i = Ki−1 + 1 then

12: Increase Ki−1 = Ki−1 + 1 (We get a new cluster) and sample
a new cluster parameter θ(t)

zi from the conjugate prior distribution
NIW(µ0, κ0, ν0,Λ0).

13: end if
14: end for
15: for k = 1, . . . ,Ki−1 do
16: Sample the parameters θ(t)

k from the posterior distribution.
17: end for
18: Sample the hyperparameter α(t) ∼ p(α(t)|Ki−1) from the posterior (3.3.1)
19: z(t+1) ← z(t)

20: end for
Outputs: The parameters vector chain of the mixture Θ̂ =
{π(t),µ(t),Σ(t)}, ∀t = 1, . . . , ns.

the label-switching problem. Different strategies were proposed in the litera-
ture to deal with this problem. One simple way to deal with label switching
is to impose constraints on the model parameters to force an unique label-
ing in the MCMC sampling, and hence ensure identifiability. For example
one may use ordering constrains on the parameters as in [61] for the case of
univariate Gaussian mixtures, e.g., constraints on the means, the variances,
or the mixing proportions. This was also discussed in [46]. However, [20, 22]
showed that this strategy of forcing constrains on the model parameters is
not efficient and, if it works, it does not scale to higher dimensions. Another
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approach is to post-process the posterior parameter samples by searching
for the labels permutation that minimizes some loss function as in [70]. As
discussed in [20] and [22], while this procedure works well, it can be nu-
merically demanding as it is an offline algorithm needing storing significant
amount of data samples, and it is also restricted to the limited framework
of Bayesian analysis of latent structure models with conjugate prior distri-
butions. [20, 22] proposed a better solution in the same spirit of the one
of Stephens which consists of a sequential k-means like algorithm to cluster
the posterior samples and which has several advantages. It is quite simple,
not specific to Bayesian analysis with conjugate prior distributions or to the
mixture context, and it is not numerically demanding. So what is suggested
here is to relabel the obtained posterior parameter samples when the label
switching happens by the K-means-like algorithm of [20, 22].

3.4. Bayesian model comparison via Bayes factors
This section provides the used strategy for model comparison, that is,

the selection of the best model from the different parsimonious models. We
use Bayes factors [9, 44] which provide a general way to compare models
in (Bayesian) statistical modeling, and has been widely studied in the case
of mixture models [9, 12, 19, 35, 44]. Suppose that we have two model
candidates M1 and M2, if we assume that the two models have the same
prior probability p(M1) = p(M2), the Bayes factor is given by

BF12 =
p(X|M1)

p(X|M2)
(27)

which corresponds to the ratio between the marginal likelihood values of the
two models M1 and M2. It is a summary of the evidence for model M1

against model M2 given the data X. The marginal likelihood p(X|Mm) for
model Mm, m ∈ {1, 2}, also called the integrated likelihood, is given by

p(X|Mm) =

∫
p(X|θm,Mm)p(θm|Mm)dθm (28)

where p(X|θm,Mm) is the likelihood of model Mm with parameters θm and
p(θm|Mm) is the prior density of the mixture parameters θm for model Mm.
As it is difficult to compute analytically the marginal likelihood (28), several
approximations have been proposed to approximate it. One of the most used
approximations is the Laplace-Metropolis approximation [45] given by

p̂Laplace(X|Mm) = (2π)
νm
2 |Ĥ|

1
2p(X|θ̂m,Mm)p(θ̂m|Mm) (29)
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where θ̂m is the posterior estimation of θm (posterior mode) for model Mm,
νm is the number of free parameters of the mixture modelMm as given in Ta-
ble 1, and Ĥ is minus the inverse Hessian of the function log(p(X|θ̂m,Mm)p(θ̂m|Mm))
evaluated at the posterior mode of θm, that is θ̂m. The matrix Ĥ is asymp-
totically equal to the posterior covariance matrix [45], and is computed as the
sample covariance matrix of the posterior simulated sample. We note that,
in the proposed DPPM models, as the number of components K is itself a
parameter in the model and is changing during the sampling, which leads to
parameters with different dimension, we compute the Hessian matrix Ĥ in
Eq. (29) by taking the posterior samples corresponding to the posterior mode
of K. Once the estimation of Bayes factors is obtained, it can be interpreted
as described in Table 2 as suggested by [43], see also [44].

BF12 2 logBF12 Evidence for model M1

< 1 < 0 Negative (M2 is selected)
1− 3 0− 2 Not bad
3− 12 2− 5 Substantial

12− 150 5− 10 Strong
> 150 > 10 Decisive

Table 2: Model comparison using Bayes factors.

4. Experiments

We perform experiments on both simulated and real data in order to
evaluate our proposed DPPM models. We assess their flexibility in terms of
modeling, their use for clustering and inferring the number of clusters from
the data. We show how the proposed DPPM approach is able to automati-
cally and simultaneously select the best model with the optimal number of
clusters by using the Bayes factors, which is used to evaluate the results. We
also perform comparisons with the finite model-based clustering approach
(as in [12, 31]), which will be abbreviated as PGMM approach. We also
use the Rand index to evaluate and compare the provided partitions, and
the misclassification error rate when the number of estimated components
equals the actual one.

For the simulations, we consider several situations of simulated data,
from different models, and with different levels of cluster separations, in
order to assess the efficiency of the proposed approach to retrieved the actual
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partition with the actual number of clusters. We also assess the stability of
our proposed DPPMs models regarding the choice of the hyperparameters
values, by considering several situations and varying them. Then, we perform
experiments on several real data sets and provide numerical results in terms
of comparisons of the Bayes factors (via the log marginal likelihood values)
and as well the Rand index and the misclassification error rate for data sets
with known actual partition. In the experiments, for each of the compared
approaches and for each model, each Gibbs is run ten times with different
initializations. Each Gibbs run generates 2000 samples for which 100 burn-
in samples are removed. The solution corresponding to the highest Bayes
factor, of those ten runs, is then selected.

4.1. Experiments on simulated data
4.1.1. Varying the clusters shapes, orientations, volumes and separation

In this experiment, we apply the proposed models on simulated data
generated according to different models, and with different level of mixture
separation, going from poorly separated mixtures to very-well separated mix-
tures. To simulate the data, we first consider an experimental protocol close
to the one used by [21] where the authors considered the parsimonious mix-
ture estimation within a MLE framework. This therefore allows to see how
do the proposed Bayesian non-parametric DPPM perform compared to the
standard parametric non-Bayesian one. We note however that in [21] the
number of components was known a priori and the problem of estimating
the number of classes was not considered. We have performed extensive ex-
periments involving all the models and many Monte Carlo simulations for
several data structure situations. Given the variety of models, data struc-
tures, level of separation, etc, it is not possible to display all the results in the
paper. We choose to perform in the same way as in the standard paper [21]
by selecting the results display, for the experiments on simulated data, for six
models of different structures. The data are generated from a two component
Gaussian mixture in R2 with 200 observations. The six different structures of
the mixture that have been considered to generate the data are: two spherical
models: λI and λkI, two diagonal models: λA and λkA and two general mod-
els λDADT and λkDADT . Table (3) shows the considered model structures
and the respective model parameter values used to generate the data sets.
Let us recall that the variation in the volume is related λ, the variation of the
shape is related to A and the variation of the orientation is related to D. Fur-
thermore, for each type of model structure, we consider three different levels
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Model Parameters values
λI λ = 1
λkI λk = {1, 5}
λA λ = 1; A = diag(3, 1/3)
λkA λk = {1, 5}; A = diag(3, 1/3)

λDADT λ = 1; D =
[√

2
2 −

√
2
2 ;
√
2
2

√
2
2

]
λkDADT λk = {1, 5}; D =

[√
2
2 −

√
2
2 ;
√
2
2

√
2
2

]
Table 3: Considered two-component Gaussian mixture with different structures.

of mixture separation, that is: poorly separated, well separated, and very-
well separated mixture. This is achieved by varying the following distance
between the two mixture components %2 = (µ1 − µ2)T (Σ1+Σ2

2
)−1(µ1 − µ2).

We consider the values % = {1, 3, 4.5}. As a result, we obtain 18 different
data structures with poorly (% = 1), well (% = 3) and very well (% = 4.5)
separated mixture components. As it is difficult to show the figures for all
the situations and those of the corresponding results, in Figure 1, we show
for three models with equal volume across the mixture components, different
data sets with varying level of mixture separation. Respectively, in Figure 2,
we show for the models with varying volume across the mixture components,
different data sets with varying level of mixture separation.
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Figure 1: Examples of simulated data with the same volume across the mixture com-
ponents: spherical model λI with poor separation (left), diagonal model λA with good
separation (middle), and general model λDADT with very good separation (right).

We compare the proposed DPPM to the parametric PGMM approach in
model-based clustering [10–12], for which the number of mixture components
vary in the range K = 1, . . . , 5 and the optimal number of mixture compo-
nents was selected by using the Bayes factor (via the log marginal likelihood
values). For these data sets, the used hyperparameters are the following:
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Figure 2: Examples of simulated data with the volume changing across the mixture com-
ponents: spherical model λkI with poor separation (left), diagonal model λkA with good
separation (middle), and general model λkDADT with very good separation (right).

µ0 was equal to the mean of the data, the shrinkage κn = 5, the degree of
freedom ν0 = d+2, the scale matrix Λ0 was equal to the empirical covariance
matrix of the data, and the hyperparameter for the spherical models s2

0 as
the greatest eigenvalue of Λ0.

4.1.2. Obtained results
Tables 4, 5 and 6 provide the obtained approximated log marginal likeli-

hood values obtained by the PGMM and the proposed DPPM models, for,
respectively, the equal (with equal clusters volumes) spherical data structure
model (λI) and poorly separated mixture (% = 1), the equal diagonal data
structure model (λA) and good mixture separation (% = 3), and the equal
general data structure model (λDADT ) and very good mixture separation
(% = 4.5). Tables 7, 8 and 9 provide the obtained approximated log marginal
likelihood values obtained by the PGMM and the proposed DPPM models,
for, respectively, the different (with different clusters volumes) spherical data
structure model (λkI) and poorly separated mixture (% = 1), the different
diagonal data structure model (λkA) with good mixture separation (% = 3),
and the different general data structure model (λkDADT ) with very good
mixture separation (% = 4.5).

From these results, we can see that, the proposed DPPM, in all the situ-
ations (except for the first situation in Table 4) retrieves the actual model,
with the actual number of clusters. We can also see that, except for two sit-
uations, the selected DPPM model, has the highest log marginal likelihood
value, compared to the PGMM. We also observe that the solutions provided
by the proposed DPPM are, in some cases more parsimonious than those
provided by the PGMM, and, in the other cases, the same as those provided
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DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -604.54 -633.88 -631.59 -635.07 -587.41 -595.63
λkI 2 -589.59 -592.80 -589.88 -592.87 -593.26 -602.98
λA 2 -589.74 -591.67 -590.10 -593.04 -598.67 -599.75
λkA 2 -591.65 -594.37 -592.46 -595.88 -607.01 -611.36

λDADT 2 -590.65 -592.20 -589.65 -596.29 -598.63 -607.74
λkDADT 2 -591.77 -594.33 -594.89 -597.96 -594.49 -601.84

Table 4: Log marginal likelihood values obtained by the proposed DPPM and PGMM for
the generated data with λI model structure and poorly separated mixture (% = 1).

DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -730.31 -771.39 -702.38 -703.90 -708.71 -840.49
λkI 2 -702.89 -730.26 -702.30 -704.68 -708.43 -713.58
λA 2 -679.76 -704.40 -680.03 -683.13 -686.19 -691.93
λkA 2 -685.33 -707.26 -688.69 -696.46 -703.68 -712.93

λDADT 2 -681.84 -693.44 -682.63 -688.39 -694.25 -717.26
λkDADT 2 -693.70 -695.81 -684.63 -688.17 -694.02 -695.75

Table 5: Log marginal likelihood values obtained by the proposed DPPM and the PGMM
for the generated data with λA model structure and well separated mixture (% = 3).

DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -762.16 -850.66 -747.29 -746.09 -744.63 -824.06
λkI 2 -748.97 -809.46 -748.17 -751.08 -756.59 -766.26
λA 2 -746.05 -778.42 -746.32 -749.59 -753.64 -758.92
λkA 2 -751.17 -781.31 -752.66 -761.02 -772.44 -780.34

λDADT 2 -701.94 -746.11 -698.54 -702.79 -707.83 -716.43
λkDADT 2 -702.79 -748.36 -703.35 -708.77 -715.10 -722.25

Table 6: Log marginal likelihood values obtained by the proposed DPPM and PGMM
for the generated data with λDADT model structure and very well separated mixture
(% = 4.5).

DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 3 -843.50 -869.52 -825.68 -890.26 -906.44 -1316.40
λkI 2 -805.24 -828.39 -805.21 -808.43 -811.43 -822.99
λA 2 -820.33 -823.55 -821.22 -825.58 -828.86 -838.82
λkA 2 -808.32 -826.34 -808.46 -816.65 -824.20 -836.85

λDADT 2 -824.00 -823.72 -821.92 -830.44 -841.22 -852.78
λkDADT 2 -821.29 -826.05 -803.96 -813.61 -819.66 -821.75

Table 7: Log marginal likelihood values and estimated number of clusters for the generated
data with λkI model structure and poorly separated mixture (% = 1).
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DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 3 -927.01 -986.12 -938.65 -956.05 -1141.00 -1064.90
λkI 3 -912.27 -944.87 -925.75 -911.31 -914.33 -918.99
λA 3 -899.00 -918.47 -906.59 -911.13 -917.18 -926.69
λkA 2 -883.05 -921.44 -883.22 -897.99 -909.26 -928.90

λDADT 2 -903.43 -918.19 -902.23 -906.40 -914.35 -924.12
λkDADT 2 -894.05 -920.65 -876.62 -886.86 -904.45 -919.45

Table 8: Log marginal likelihood values obtained by the proposed DPPM and PGMM for
the generated data with λkA model structure and well separated mixture (% = 3).

DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5

λI 2 -984.33 -1077.20 -1021.60 -1012.30 -1021.00 -987.06
λkI 3 -963.45 -1035.80 -972.45 -961.91 -967.64 -970.93
λA 2 -980.07 -1012.80 -980.92 -986.39 -992.05 -999.14
λkA 2 -988.75 -1015.90 -991.21 -1007.00 -1023.70 -1041.40

λDADT 3 -931.42 -984.93 -939.63 -944.89 -952.35 -963.04
λkDADT 2 -921.90 -987.39 -921.99 -930.61 -946.18 -956.35

Table 9: Log marginal likelihood values obtained by the proposed DPPM and PGMM
for the generated data with λkDADT model structure and very well separated mixture
(% = 4.5).

by the PGMM. For example, in Table 4, which corresponds to data from
poorly separated mixture, we can see that the proposed DPPM selects the
spherical model λkI, which is more parsimonious than the general model λA
selected by the PGMM, with a better misclassification error (see Table 10).
The same thing can be observed in Table 8 where the proposed DPPM se-
lects the actual diagonal model λkA, however the PGMM selects the general
model λkDADT , while the clusters are well separated (% = 3).

Also, in terms of misclassification error, as shown in Table 10, the pro-
posed DPPM models, compared to the PGMM ones, provide partitions with
the lower miscclassification error, for situations with poorly, well or very-well
separated clusters, and for clusters with equal and different volumes (except
for one situation).

PGMM 48± 8.05 9.5± 3.68 1± 0.80
DPPM 40± 4.66 7± 3.02 3± 0.97

Table 10: Misclassification error rates obtained by the proposed DPPM and the PGMM
approach. From left to right, the situations respectively shown in Table 4, 5, 6
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PGMM 23.5± 2.89 10.5± 2.44 2± 1.69
DPPM 20.5± 3.34 7± 3.73 1.5± 0.79

Table 11: Misclassification error rates obtained by the proposed DPPM and the PGMM
approach. From left to right, the situations respectively shown in Table 7, 8, 9

On the other hand, for the DPMM models, from the log marginal like-
lihood values shown in Tables 4 to 9, we can see that the evidence of the
selected model, compared to the majority of the other alternative is, accord-
ing to Table 2, in general decisive. Indeed, it can be easily seen that the
value 2 logBF12 of the Bayes Factor between the selected model, and the
other models, is more than 10, which corresponds to a decisive evidence for
the selected model. Also, if we consider the evidence of the selected model,
against the more competitive one, one can see from Table 12 and Table 13,
that, for the situation with very bad mixture separation, with clusters hav-
ing the same volume, the evidence is not bad (0.3). However, for all the
other situations, the optimal model is selected with an evidence going from
an almost substantial evidence (a value of 1.7), to a strong and decisive evi-
dence, especially for the models with different clusters volumes. We can also
conclude that the models with different clusters volumes may work better in
practice as highlighted by [21]. Finally, Figure (3) shows the best estimated

M1 vs M2 λkI vs λA λA vs λDADT λDADT vs λkDADT

2 logBF 0.30 4.16 1.70

Table 12: Bayes factor values obtained by the proposed DPPM by comparing the selected
model (denotedM1) and the one more competitive for it (denotedM2). From left to right,
the situations respectively shown in Table 4, Table 5 and Table 6

M1 vs M2 λkI vs λkA λkA vs λkDADT λkDADT vs λDADT

2 logBF 6.16 22 19.04

Table 13: Bayes factor values obtained by the proposed DPPM by comparing the selected
model (denotedM1) and the one more competitive for it (denotedM2). From left to right,
the situations respectively shown in Table 7, Table 8 and Table (6) 9

partitions for the data structures with equal volume across the mixture com-
ponents shown in Fig. 1 and the posterior distribution over the number of
clusters. One can see that for the case of clusters with equal volume, the
diagonal family (λA) with well separated mixture (% = 3) and the general
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Figure 3: Partitions obtained by the DPPM for the data sets in Fig. 1.

family (λDADT ) with very well separated mixture (% = 4.5) data structure
estimates a good number of clusters with the actual model. However, the
equal spherical data model structure (λI) estimates the λkI model, which is
also a spherical model. Figure (4) shows the best estimated partitions for the
data structures with different volume across the mixture components shown
in Fig. 2 and the posterior distribution over the number of clusters. One
can see that for all of different data structure models: different spherical λkI,
different diagonal λkA and different general λkDADT , the proposed DPPM
approach succeeded to estimate a good number of clusters equal to 2 with
an actual cluster structure.

4.1.3. Stability with respect to the hyperparameters values
In order to illustrate the effect of the choice of the hyperparameters values

of the mixture on the estimations, we considered two-class situations identical
to those used in the parametric parsimonious mixture approach proposed in
[12]. The data set consists in a sample of n = 200 observations from a
two-component Gaussian mixture in R2 with the following parameters: π1 =
π2 = 0.5, µ1 = (8, 8)T and µ2 = (2, 2)T , and two spherical covariances with
different volumes Σ1 = 4 I2 and Σ2 = I2. In Figure (5) we can see a simulated
data set from this experiment with the corresponding actual partition and
density ellipses. In order to assess the stability of the models with respect to
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Figure 4: Partitions obtained by the DPPM for the data sets in Fig. 2.
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Figure 5: A two-class data set simulated according to λkI, and the actual partition.

the choice of the hyperparameters, we consider four situations with different
hyperparameter values. In these situations, the hyperparameters ν0 and µ0

are assumed to be the same for the four situations and their values are
respectively ν0 = d + 2 = 4 (related to the number of degrees of freedom)
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and µ0 is equal to the empirical mean vecotr of the data. We varied the
two hyperparameters, κ0 that controls the prior over the mean and s2

0 that
controls the covariance. The considered four situations are shown in Table
14. We consider and compare four models corresponding to the spherical,

Sit. 1 2 3 4

s20 max(eig(cov(X))) max(eig(cov(X))) 4 max(eig(cov(X))) max(eig(cov(X)))/4
κ0 1 5 5 5

Table 14: Four different situations the hyperparameters values.

diagonal and general family, which are λI, λkI, λkA and λkDADT . Table
15 shows the obtained log marginal likelihood values for the four models
for each of the situations of the hyperparameters. One can see that, for all
the situations, the selected model is λkI, that is the one that corresponds
to the actual model, and has the correct number of clusters (two clusters).
Also, it can be seen from Table 16, that the Bayes factor values (2 logBF),

Model λI λkI λA λkDADT

Sit. K̂ log ML K̂ log ML K̂ log ML K̂ log ML
1 2 -919.3150 2 -865.9205 3 -898.7853 3 -885.9710
2 3 -898.6422 2 -860.1917 2 -890.6766 2 -885.5094
3 2 -927.8240 2 -884.6627 2 -906.7430 2 -901.0774
4 2 -919.4910 2 -861.0925 2 -894.9835 2 -889.9267

Table 15: Log marginal likelihood values for the proposed DPPM for 4 situations of
hyperparameters values.

between the selected model, and the more competitive one, for each of the
four situations, according to Table 2, corresponds to a decisive evidence of
the selected model. These results confirm the stability of the DPPM with

Sit. 1 2 3 4
2 logBF 40.10 50.63 32.82 57.66

Table 16: Bayes factor values for the proposed DPPM computed from Table 15 by com-
paring the selected model (M1, here in all cases λkI), and the one more competitive for it
(M2, here in all cases λkDAD).

respect to the variation of the hyparameters values. Figure 6 shows the best
estimated partitions obtained by the proposed DPPM for the generated data.
Note that, for the all the four situations, the estimated number of clusters is
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2, which corresponds to the mode of the posterior distribution of the number
of clusters, with a probability very close to one.
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Figure 6: Best estimated partitions obtained by the proposed λkI DPPM for the four
situations of of hyperparameters values.

4.2. Experiments on real data
To confirm the results previously obtained on simulated data, we have

conducted several experiments freely available real data sets: Iris, Old Faith-
ful Geyser, Crabs and Diabetes whose characteristics are summarized in Ta-
ble 17. We compare the proposed DPPM models to the PGMM models.

Dataset # data (n) # dimensions (d) True # clusters (K)
Old Faithful Geyser 272 2 Unknown
Crabs 200 5 2
Diabetes 145 3 3
Iris 150 4 3

Table 17: Description of the used real data sets.

4.2.1. Old Faithful Geyser data set
The Old Faithful geyser data set [5] comprises n = 272 measurements

of the eruption of the Old Faithful geyser at Yellowstone National Park in
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the USA. Each measurement is bi-dimensional (d = 2) and comprises the
duration of the eruption and the time to the next eruption, both in minutes.
While the number of clusters for this data set is unknown, several clustering
studies in the literature estimate at two, often interpreted as short and long
eruptions.

We applied the proposed DPPM approach and the PGMM alternative to
this data set (after standardization). For the PGMM, the value of K varied
from 1 to 6. Table 18 reports the log marginal likelihood values obtained by
the PGMM and the proposed DPPM for the Faithful Geyser data set. One

DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

λI 2 -458.19 -834.75 -455.15 -457.56 -461.42 -429.66 -1665.00
λkI 2 -451.11 -779.79 -449.32 -454.22 -460.30 -468.66 -475.63
λA 3 -424.23 -781.86 -445.23 -445.61 -445.63 -448.93 -453.44
λkA 2 -446.22 -784.75 -461.23 -465.94 -473.55 -481.20 -489.71

λDADT 2 -418.99 -554.33 -428.36 -429.78 -433.36 -436.52 -440.86
λkDADT 2 -434.50 -556.83 -420.88 -421.96 -422.65 -430.09 -434.36
λDkADT

k 2 -428.96 -780.80 -443.51 -442.66 -446.21 -449.40 -456.14
λkDkADT

k 2 -421.49 -553.87 -434.37 -433.77 -439.60 -442.56 -447.88

Table 18: Log marginal likelihood values for the Old Faithful Geyser data set.

can see that the parsimonious DPPM models estimate 2 clusters except one
model, which is the diagonal model with equal volume λA that estimates
three clusters. For a number of clusters varying from 1 to 6, the parsimo-
nious PGMM models estimate two clusters at three exceptions, including the
spherical model λI which overestimates the number of clusters (provides 5
clusters). However, the solution provided by the proposed DPPM for the
spherical model λI is more stable and estimates two clusters. It can also be
seen that the best model with the highest value of the log marginal likelihood
is the one provided by the proposed DPPM and corresponds to the general
model λDADT with equal volume and the same shape and orientation. On
the other hand, it can also be noticed that, in terms of Bayes factors, the
model λDADT selected by the proposed DPPM has a decisive evidence com-
pared to the other models, and a strong evidence (the value of 2 logBF equals
5), compared to the most competitive one, which is in this case the model
λkDkADT

k .
Figure 7 shows the the optimal partition and the posterior distribution

for the number of clusters. One can namely observe that the likely partition
is provided with a number of cluster with high posterior probability (more
than 0.9).
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Figure 7: Old Faithful Geyser data set (left), the optimal partition obtained by the DPPM
model λDADT (middle) and the empirical posterior distribution for the number of mixture
components (right).

Table 19 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.

Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 953.86 785.36 999.91 964.86 901.44 717.28 1020 810.23

Table 19: The DPPM Gibbs sampler mean CPU time (in seconds) for each parsimonious
model on Old Faithful Geyser data set.

4.2.2. Crabs data set
The Crabs data set comprises n = 200 observations describing d = 6 mor-

phological measurements (Species, Frontal lip, Rearwidth, Length, Width
Depth) on 50 crabs each of two colour forms and both sexes, of the species
Leptograpsus variegatus collected at Fremantle, W. Australia [18]. The
Crabs are classified according to their sex (K = 2). We applied the pro-
posed DPPM approach and the PGMM alternative to this data set (after
PCA and standardization). For the PGMM the value of K varied from 1 to
6. Table 20 reports the log marginal likelihood values obtained by the PGMM
the proposed DPPM approaches for the Crabs data set. One can first see
that the best solution corresponding to the best model with the highest value
of the log marginal likelihood is the one provided by the proposed DPPM
and corresponds to the general model λkDkADT

k with different volume and
orientation but equal shape. This model provides a partition with a number
of clusters equal to the actual one K = 2. One can also see that the best
solution for the PGMM approach is the one provided by the same model
with a correctly estimated number of clusters. On the other hand, one can

30



DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

λI 3 -550.75 -611.30 -615.73 -556.05 -860.95 -659.93 -778.21
λkI 3 -555.91 -570.13 -549.06 -538.04 -542.31 -577.22 -532.40
λA 4 -537.81 -572.06 -539.17 -532.65 -535.20 -534.43 -531.19
λkA 3 -543.97 -574.82 -541.27 -569.79 -590.48 -693.42 -678.95

λDADT 4 -526.87 -554.64 -540.87 -512.78 -525.19 -541.93 -576.27
λkDADT 3 -517.58 -556.73 -541.88 -515.93 -530.02 -550.71 -595.38
λDkADT

k 4 -549.78 -573.80 -564.28 -541.67 -547.45 -547.13 -526.79
λkDkADT

k 2 -499.54 -557.69 -500.24 -700.44 -929.24 -1180.10 -1436.60

Table 20: Log marginal likelihood values for the Crabs data set.

also see that for this Crabs data set, the proposed DPPM models estimate
the number of clusters between 2 and 4. This may be related to the fact
that, for the Crabs data set, the data, in addition their sex, are also de-
scribed in terms of their specie and the data contains two species. This may
therefore result in four subgroupings of the data in four clusters, each couple
of them corresponding to two species, and the solution of four clusters may
be plausible for this data set. However three PGMM models overestimate
the number of clusters and provide solutions with 6 clusters. We can also
observe that, in terms of Bayes factors, the model λkDkADT

k selected by the
proposed DPPM for this data set, has a decisive evidence compared to all the
other potential models. For example the value of 2 logBF for this selected
model, against to the most competitive one, which is in this case the model
λkDADT equals 36.08 and corresponds to a decisive evidence of the selected
model.

The good performance of the DPPM compared the PGMM is also con-
firmed in terms of Rand index and misclassification error rate values. The
optimal partition obtained by the proposed DPPM with the parsimonious
model λkDkADT

k is the best defined one and corresponds to the highest
Rand index value of 0.8111 and the lowest error rate of 10.5±1.98. However,
the partition obtained by the PGMM has a Rand index of 0.8032 with an
error rate of 11± 2.07.

Figure 8 shows the optimal partition and the posterior distribution for
the number of clusters for the Crabs data. One can observe that the provided
partition is quite precise and is provided with a number of clusters equal to
the actual one, and with a posterior probability very close to 1.

Table 21 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.
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Figure 8: Crabs data set in the two first principal axes and the actual partition (left), the
optimal partition obtained by the DPPM model λkDkADT

k (middle) and the empirical
posterior distribution for the number of mixture components (right).

Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 263.39 318.06 423.51 412.29 399.91 399.50 445.67 442.29

Table 21: The DPPM Gibbs sampler mean CPU time (in seconds) for each parsimonious
model on Crabs dataset.

4.2.3. Diabetes data set
The Diabetes data set was described and analysed in [60] consists of n =

145 subjects, describing d = 3 features: the area under a plasma glucose curve
(glucose area), the area under a plasma insulin curve (insulin area) and the
steady-state plasma glucose response (SSPG). This data has K = 3 groups:
the chemical diabetes, the overt diabetes and the normal (nondiabetic). We
applied the proposed DPPM models and the alternative PGMM ones on this
data set (the data was standardized). For the PGMM, the number of clusters
varied from 1 to 8.

Table 22 reports the log marginal likelihood values obtained by the two
approaches for the Crabs data set. One can see that both the proposed
DPPM and the PGMM estimate correctly the true number of clusters. How-
ever, the best model with the highest log marginal likelihood value is the one
obtained by the proposed DPPM approach and corresponds to the parsimo-
nious model λkDkADT

k with the actual number of clusters (K = 3). Also,
the evidence of the model λkDkADT

k selected by the proposed DPPM for
the Diabetes data set, compared to all the other models, is decisive. Indeed,
in terms of Bayes factor comparison, the value of 2 logBF for this selected
model, against to the most competitive one, which is in this case the model
λDkADT

k is 111.86 and corresponds to a decisive evidence of the selected
model. In terms of Rand index, the best defined partition is the one obtained
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DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

λI 4 -573.73 -735.80 -675.00 -487.65 -601.38 -453.77 -468.55 -421.33 -533.97
λkI 7 -357.18 -632.18 -432.02 -412.91 -417.91 -398.02 -363.12 -348.67 -378.48
λA 8 -536.82 -635.70 -492.61 -488.55 -418.51 -391.05 -377.37 -370.47 -365.56
λkA 6 -362.03 -638.69 -416.27 -372.71 -358.45 -381.68 -366.15 -385.73 -495.63

λDADT 7 -392.67 -430.63 -418.96 -412.70 -375.37 -390.06 -405.11 -426.92 -427.46
λkDADT 5 -350.29 -432.85 -326.49 -343.69 -325.46 -355.90 -346.91 -330.11 -331.36
λDkADT

k 5 -338.41 -644.06 -427.66 -454.47 -383.53 -376.03 -356.09 -355.03 -349.84
λkDkADT

k 3 -238.62 -433.61 -263.49 -248.85 -273.31 -317.81 -440.67 -453.70 -526.52

Table 22: Obtained marginal likelihood values for the Diabetes data set.

by the proposed DPPM approach with the parsimonious model λkDkADT
k ,

which has the highest Rand index value of 0.8081 which indicates that the
partition is well defined, with a misclassification error rate of 17.24 ± 2.47.
However, the best PGMM partition λkDkADT

k has a Rand index of 0.7615
with 22.06± 2.51 error rate.

Figure (9) shows the optimal partition provided by the DPPM model
λkDkADT

k and the distribution of the number of clusters K. We can observe
that the partition is quite well defined (the misclassification rate in this case
is 17.24± 2.47) and the posterior mode of the number of clusters equals the
actual number of clusters (K = 3).
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Figure 9: Diabetes data set in the space of the components 1 (glucose area) and 3
(SSPG) and the actual partition (left), the optimal partition obtained by the DPPM
model λkDkADT

k (middle) and the empirical posterior distribution for the number of
mixture components (right).

Table 23 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.
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Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 1471.7 1335 1664 1386.8 1348.6 715.01 1635 1454.4

Table 23: The DPPM Gibbs sampler mean CPU time (in seconds) for each parsimonious
model on Diabetes data set.

4.2.4. Iris data set
The well-known Iris data set of [28] contains measurements for n = 150

samples of Iris flowers covering three Iris species (setosa, virginica and versi-
color) (K = 3) with 50 samples for each specie. Four features were measured
for each sample (d = 4): the length and the width of the sepals and petals, in
centimetres. We applied PGMM models and the proposed DPPM models on
this data set. For the PGMM models, the number of clusters K was tested
in the range [1; 8].

Table 24 reports the obtained log marginal likelihood values. We can see
that the best solution is the one of the proposed DPPM and corresponds to
the model λkDkADT

k , which has the highest log marginal likelihood value.
One can also see that the other models provide partitions with two, three or
four clusters and thus do not overestimate the number of clusters. However,
the solution selected by the PGMM approach corresponds to a partition with
four clusters, and some of the PGMM models overestimate the number of
clusters.

DPPM PGMM
Model K̂ log ML K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

λI 4 -415.68 -1124.9 -770.8 -455.6 -477.67 -431.22 -439.35 -423.49 -457.59
λkI 3 -471.99 -913.47 -552.2 -468.21 -488.01 -507.8 -528.8 -549.62 -573.14
λA 3 -404.87 -761.44 -585.53 -561.65 -553.41 -546.97 -539.91 -535.37 -530.96
λkA 3 -432.62 -765.19 -623.89 -643.07 -666.76 -688.16 -709.1 -736.19 -762.75

λDADT 4 -307.31 -398.85 -340.89 -307.77 -286.96 -291.7 -296.56 -300.37 -299.69
λkDADT 2 -383.72 -401.61 -330.55 -297.50 -279.15 -282.83 -296.24 -304.37 -306.81
λDkADT

k 4 -576.15 -1068.2 -761.71 -589.91 -529.52 -489.9 -465.37 -444.84 -457.86
λkDkADT

k 2 -278.78 -394.68 -282.86 -451.77 -676.18 -829.07 -992.04 -1227.2 -1372.8

Table 24: Log marginal likelihood values for the Iris data set.

We also note that, the best partition found by the proposed DPPM, while
it contains two clusters, is quite well defined, and has a Rand index of 0.7763.

Table 25 shows the mean computer running time, measured in seconds,
for the Gibbs inference of each DPPM models.

The evidence of the selected DPPM models, compared to the other ones,
for the four real data sets, is significant. This can be easily seen in the tables
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Figure 10: Iris data set in the space of the components 3 (petal length) and 4 (petal width)
(left), the optimal partition obtained by the DPPM model λkDkADT

k (middle) and the
empirical posterior distribution for the number of mixture components (right).

Model λI λkI λA λkA λDADT λkDADT λDkADT
k λkDkADT

k

CPU time (s) 144.04 261.34 342.48 352.81 293.91 382.0401 342.85 196.66

Table 25: The DPPM Gibbs sampler mean CPU time (in seconds) for each parsimonious
model on Iris data set.

showing the log marginal likelihood values. Consider the comparison between
the selected model, and the more competitive for it, for the four real data.
As it can be seen in Table 26, which reports the values of 2 logBF of the best
model against the second best one, that the evidence of the selected model,
according to Table 2 is strong for Old Faithful geyser data, and very decisive
for Crabs, Diabetes and Iris data. Also, the model selection by the proposed
DPPM for these latter three data sets, is made with a greater evidence,
compared to the PGMM approach.

Data set Old Faithful Geyser Crabs Diabetes Iris

DPPM λDADT vs λkDkADT
k λkDkADT

k vs λkDADT λkDkADT
k vs λDkADT

k λkDkADT
k vs λDADT

2 log BF 5 36.08 199.58 57.06

PGMM λkDADT vs λDADT λkDkADT
k vs λDADT λkDkADT

k vs λkDADT λkDADT vs λkDkADT
k

2 log BF 14.96 25.08 153.22 7.42

Table 26: Bayes factor values for the selected model against the more competitive for it,
obtained by the PGMM and the proposed DPPM for the real data sets.

4.3. Scaled application on real-world bioacoustic data
In this section, we will apply the DPPM models on a further real dataset

in the framework of a challenging problem of humpback whale song decom-
position. The objective is the unsupervised decomposition of these bioa-
coustic data. Humpback whale songs are long cyclical sequences produced
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by males during the reproduction season which follows their migration from
high-latitude to low-latitude waters. Singers of one geographical population
share parts of the same song. This leads to the idea of dialect [40]. Different
hypotheses of these songs were emitted [6, 32, 34, 50, 51], even as used as
sonar [4, 33].

Data description
The data consist in whale song signals in the framework of unsupervised

analysis of bioacoustic data. This humpback whale song recording has been
produced at few meters distance from the whale in La Reunion - Indian
Ocean, by the "Darewin" regroup in 2013, at a Frequency Sample of 44.1kHz,
32 bits, mono, wav format.

They consist of MFFC features of 8.6 minutes that have been extracted
using Spro 5.0, with pre-emphasis: 0.95, hamming window, fft on 1024 points
(nearly 23ms), frameshift 10 ms, 24 Mel channels, 12 MFCC coefficients and
energy and their delta and acceleration, CMS (mean normalisation) and vari-
ance normalization, for a total of 39 dimensions as detailed in the SABIOD
NIPS challenge : http://sabiod.univ-tln.fr/nips4b/challenge2.html where the
signal and the features are available.

A spectrum of this whale of around 20 seconds of the given song can be
seen in Figure 11. The data comprises 51336 observations with 39 features.

Figure 11: On left, the Humpback whale and on right, the spectrum of around 20 seconds
of the given song of Humpback Whale.

A dimension reduction pretreatment with a PCA technique was made. We
therefore choose to retain 13 features of the data, since it was sufficient to
capture more then 95% of the cumulative percentage of the variance.
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The analysis of such complex signals that aims at discovering the call
units (which can be considered as a kind of whale alphabet), can be seen as
a problem of unsupervised call units classification as in [55]. Another analy-
sis of the humpback whale song by clustering approach can be found in [56].
The authors in [56] implemented a segmentation algorithm based on Payne’s
principle to extract sound units of a whale song. In their application, six
song units (pattern intonations) were found. We therefore reformulate the
problem of whale song decomposition as an unsupervised data classification
problem. Contrary to the approach used in [55], in which the number of
states (call units in this case) has been fixed manually, or [56] where the
unsupervised algorithm K-means was performed for automatic classification
and then automatically define the optimal number of classes by maximizing
the Davies Bouldin criterion. Here, we first apply the proposed DPPM mod-
els to learn the complex bioacoustic data, to find the classes (states) of the
whale song, and automatically infer the number of classes (states) from the
data.

Unsupervised decomposition of whale songs with the proposed DPPM models
We applied our proposed DPPM approach, into the challenging problem

of Whale song decomposition NIPS4B challenge [8].
The Gibbs sampling runs 10 times with 4000 samplers and a burn-in

period equal to 10%, by selecting the one with the highest MAP. Covering
the three families, from the simplest one, which are the spherical models (λI
and λkI), the diagonal models (λA and λkA), to the more complex general
models (λDADT , λkDADT and λkDkAkD

T
k ) are applied in this application.

In Figure 12 we show the posterior distributions of the numbers of compo-
nents provided by the Gibbs sampler for the spherical model λI, the diagonal
model λkA and the general model λkDkAkD

T
k . We can see that model λI re-

trieves 9 clusters, the model λkA retrieves 11 clusters and model λkDkAkD
T
k

retrieves 15 clusters.
Because of the length of 8.6 minutes of the signal, for a more detailed

information, we show separate parts of 15 seconds of the whole signal of
the humpback whale. Some examples of the humpback whale song with 15
seconds duration each are presented. Figure 13 we show the two different
signals with top, the signal starting at 280 seconds and it’s corresponding
partition obtained by the proposed DPPM model λkDkAkD

T
k (general), and

bottom those for the part of the signal starting at 295 seconds.
Next, we illustrate the obtained results for the two proposed DPPM mod-
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Figure 12: Posterior distribution of the number of components obtained by the proposed
DPPM approach, for the whale song data.

Figure 13: Obtained song units by applying or DPM model with the parametrization
λkDkAkD

T
k (general) to two different signals with top: the spectrogram of the part of the

signal starting at 280 seconds and it’s corresponding partition, and bottom those for the
part of signal starting at 295 seconds.

els, that corresponds to the parsimonious spherical model λI with equal clus-
ter volumes and the parsimonious diagonal model λkA with different cluster
volumes. As for the general model λkDkAkD

T
k , we show separate parts of 15

seconds duration of the whole signal of the humpback whale song in order to
visualize the signal in a more detail.

Finally, Figure 14 shows two different signals with top, the signal starting
at 280 seconds and it’s corresponding partition obtained by the proposed
DPPM model λI (spherical), and bottom those for the part of the signal
starting at 295 seconds.

The spherical λI model fit well the whale song data set with 9 song units.
In this situation, it is noticed that the sixth state represents the silence, that
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Figure 14: Obtained song units by applying or DPPM model with the parametrization
λI (spherical) to two different signals with top: the spectrogram of the part of the signal
starting at 280 seconds and it’s corresponding partition, and bottom those for the part of
signal starting at 295 seconds.

can be filled with state 7 and 8. The state 4 is a very noisy and broad sound.
Figure 15, shows the signal starting with 280 seconds and it’s correspond-

ing obtained partition (top), and those for the part of the signal starting with
295 seconds (bottom).

Figure 15: Obtained song units by applying or DPPM model with the parametrization
λkA (diagonal) to two different signals with top: the spectrogram of the part of the signal
starting at 280 seconds and it’s corresponding partition, and bottom those for the part of
signal starting at 295 seconds.

The DPPM diagonal model, with different cluster volumes, that corre-
sponds to the covariance matrix decomposition λkA fit well the data with
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11 song units. It can clearly be seen that the state 9 is the silence. State 1,
2, 8 and 11 is the up and down sweeps. The seventh state is also the silence
that generally ends the ninth state. The state 4 is a very noisy and broad
sound. These obtained results highlight the potential parsimonious Bayesian
non-parametric modelling for the unsupervised segmentation of the studied
bioacoustic data.

5. Conclusion

In this paper we presented Bayesian nonparametric parsimonious mix-
ture models for clustering. It is based on an infinite Gaussian mixture with
an eigenvalue decomposition of the cluster covariance matrix and a Dirichlet
Process, or by equivalence a Chinese Restaurant Process prior. This allows
deriving several flexible models and avoids the problem of model selection
encountered in the standard maximum likelihood-based and Bayesian para-
metric Gaussian mixture. We also proposed a Bayesian model selection an
comparison framework to automatically select, the best model, with the best
number of components, by using Bayes factors.

Experiments on simulated data highlighted that the proposed DPPM rep-
resent a good nonparametric alternative to the standard parametric Bayesian
and non-Bayesian finite mixtures. They simultaneously and accurately esti-
mate accurate partitions with the optimal number of clusters also inferred
from the data. We also applied the proposed approach on real data sets. The
obtained results show the interest of using the Bayesian parsimonious cluster-
ing models and the potential benefit of using them in practical applications.
We applied the models on the challenging problem of humpback whale song
decomposition. Despite the fact that the dataset are by nature sequential,
and DPPMs models assume an exchangeability property, the models arrive
to fit quiet satisfying partition of the data. This application opens a per-
spective on the extension of the previously discussed DPPMs models, from
the i.i.d case to sequential data. Hence this may provide a good perspec-
tive for further integrating the parsimonious DPM models into a Markovian
framework.

A future work related to this proposal may concern other parsimonious
models such us those proposed by [15] based on a variance-correlation decom-
position of the group covariance matrices, which are stable and visualizable
and have desirable properties.
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Until now we have only considered the problem of clustering. A per-
spective of this work is to extend it to the case of model-based co-clustering
[38] with block mixture models, which consists in simultaneously cluster in-
dividuals and variables, rather that only individuals. The nonparametric
formulation of these models may represent a good alternative to select the
number of latent blocks or co-clusters.

Appendix A. Prior and Posterior distributions for the model pa-
rameters

Here we provide the prior and posterior distributions (used in the Gibbs
sampler) for the mixture model parameters for each of the developed DPPM
models. First, recall that z = (z1, . . . , zn) denotes a vector of class labels
where zi is the class label of xi. Let zik be the indicator binary variable
such that zik = 1 if zi = k (i.e when xi belongs to component k). Then, let
nk =

∑n
i=1 zik represents the number of data points belonging to cluster (or

component) k. Finally, let x̄k =
∑n
i=1 zikxi
nk

be the empirical mean vector of
cluster k, and Wk =

∑n
i=1 zik(xi − x̄k)(xi − x̄k)

T its scatter matrix.

Appendix A.1. Hyperparameters values
In our experiments for the multivariate parsimonious models, we choose

the prior hyperparameters H as follows: the mean of the data µ0, the shrink-
age κn = 0.1, the degrees of freedom ν0 = d+ 2, the scale matrix Λ0 equal to
the covariance of the data, and for the spherical models, the hyperparameter
s2

0 was taken as the greatest eigenvalue of Λ0.

Appendix A.2. Spherical models
(1) Model λI. For this spherical model, the covariance matrix, for all the
mixture components, is parametrized as λI and hence is described by the
scale parameter λ > 0, which is common for all the mixture components.
For this spherical model, the prior over the covariance matrix is defined
through the prior over λ, for which we used a conjugate prior density, that is
an inverse Gamma. For the mean vector for each of Gaussian components,
we used a conjugate multivariate normal prior. The resulting prior density
is therefore a normal inverse Gamma conjugate prior:

µk|λ ∼ N (µ0, λI/κn) ∀k = 1, . . . , K (A.1)
λ ∼ IG(ν0/2, s

2
0/2)
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where (µ0, κn) are the hyperparamerets for the multivariate normal over µk
and (ν0, s

2
0) are those for the inverse Gamma over λ. Therefore, the resulting

posterior is a multivariate Normal inverse Gamma and the sampling from
this posterior density is performed as follows:

µk|X, z, λ,H ∼ N (µn, λI/(nk + κn))

λ|X, z, H ∼ IG(
ν0 + nk

2
,

1

2
{s20 +

K∑
k=1

tr(Wk) +

K∑
k=1

nkκn
nk + κn

(x̄k − µ0)T (x̄k − µ0)})

where the posterior mean µn is equal to nkx̄k+κnµ0

nk+κn
.

(2) Model λkI. This other spherical model parametrized λkI is also described
by the scale parameter λk > 0 which is different for all the mixture compo-
nents. As for the previous spherical model, a normal inverse Gamma conju-
gate prior is used. In this situation the scale parameter λk will have differ-
ent priors and respectively posterior distributions for each mixture compo-
nent. The resulting prior density for this spherical model is a normal inverse
Gamma conjugate prior:

µk|λk ∼ N (µ0, λkI/κn) ∀k = 1, . . . ,K

λk ∼ IG(νk/2, s
2
k/2) ∀k = 1, . . . ,K

where (µ0, κn) are the hyperparamerets for the multivariate normal over µk
and (νk, s

2
k) are those for the inverse Gamma over λk. The set of hyperpa-

rameters νk = {ν1, . . . , νk} and sk = {s1 . . . sk} are chosen to be equal, throw
all the components of the mixture, to ν0 and respectively s2

0. Analogously,
the resulting posterior is a normal inverse Gamma and the sampling for the
model parameters (µ1, . . . ,µK , λ1, . . . , λK) is performed as follows:

µk|X, z, λk, H ∼ N (µn, λkI/(nk + κn))

λk|X, z, H ∼ IG(
νk + dnk

2
,

1

2
{s2k + tr(Wk) +

nkκn
nk + κn

(x̄k − µ0)T (x̄k − µ0)}).

Appendix A.3. Diagonal models
(3) Model λA. The diagonal parametrization λA of the covariance matrix
is described by the volume λ (a scalar term) and a diagonal matrix A. The
parametrization λA therefore corresponds to a diagonal matrix whose diag-
onal terms are aj, ∀j = 1, . . . d. The prior normal inverse Gamma conjugate
prior density is given as follows:

µk|Σk ∼ N (µ0,Σk/κn) ∀k = 1, . . . , K

aj ∼ IG(rj/2, pj/2) ∀j = 1 . . . d
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where the set of parameters rj, pj are considered to be equal ∀j = 1 . . . d to ν0

and respectively s2
k. The resulting posterior for the model parameters takes

the following form:

µk|X, z,Σk, H ∼ N (µn,Σk/(nk + κn))

aj |X, z, H ∼ IG(
nk + νk +K(d+ 1)− 2

2
,
diag(

∑K
k=1

nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T +Wk + Λk)

2
)

where the posterior mean µn = nkx̄k+κnµ0

nk+κn
.

(4) Model λkA. This diagonal model, analogous to the previous one, but
with different volume λk > 0 for each component of the mixture, takes the
parametrization λkA. In this situation, the normal prior density for the
mean remains the same and the inverse Gamma prior density for the volume
parameter λk is given as follows:

λk ∼ IG(rk/2, pk/2) ∀j = 1 . . . K

where the set of hyperparamerets for the scale parameter λk, rk = {r1, . . . , rK}
and pk = {p1, . . . , pk} are considered to be equal, for all mixture components,
to respectively ν0 and s2

k. The resulting posterior distributions over the pa-
rameters of the model are given as follows:

µk|X, z,Σk, H ∼ N (µn,Σk/(nk + κn))

aj |X, z, λk, H ∼ IG(
nk + νk +Kd+ 1

2
,
diag(

∑K
k=1 λ

−1
k ( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T +Wk + Λk))

2
)

λk|X, z,A, H ∼ IG(
rk + nkd

2
,
pk + tr(A−1( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T +Wk + Λk))

2
).

Appendix A.4. General models
(5) Model λDADT . The first general model has the λDADT parametriza-
tion, where the covariance matrices have the same volume λ > 0, orientation
D and shape A for all the components of the mixture. This is equivalent, in
the literature, to the model where the covariance Σ is considered equal throw
all the components of the mixture. The resulting conjugate normal inverse
Wishart prior over the parameters (µ1, . . . ,µK ,Σ) is given as follows:

µk|Σ ∼ N (µ0,Σ/κn) ∀k = 1, . . . ,K

Σ ∼ IW(ν0,Λ0)

where (µ0, κn) are the hyperparameters for the multivariate normal prior over
µk and (ν0,Λ0) are hyperparameters for the inverse Wishart prior (IW) over
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the covariance matrix Σ that is common to all the components of the mixture.
The posterior of the model parameters (µ1, . . . ,µK ,Σ) for this general model
is given by:

µk|X, z, λk, H ∼ N (µn,Σ/(nk + κn))

Σ|X, z, H ∼ IW(ν0 + nk,Λ0 +

K∑
k=1

{Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T }).

(6) Model λkDADT . The second parsimonious model from the general fam-
ily has the parametrization λkDADT , where the volume λk of the covariance
differs from one mixture component to another, but the orientation D and
the shape A are the same for all the mixture components. This parametriza-
tion can thus be simplified as λkΣ0, where the parameter Σ0 = DADT . This
general model has therefore a Normal prior distribution over the mean, an
inverse Gamma prior distribution over the scale parameter λk and an inverse
Wishart prior distribution over the matrix Σ0 that controls the orientation
and the shape for the mixture components. The conjugate prior for the
mixture parameters (µ1, . . . ,µK , λ1, . . . , λK ,Σ0) are thus given as follows:

µk|λk,Σ0 ∼ N (µ0, λkΣ0/κn) ∀k = 1, . . . ,K

λk ∼ IG(rk/2, pk/2) ∀k = 2, . . . ,K

Σ0 ∼ IW(ν0,Λ0)

where λ1 is supposed to be equal to 1 (to make the model identifiable), the
hyperparameters {r1, . . . , rK} and {p1 . . . pK} are supposed to be equal to
respectively ν0 and s2

k for each of the mixture components. The resulting
posterior over the parameters (µ1, . . . ,µK , λ1, . . . , λK ,Σ0) of this model is
given as follows:

µk|X, z, λk,Σ0, H ∼ N (µn, λkΣ0/(nk + κn))

λk|X, z, H ∼ IG(
rk + nkd

2
,

1

2
{pk + tr(WkΣ

−1
0 ) +

nkκn
nk + κn

(x̄k − µ0)TΣ−10 (x̄k − µ0)})

Σ0|X, z, H ∼ IW(ν0 + nk,Λ0 +

K∑
k=1

{Wk

λk
+

nkκn
λk(nk + κn)

(x̄k − µ0)T (x̄k − µ0)}).

(7) Model λDkADT
k . This other general model λDkADT

k is parametrized
by the scalar parameter (the volume) λ and the shape diagonal matrix A.
This model parametrization can therefore be summarized to the DkADT

k

parametrization, by including λ in a resulting diagonal matrix A, whose
diagonal elements a1, . . . , ad. The prior density over the mean is normal,
the one over the orientation matrix Dk is inverse Wishart, and the one over
each of the diagonal elements aj, ∀j = 1 . . . d of the matrix A is an inverse
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Gamma. The conjugate prior for this general model is therefore as follows:

µk|Σk ∼ N (µ0,Σk/κn) ∀k = 1, . . . , K

aj ∼ IG(rj/2, pj/2) ∀j = 1 . . . d

The hyperparameters rj and pj for the λA, are considered to be the same
∀j = 1 . . . d and are respectively equal to ν0 and s2

k. The resulting posterior
for the model parameters takes the following form:

µk|X, z,Σk, H ∼ N (µn,Σk/(nk + κn))

aj |X, z, H ∼ IG(
nk + νk +K(d+ 1)− 2

2
,
diag(

∑K
k=1 DT

k ( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T +Wk + Λk)Dk)

2
).

The parameters, that controls the orientation of the covariance, Dk, have the
same inverse Wishart posterior distribution as the general covariance matrix:

Dk|X, z, H ∼ IW(nk + νk,Λk +Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T )

And as mentioned above the covariance matrix Σk for this model will be
formed as diag(aj)Dk.

(8) Model λkDkADT
k . The third considered parsimonious model for the gen-

eral family, is the one with the parametrization λkDkADT
k of the covariance

matrix, and is analogous to the previous model, but for this one, the scale
λk of the covariance (the cluster volume) differs for each component of the
mixture. The prior over each of the scale parameters λ1 . . . λK is an inverse
Gamma prior :

λk ∼ IG(rk/2, pk/2) ∀k = 1, . . . , K.

The set of hyperparameters rk = {r1, . . . rK} and pk = {p1, . . . pK} are con-
sidered equal between the components of the mixture and are taken equal to
respectively ν0 and s2

k. The resulting posterior distributions over the param-
eters of the model are given as follows:

µk|X, z,Σk, H ∼ N (µn,Σk/(nk + κn))

aj |X, z, λk,Dk, H ∼ IG(
nk + νk +Kd+ 1

2
,
diag(

∑K
k=1 λ

−1
k DT

k ( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T +Wk + Λk)Dk)

2
)

Dk|X, z, H ∼ IW(nk + νk,Λk +Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T )

λk|X, z,Dk,Ak, H ∼ IG(
rk + nkd

2
,
pk + tr(DkA

−1DT
k ( nkκn

nk+κn
(x̄k − µ0)(x̄k − µ0)T +Wk + Λk))

2
).
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(9) Model λkDkAkD
T
k . Finally, the more general model is the standard one

with λkDkAkD
T
k parametrization. This model is also known as the full co-

variance model Σk. The volume λk, the orientation Dk, and the shape Ak

differ for each component of the mixture. In this situation, the prior density
for the mean is normal and the one for the covariance matrix is an inverse
Wishart, which leads to the following conjugate normal inverse Wishart prior
density:

µk|Σk ∼ N (µ0,Σk/κn) ∀k = 1, . . . ,K

Σk ∼ IW(νk,Λk) ∀k = 1, . . . ,K

where (µ0, κn) and (νk,Λk) are respectively the hyperparamerets for respec-
tively normal prior density over the mean and the inverse Wishart prior
density over the covariance matrix. The resulting posterior over the model
parameters (µ1, . . . ,µk,Σ1, . . . ,Σk) is given as follows:

Σk|X, z, H ∼ IW(nk + νk,Λk +Wk +
nkκn
nk + κn

(x̄k − µ0)(x̄k − µ0)T ).
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