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Fabrice ROSSI Professeur, TELECOM ParisTech (Rapporteur)
Christophe BIERNACKI Professeur, Université Lille 1 (Rapporteur)
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Abstract

This research addresses the problem of diagnosis and monitoring for pre-
dictive maintenance of the railway infrastructure. In particular, the switch
mechanism is a vital organ because its operating state directly impacts the
overall safety of the railway system and its proper functioning is required
for the full availability of the transportation system; monitoring it is a key
task within maintenance team actions. To monitor and diagnose the switch
mechanism, the main available data are curves of electric power acquired
during several switch operations.

This study therefore focuses on modeling curve-valued or functional data
presenting regime changes. In this thesis we propose new probabilistic gen-
erative machine learning methodologies for curve modeling, classification,
clustering and tracking. First, the models we propose for a single curve or
independent sets of curves are based on specific regression models incorpo-
rating a flexible hidden process. They are able to capture non-stationary
(dynamic) behavior within the curves and address the problem of missing
information regarding the underlying regimes, and the problem of com-
plex shaped classes. We then propose dynamic models for learning from
curve sequences to make decision and prediction over time. The developed
approaches rely on autoregressive dynamic models governed by hidden pro-
cesses. The learning of the models is performed in both a batch mode (in
which the curves are stored in advance) and an online mode as the learning
proceeds (in which the curves are analyzed one at a time). The obtained
results on both simulated curves and the real-world switch operation curves
demonstrate the practical use of the ideas introduced in this thesis.

Keywords: Curve modeling, regression, classification, clustering, finite
mixture models, Hidden Markov Models, dynamical modeling, online learn-
ing, EM algorithms, diagnosis.
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Notations

We list here the general notation used in the thesis. Deviations from this notation will
be mentioned prior to use. In general, a vector is represented in upright bold (e.g,
x,y, z, . . .). A vector of zeros of arbitrary length is denoted as 0, while a vector of
ones is denoted as 1. All vectors are assumed to be column vectors. A transpose of a
vector x is denoted by xT so that xT represents a row-vector. Matrices are represented
in capitalized upright bold (e.g., X,Y, . . .). A transpose of a matrix A is denoted by
AT . The identity matrix of size n is denoted as In. Scalar parameters are denoted by
Greek letters (e.g., π, α, β, τ, . . .) while vector parameters and sets of model parameters
are denoted by boldface Greek letters (e.g., β,θ,π, τ ,Ψ,Θ . . .). Sets are denoted by
calligraphic capital letters (e.g., X ,Y,Z, . . .) except for when the sets already have
established symbols (e.g., R). Other notations used in this thesis are listed below:

General notations:

E[X] expected value of X
E[Y |X = x] expected value of Y conditionally on X = x

N ( . ;µ,Σ) multivariate Gaussian density with mean µ and covariance matrix Σ.
M( . ;π) multinomial distribution with parameter vector π
L(Ψ;X) likelihood function of the parameter vector Ψ for the data X
L(Ψ;X) log-likelihood function of the parameter vector Ψ for the data X

Ψ̂ estimate of Ψ
Aij the jth column of the ith row of A
A−1 inverse of A
trace(A) trace of A
det(A) determinant of A

Multidimensional data:

X = (x1, . . . ,xn) a sample of n observations
xi ith observation
z = (z1, . . . , zn) hidden class vector
zi = k ∈ {1, . . . ,K} class label of xi

K number of hidden classes
c = (c1, . . . , cn) class vector
G total number of classes

xi



Multidimensional sequential data:

Y = (y1, . . . ,yn) a observation sequence
yt observation at time t

z = (z1, . . . , zn) class (state) vector
zt = k ∈ {1, . . . ,K} class label of yt

K number of classes (states)

Single curve:

y = (y1, . . . , ym) a curve of m observations
yj (j = 1, . . . ,m) jth observation (point) of the curve
m total number of observations for a single curve
z = (z1, . . . , zm) an underlying hidden process for a single curve
zj = k ∈ {1, . . . ,K} class label of yj (j = 1, . . . ,m) (kth polynomial model (regime))
K total number of regimes (segments)

Set of n curves:

Y = (y1, . . . ,yn) A Given training set of n curves
yi = (yi1, . . . , yim) ith curve
yij jth observation (point) of the ith curve
n total number of curves
c = (c1, . . . , cn) vector of classes (states, groups) for the n curves
ci = g ∈ {1, . . . , G} class label of the ith curve
G total number of classes (states, groups)
h = (h1, . . . , hn) vector of sub-classes for a set of n curves issued from the same class
hi = r ∈ {1, . . . , R} sub-class label of the ith curve
R total number of sub-classes

Since online learning concerns the case when the data are arriving one at a time, we
will denote by yt the observed vector at time t (t = 1, . . . , T ).

Probability distribution:

p( . ) generic notation of a probability density function (p.d.f)
f( . ) p.d.f
f( . ;θ) parametric p.d.f

xii



Chapter 1

Introduction

Contents

1.1 Context of the study . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A machine learning context . . . . . . . . . . . . . . . . . . . 3

1.3 Contributions and outline of the thesis . . . . . . . . . . . . 4

1.1 Context of the study

The results of this study were applied to the diagnosis of railway infrastructure. The
large amount of infrastructure components, the spatial structure of the components,
the variable environmental contexts, the multiple types of failure and, particularly, the
strong financial constraints have led railway infrastructure managers to deploy moni-
toring systems en masse during recent decades. All of the infrastructure components
are potentially concerned, including the rail, the track ballast, the track geometry, the
switch, the catenary, and the signaling system. This research will address the particular
problem of monitoring the switch mechanism.

The switch mechanism is a sensitive organ in railway infrastructure that enables
(high-speed) trains to be guided from one track to another at a railway junction. Its
proper functioning is required for the full availability of the transportation system.
Moreover, it is a vital organ because its operating state directly impacts the overall
safety of the railway system; monitoring it is a key task within maintenance team
actions.

To monitor and diagnose the switch mechanism, condition measurements are ac-
quired during several switch operations. The main available measurement is the electric
power consumed during a switch operation, which is hereafter referred to as the “switch
operation curve” (see Figure 1.1). Each switch operation consists of successive phases
that are reflected in the curve shape as changes in regime (see Figure 1.1). The suc-

1



1.1 Context of the study
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Figure 1.1: A curve showing electrical power consumed during a switch operation.

cession of phases in the switch operation curve constitutes the first temporal aspect of
the data. Details on both the switch mechanism and the phases involved in a switch
operation are given in Chapter 6, which is dedicated to this application.

The diagnosis task is achieved through the analysis of switch operation curves.
In this framework, curve modeling and classification remain the key materials. In a
perspective of switch monitoring, sequences of curves are analyzed. This results in a
second temporal aspect with respect to the data that is concerned with the evolution
through time of the system. Figure 1.2 illustrates this second temporal aspect.
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Figure 1.2: Examples of curves acquired during successive switch operations: the second

temporal aspect.

Several approaches are possible for achieving the diagnosis task. The two main
approaches are the model-based approach and the pattern recognition approach, which
is based on machine learning. In the former, a physical model is built to describe the
studied system, for example, by relying on automata theory (Isermann, 1984, 2004),
and failure is detected by computing the difference (or residual) between the acquired

2



1.2 A machine learning context

measurement and the one simulated according to a pre-established physical model of
the proper functioning state of the system. A binary decision is often assumed.

The latter approach, however, relies on pattern recognition to identify faults (Dubuis-
son, 1990). Very often, this pattern recognition task involves a learning problem in
which we learn a decision rule, or a functional mapping between possibly labeled mea-
surements and the considered operating states. This approach is particularly appropri-
ate for the problem of multi-state diagnosis. In addition, it can easily address problems
related to missing information and allows for the integration of prior knowledge, such
as experts information. For these reasons, we adopt the second approach in this thesis.

The focus of this thesis is therefore on models for automatically extracting unknown,
useful information (e.g., features, simplified models, and classes) from these curves to
build reliable decision systems for predictive maintenance of the switches.

1.2 A machine learning context

The paradigm for learning from raw data is known as machine learning (Mitchell, 1997;
Vapnik, 1999). Machine learning approaches for the acquisition of knowledge from
data can be used for analysis, interpretation and prediction. In particular, statistical
machine learning, pioneered by Vapnik and Chervonenkis (1974), is the field of machine
learning distinguished by the fact that the data are assumed to be realizations of random
variables so that the resulting models are statistical (probabilistic) models. It represents
an elegant framework upon which high-performance information processing systems can
be built. Indeed, the computer-aided decision systems that are built using this paradigm
have shown their superior performance and reliability in many application domains,
including signals (Bach and Jordan, 2006), images (Benboudjema and Pieczynski, 2007;
Caillol et al., 1997; Kivinen et al., 2007; Smyth et al., 1994) and text (Aseervatham and
Bennani, 2009; Chemudugunta et al., 2006; Joachims, 2002) as well as for large-scale
data sets (Bordes, 2010).

To develop reliable decisions for the studied system and to make accurate decisions
and predictions for future data, there is an important need to understand the processes
underlying the curves. This therefore leads us to a statistical machine learning paradigm
(Mitchell, 1997; Vapnik, 1999), particularly generative approaches (Jebara, 2001, 2003)
such as regression models, mixture models and Hidden Markov Models, which form the
core of this research.

For the diagnosis task, we are first interested in modeling the curves that include
unknown regime changes. Therefore, as in addressing statistical machine learning in
general applications, we are confronted with the problem of missing information. In the
context of curve modeling, the missing information problem relates to the unobserved
process governing the curve. This process is related to regime changes within a curve or
a set of curves and can be treated by a modeling/segmentation approach. Therefore, at
this stage, the term “dynamical” is used to indicate regime changes within the curves.

The second objective is to decide on the operating state of the new curves and
detect possible faults. This is the curve classification problem, which is performed by

3



1.3 Contributions and outline of the thesis

assigning new curves to predefined operating states (or classes). The class labels of
the data are often missing in real applications, which results in the curve clustering
problem.

Furthermore, in this thesis, the curve classification task is addressed from two points
of view. The classification rules for the first point of view are taken from static modeling
techniques because the curves are assumed to be independent; however, the second
one relies on building decision rules in a dynamical framework from curves acquired
sequentially during the operating process. Hence, at this stage of modeling curves
sequences, the term “dynamical” relates to the unobserved process representing state
variation over time. Figure 1.2 illustrates state variation from one curve to another.

In these frameworks, which are distinguished by the unknown underlying regimes
within the curves and by the operating states of the curves which are often missing,
the built models are associated with the latent data models introduced by Spearman
(1904), including mixture models (Frühwirth-Schnatter, 2006; McLachlan and Peel.,
2000; Titterington et al., 1985) and Hidden Markov Models (Juang and Rabiner, 1985;
Juang et al., 1985, 1986; Rabiner, 1989). The optimization of such models is performed
in a maximum likelihood estimation framework. The maximum likelihood estimator
is of major importance in statistical theory due to its attractive asymptotic properties
for parameter estimation problems that it is asymptotically unbiased, normal and con-
sistent. Particularly, for the latent data models, maximum likelihood estimation can-
not often be performed analytically in a closed form. The Expectation-Maximization
(EM) algorithms (Baum et al., 1970; Celeux and Govaert, 1992; Dempster et al., 1977;
McLachlan and Krishnan, 1997; Neal and Hinton, 1998) provide an elegant tool for op-
timizing such models in both a batch mode and an online mode (Cappé and Moulines,
2009; Titterington, 1984).

1.3 Contributions and outline of the thesis

The chapters of this thesis are arranged as follows. Chapter 2 gives an overview of clas-
sification and clustering methods for multidimensional data from the existing literature,
with a particular focus on the generative learning approaches, which are the basis of
this thesis. We describe a majority of well-known models and practical techniques and
show how they work. Sometimes, we provide further explanation(s) or other points of
view, in particular from a probabilistic prospective (e.g., in the case of the piecewise
regression model).

We then propose new approaches for curve modeling, classification and tracking.
The main contributions of this thesis can be summarized in the responses for the
following questions on both open methodological issues and a real-world application:

• How can we build adapted model(s) for representing and summarizing curves
with regime changes?

• How can we define an accurate discrimination rule by considering both homoge-
neous and dispersed curves?
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• When expert information is missing, how can we automatically search for possible
classes from curves?

• How can we model the underlying dynamical behavior from sequential curves and
then make decisions and predictions?

More specifically, we first propose in Chapter 3 a new approach for curve modeling
that is based on a specific regression model that incorporates a discrete hidden logistic
process (RHLP) (Chamroukhi et al., 2009c). The RHLP model tackles the dimension-
ality problem and simultaneously provides a simplified representation for each curve. In
particular, the flexibility of the proposed dynamical regression model allows us to deal
with both the problem of the quality of regime transition (i.e., smooth and/or abrupt)
and the temporal location of the regime changes, with each regime being associated
with a regression model. We then show how the available multidimensional data clas-
sification machinery, in particular Mixture models, can then be used to perform curve
clustering via mixture model-based clustering (Banfield and Raftery, 1993; Fraley and
Raftery, 2002; McLachlan and Basford, 1988) and curve classification via Mixture Dis-
criminant Analysis (MDA) (Hastie and Tibshirani, 1996). The classification in these
two contexts is performed in the space of curve descriptors. The proposed RHLP mod-
eling approach is then compared to the existing methods for the subject, including the
piecewise regression and the Hidden Markov Model Regression (HMMR). This model
reveals superior performance in terms of curve modeling, segmentation and classifica-
tion as compared to alternative approaches on simulated curves and in application to
switch operation curves.

In Chapter 4, we further extend the RHLP model presented in Chapter 3 for a
single curve to the case of a set of curves (Chamroukhi et al., 2010). In the resulting
approach, there is no longer need for feature extraction because the curves are directly
classified in the “functional” space (i.e., the space of curves) rather than the space of
descriptors, as in the previously presented two-strategy approach. We therefore show
how the curve classification can be performed through Functional Linear Discriminant
Analysis (FLDA). From a practical point of view, this model clearly outperforms the
classical regression models, including piecewise regression and spline regression. For
the piecewise regression model, the use of dynamic programming may require an ex-
pensive computational load, and the spline regression is not dedicated to regime change
detection. This model was assessed using a simulation study and an application on the
real-world curves of switch operations.

Furthermore, we provide another extension of the RHLP model for learning from
a set of heterogeneous curves by integrating it into a mixture formulation, which leads
us to a mixture of regression models with a hidden logistic process, abbreviated as
MixRHLP (see section 4.3). The MixRHLP model is adapted for capturing curve het-
erogeneity; it is useful for curve clustering and curve classification, especially in the
case of complex shaped classes. The classification scheme in this case lies in Functional
Mixture Discriminant Analysis (FMDA). The performance of the MixRHLP model in
terms of curve clustering is evaluated by performing comparisons with existing meth-
ods, including polynomial regression mixture, polynomial spline regression mixture and
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piecewise polynomial regression mixture using simulated curves with regime changes.

Whereas the previous chapters are concerned with a static framework insofar as
the curves are assumed to be independent, proposed dynamical models are built from
a curve sequence in Chapter 5. For this dynamical modeling of curve sequences, we
propose two models with respect to the type of underlying dynamical process under
consideration. The first assumes a hidden logistic process, resulting in the Autore-
gressive RHLP (ARHLP) model. The second uses a non-homogeneous hidden Markov
process, which was used to develop the Autoregressive non-homogeneous HMM (AR-
NH-HMM). The data used by these models are the features extracted from each curve
by the RHLP model presented in Chapter 3. We show how to make decisions and
predictions with these models, and we provide a formulation of dedicated EM algo-
rithms for learning model parameters. The learning task for these dynamical models
is performed in both a batch mode (in which the curves are stored in advance) and an
online mode (in which the curves are analyzed one at a time). At this stage, the model
structure is fixed. The problem of building a model with an evolutionary structure is
not addressed in this work.

The insights gained from these approaches are most relevant to the practical real-
world diagnosis application presented in Chapter 6.

6



Chapter 2

State of the art

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Multidimensional data modeling using finite mixture models 9

2.2.1 Finite mixture models . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 The EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 EM extensions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.4 Online versions of the EM algorithm . . . . . . . . . . . . . . 17

2.3 Multidimensional data clustering . . . . . . . . . . . . . . . . 19

2.3.1 K-means algorithm . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Model-based clustering . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Assessing the number of clusters: model selection . . . . . . . 25

2.4 Multidimensional data classification . . . . . . . . . . . . . . 27

2.4.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 28

2.4.2 Quadratic Discriminant Analysis . . . . . . . . . . . . . . . . 29

2.4.3 Mixture Discriminant Analysis . . . . . . . . . . . . . . . . . 29

2.4.4 Multi-class Logistic Regression . . . . . . . . . . . . . . . . . 30

2.5 General approaches for multidimensional sequential data . 33

2.5.1 Markov chains . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Types of Hidden Markov Models . . . . . . . . . . . . . . . . 35

2.6 Curve modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.1 Functional data analysis context . . . . . . . . . . . . . . . . 40

2.6.2 Polynomial regression and spline regression models . . . . . . 41

2.6.3 Polynomial regression and spline regression for a set of curves 44

2.6.4 Piecewise polynomial regression . . . . . . . . . . . . . . . . . 45

2.6.5 Piecewise polynomial regression for a set of curves . . . . . . 47

7



2.1 Introduction

2.6.6 Hidden Markov Model Regression . . . . . . . . . . . . . . . 50

2.7 Curve clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.1 Polynomial regression mixture and spline regression mixture 53

2.7.2 Piecewise regression for curve clustering via a K-means-like

algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.7.3 Piecewise polynomial regression mixture . . . . . . . . . . . . 57

2.7.4 Curve clustering with Hidden Markov Models . . . . . . . . . 60

2.8 Curve classification . . . . . . . . . . . . . . . . . . . . . . . . 61

2.8.1 Functional Linear Discriminant Analysis . . . . . . . . . . . . 62

2.8.2 Functional Mixture Discriminant Analysis . . . . . . . . . . . 62

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.1 Introduction

In this chapter, we provide an overview of methods used to address data modeling and
classification. The classification problem is considered in a supervised context (i.e.,
discrimination) and in an unsupervised context (i.e., clustering). The data may be
multidimensional (i.e., independent observations or observation sequences) or functional
(i.e., curves).

Two main approaches are generally used in the statistical learning literature for
learning from rough data. They are known as the discriminative approach and the
generative approach (Jebara, 2001, 2003). In classification, discriminative approaches
learn a direct map from the inputs x to the output y, or they directly learn a model
of the conditional distribution p(y|x). From this conditional distribution, we can make
predictions of y for any new value of x by using the Maximum A Posteriori (MAP)
classification rule

ŷ = argmax
y∈Y

p(y|x). (2.1)

Generative classifiers learn a model of the joint distribution p(x, y) that consists of
modeling the class conditional densities p(x|y) together with the prior probabilities
p(y). The required posterior class probabilities are then computed using Bayes’ theorem

p(y|x) =
p(y)p(x|y)∑
y′ p(y

′)p(x|y′)
. (2.2)

Because the outputs y are not always available (i.e., they may be missing or hidden),
generative approaches are therefore more suitable for unsupervised learning.

In this thesis, we focus on probabilistic models for data modeling, clustering and
discrimination. In this chapter, we therefore describe some classical probabilistic models
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for data modeling, classification and clustering, including regression models, mixture
models and Hidden Markov Models, which form the core of this thesis.

Most of the approaches in this chapter are well-known in the literature and are
included to provide context for later chapters. This chapter is organized into three
main parts. The first is concerned with multidimensional independent data modeling,
classification and clustering. The second and last parts address the same problems
for the case of multidimensional observation sequences and curves (functional data),
respectively. In the last part, we provide a new extension of the piecewise regression
model to a mixture model-based curve clustering framework.

2.2 Multidimensional data modeling using finite mixture

models

2.2.1 Finite mixture models

Finite mixture models (McLachlan and Peel., 2000; Titterington et al., 1985) are an
example of latent variable models, widely used in probabilistic modeling, machine learn-
ing and pattern recognition. They are very useful to model heterogeneous classes since
they assume that each class is composed of sub-classes.

Model definition

Let z represent a discrete random variable (binomial or multinomial) which takes its
values in the finite set Z = {1, . . . ,K}. The finite mixture model decomposes the
density of x into a weighted linear combination of K component densities. In a general
setting, the mixture density of x is

f(x) =
K∑

k=1

p(z = k)p(x|z = k)

=

K∑

k=1

πkfk(x), (2.3)

where πk = p(z = k) represents the probability that a randomly chosen data point
was generated by component k. These quantities are nonnegative πk ≥ 0 ∀k, and are
constrained to sum to one:

∑K
k=1 πk = 1. The parameters π1, . . . , πK are referred to

as mixing proportions and f1, . . . , fK are referred to as component densities. Each of
the K component densities typically consists of a relatively simple parametric model
p(x|z = k;Ψk) (such as a Gaussian distribution with parameters Ψk = (µk,Σk)).
Figure 2.1 gives the graphical model representation for the mixture model.

From the mixture model formulation, it can therefore be seen that the mixture
model allows for placing K component densities in the input space to approximate
the true density. The location (mean) and shape (covariance matrix) of each of the
K components can be fixed independently of each other. Therefore, mixtures provide
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Figure 2.1: Graphical representation

of a mixture model.

a natural generalization of the simple parametric density model which is global, to a
weighted sum of these models, allowing local adaptation to the density of the data in
the input space.

Parameter estimation

The common parameter estimation methods for mixture models are the maximum like-
lihood (McLachlan and Peel., 2000) and the Bayesian methods (Maximum A Posteriori
(MAP)) where a prior distribution is assumed for the model parameters (Stephens,
1997, 2000). In this thesis, we consider the maximum likelihood framework. The
optimization algorithm for performing the maximum likelihood parameter estimation
is the Expectation-Maximization (EM) algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 1997). In the next section we will discuss the use of the Expectation-
Maximization (EM) algorithm for learning the parameters of mixture models. The
objective is to maximize the likelihood, or equivalently, the log-likelihood as a function
of the model parameters Ψ = (π1, . . . , πK ,Ψk, . . . ,ΨK), over the parameter space Ω.

Assume we have an i.i.d sample X = (x1, . . . ,xn). The observed-data log-likelihood
is then given by:

L(Ψ;X) = log

n∏

i=1

p(xi;Ψ)

=

n∑

i=1

log

K∑

k=1

πkfk
(
xi;Ψk

)
. (2.4)

In this case, due to the logarithm of the sum, the log-likelihood to be maximized results
in a nonlinear function and there is no way to maximize it in a closed form. However, it
can be locally maximized using iterative procedures such as gradient ascent, a Newton
Raphson procedure or the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 1997). We will focus on the EM algorithm which is
widely used and particularly adapted for mixture models. The next section presents the
EM algorithm for general parametric mixture models before applying it to Gaussian
mixtures.

2.2.2 The EM algorithm

The Expectation-Maximization (EM) algorithm (Dempster et al., 1977; McLachlan
and Krishnan, 1997) is a broadly applicable approach to the iterative computation of
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maximum likelihood estimates in the framework of latent data models. In particular,
the EM algorithm simplifies considerably the problem of fitting finite mixture models
by maximum likelihood.

The EM algorithm for finite mixtures

The EM algorithm is an iterative algorithm where each iteration consists of two steps,
the Expectation step (E-step) and the Maximization step (M-step). Within this
incomplete-data framework, we let X = (x1, . . . ,xn) denote a set of n multidimen-
sional observed data and we let z = (z1, . . . , zn) denote the corresponding unobserved
(missing) labels where the class label zi is drawn from a discrete-valued variable z which
takes its values in the finite set Z = {1, . . . ,K}. The probability of a single complete
data point for a parametric mixture model with parameters Ψ is

p(x, z) = p(x, z;Ψ)

= p(z)p
(
x|z;Ψz

)

= πzfz
(
x;Ψz

)
. (2.5)

The log-likelihood of Ψ for the complete-data (X, z) = ((x1, z1), . . . , (xn, zn)), called
the complete-data log-likelihood, is therefore given by:

Lc(Ψ;X, z) = log
n∏

i=1

p(xi, zi;Ψ). (2.6)

In addition, since zi belongs to {1, . . . ,K}, we can therefore rewrite the complete-data
log-likelihood as

Lc(Ψ;X, z) =

n∑

i=1

log

K∏

k=1

[
p(zi = k)p(x|zi = k;Ψk)

]zik

=

n∑

i=1

K∑

k=1

zik log πkfk
(
xi;Ψk

)
, (2.7)

where zik is an indicator binary-valued variable such that zik = 1 if zi = k (i.e, when
xi is generated by the kth component density) and zik = 0 otherwise.

It can be seen that this log-likelihood depends on the unobservable data z. The
key idea of the EM algorithm is to perform the E-step by replacing Lc(Ψ;X, z) by its
expectation conditionally on the observed data X and the current estimation Ψ(q) of
Ψ, q being the current iteration.

The EM algorithm starts with an initial parameter Ψ(0) and iteratively alternates
between the two following steps until convergence:

E-step (Expectation): This step consists of computing the expectation of the complete-
data log-likelihood (2.7), given the observations X1 and the current value Ψ(q) of the

1We note that in this chapter, the bold upper matrix X, used in Equation(2.8) denotes the set of

training data examples X = (x1, . . . ,xn) and not a random variable.
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parameter Ψ (q being the current iteration). This conditional expectation is often
referred to as the Q-function. It is given by:

Q(Ψ,Ψ(q)) = E

[
Lc(Ψ;X, z)|X;Ψ(q)

]

=

n∑

i=1

K∑

k=1

E[zik|xi,Ψ
(q)] log πkfk

(
xi;Ψk

)

=

n∑

i=1

K∑

k=1

p(zik = 1|xi;Ψ
(q)) log πkfk

(
xi;Ψk

)

=
n∑

i=1

K∑

k=1

τ
(q)
ik log πkfk

(
xi;Ψk

)

=

n∑

i=1

K∑

k=1

τ
(q)
ik log πk +

n∑

i=1

K∑

k=1

τ
(q)
ik log fk

(
xi;Ψk

)
, (2.8)

where

τ
(q)
ik = p(zi = k|xi;Ψ

(q)) =
πkfk

(
xi;Ψ

(q)
k

)
∑K

ℓ=1 πℓfℓ
(
xi;Ψ

(q)
ℓ

) (2.9)

is the posterior probability that xi originates from the kth component density. Note
that, in computing E[zik|xi,Ψ

(q)], we used the fact that conditional expectations and
conditional probabilities are the same for the indicator binary-valued variables zik:
E[zik|xi,Ψ

(q)] = p(zik = 1|xi,Ψ
(q)). As shown in the expression of Q, this step simply

requires the computation of the conditional posterior probabilities τ
(q)
ik .

M-step (Maximization): The M-step updates the estimate of Ψ by the value
Ψ(q+1) of Ψ that maximizes the Q-function Q(Ψ,Ψ(q)) with respect to Ψ over the
parameter space Ω:

Ψ(q+1) = argmax
Ψ∈Ω

Q(Ψ,Ψ(q)). (2.10)

Letting Qπ(π1, . . . , πK ,Ψ(q)) denotes the term in Q that is a function of the mixing
proportions (π1, . . . , πK) and QΨk

(Ψk,Ψ
(q)) denote the term in Q that is a function of

the kth component density (µk,Σk), we obtain:

Q(Ψ,Ψ(q)) = Qπ(π1, . . . , πK ,Ψ(q)) +
K∑

k=1

QΨk
(Ψk,Ψ

(q)) (2.11)

where

Qπ(π1, . . . , πK ,Ψ(q)) =

n∑

i=1

K∑

k=1

τ
(q)
ik log πk (2.12)

and

QΨk
(Ψk,Ψ

(q)) =
n∑

i=1

τ
(q)
ik log fk

(
xi;Ψk

)
(2.13)
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for k = 1, . . . ,K. Thus, the maximization of the function Q(Ψ;Ψ(q)) w.r.t Ψ can
be performed by separately maximizing Qπ with respect to the mixing proportions
(π1, . . . , πK) and QΨk

with respect to parameters Ψk for each of the K components
densities. The function Qπ is maximized with respect to (π1, . . . , πK) ∈ [0, 1]K subject
to the constraint

∑
k πk = 1. This maximization is done in a closed form and leads to

π
(q+1)
k =

∑n
i=1 τ

(q)
ik

n
=

n
(q)
k

n
, (2.14)

where n
(q)
k can be viewed as the expected cardinal number of the subpopulation k

estimated at iteration q.

Now, let us consider the update for the parametersΨk for each component density k.
In general, the E- and M-steps have particularly simple forms when the complete-data
probability density function is from the exponential family (McLachlan and Krishnan,
1997) and the solution to the M-step exists in a closed form. In the cases where the M-
step can not be performed directly, adapted extensions can be used. Some extensions
associated with the E- and the M- steps will be given in section 2.2.3.

The next section presents the EM algorithm for Gaussian mixtures.

The EM algorithm for Gaussian mixtures

Let us consider the Gaussian mixture model case, that is,

f(xi;Ψ) =

K∑

k=1

πkN (xi;µk,Σk), (2.15)

Figure 2.2 shows the corresponding graphical model representation with π = (π1, . . . , πK),
µ = (µ1, . . . ,µK) and Σ = (Σ1, . . . ,ΣK), and Figure 2.3 shows as example of a three-
component Gaussian mixture density in R

2 with π = (0.3, 0.4, 0.3), µ1 = (−1.5, 0.6),
µ2 = (0.1, 0.1), µ3 = (2.2, 1.1), Σ1 = (0.4 0; 0 0.2), and Σ2 = Σ3 = 0.3× I2.

Figure 2.2: Graphical representa-

tion of a Gaussian mixture model.
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The observed-data log-likelihood of Ψ for the Gaussian mixture model is given by

L(Ψ;X) =
n∑

i=1

log
K∑

k=1

πkN
(
xi;µk,Σk

)
. (2.16)

This log-likelihood is iteratively maximized by the EM algorithm. The complete-data
log-likelihood in this case is given by:

Lc(Ψ;X, z) =
n∑

i=1

K∑

k=1

zik log πkN
(
xi;µkΣk

)
. (2.17)

Thus, given an initial parameter Ψ(0) = (π
(0)
1 , . . . , π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) where Ψ

(0)
k =

(µ
(0)
k ,Σ

(0)
k ), the EM algorithm alternates between the following steps until convergence

to a local maximum of the log-likelihood function.

E-step: This step consists of computing the expectation of the complete-data log-
likelihood (2.17), given the observations X and the current value Ψ(q) of the parameter
Ψ:

Q(Ψ,Ψ(q)) = E

[
Lc(Ψ;X, z)|X;Ψ(q)

]

=
n∑

i=1

K∑

k=1

τ
(q)
ik log πk +

n∑

i=1

K∑

k=1

τ
(q)
ik logN (xi;µk,Σk) . (2.18)

This step therefore computes the posterior probabilities

τ
(q)
ik = p(zi = k|xi,Ψ

(q)) =
πkN (xi;µ

(q)
k ,Σ

(q)
k )

∑K
ℓ=1 πℓN (xi;µ

(q)
ℓ ,Σ

(q)
ℓ )

(2.19)

that xi originates from the kth component density.

M-step: The M-step updates the estimate of Ψ by the value Ψ(q+1) of Ψ that max-
imizes the function Q(Ψ,Ψ(q)) with respect to Ψ over the parameter space Ω. In this
case of Gaussian mixture, the maximization of the Q-function with respect to µk and
Σk yields to the following updating formulas (McLachlan and Peel., 2000):

µ
(q+1)
k =

1

n
(q)
k

n∑

i=1

τ
(q)
ik xi, (2.20)

Σ
(q+1)
k =

1

n
(q)
k

n∑

i=1

τ
(q)
ik (xi − µ

(q+1))(xi − µ
(q+1))T . (2.21)

The E- and M-steps are alternated iteratively until the change in the log likelihood
value are less than some specified threshold. The pseudo code 1 summarizes the EM
algorithm for Gaussian mixture models.
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Algorithm 1 Pseudo code of the EM algorithm for Gaussian mixture models.

Inputs: a data set X and the number of clusters K

1: fix a threshold ǫ > 0

2: set q ← 0 (iteration)

3: Initialize: Ψ(0) = (π
(0)
1 , . . . , π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) with Ψ

(0)
k = (µ

(0)
K ,Σ

(0)
K )

4: while increment in log-likelihood > ǫ do

5: E-step:

6: for k = 1, . . . ,K do

7: Compute τ
(q)
ik for i = 1, . . . , n using Equation (2.19)

8: end for

9: M-step:

10: for k = 1, . . . ,K do

11: Compute π
(q+1)
k using Equation (2.14)

12: Compute µ
(q+1)
k using Equation (2.20)

13: Compute Σ
(q+1)
k using Equation (2.21)

14: end for

15: q ← q + 1

16: end while

Outputs: Ψ̂ = Ψ(q)

τ̂ik = τ
(q)
ik (a fuzzy partition of the data)

Initialization Strategies and stopping rules

The initialization of the EM algorithm is a crucial point since it maximizes locally
the log-likelihood. Therefore, if the initial value is inappropriately selected, the EM
algorithm may lead to an unsatisfactory estimation. To address this issue, several
methods are reported in the literature. The most used strategy consists of using several
EM tries and selecting the solution maximizing the log-likelihood among those runs.
For each run of EM, one can initialize it using for example one strategy among the
following:

• Initialize randomly

• Compute a parameter estimate from another clustering algorithm such as K-
means, Classification EM (Celeux and Diebolt, 1985), Stochastic EM (Celeux
and Govaert, 1992)...

• Initialize EM with a few number of steps of EM itself.

Further details about choosing starting values for the EM algorithm for Gaussian mix-
tures can be found for example in Biernacki et al. (2003).

The EM algorithm can be stopped when the relative increase of the log-likelihood

between two iterations is below a fixed threshold |L
(q+1)−L(q)

L(q) | ≤ ǫ or when a predefined
number of iterations is reached.
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2.2 Multidimensional data modeling using finite mixture models

The EM algorithm always monotonically increases the observed-data log-likelihood
(Dempster et al., 1977; McLachlan and Krishnan, 1997). The sequence of parameter es-
timates generated by the EM algorithm converges toward at least a local maximum or a
stationary value of the incomplete-data likelihood function (Wu, 1983). For the partic-
ular case of Gaussian mixtures, the EM algorithm converges toward a local maximum
or a saddle point of the log-likelihood function (Xu and Jordan, 1996).

The EM algorithm has a number of advantages, including its numerical stability,
simplicity of implementation and reliable convergence. In addition, by using adapted
initializations, one may attempt the global optimum of the log-likelihood function.
In general, both the E- and M-steps will have particularly simple forms when the
complete-data probability density function is from the exponential family (McLachlan
and Krishnan, 1997).

Some of the drawbacks of the EM algorithm consist of the fact that it is sometimes
very slow to converge especially for high dimensional data; and in some problems, the
E- or M-step may be analytically intractable. Fortunately, there exist extended EM
versions that can tackle these problems. In the next section, we shall briefly address
these issues by describing some EM extensions.

2.2.3 EM extensions

The EM variants mainly aim at increasing the convergence speed of EM and address-
ing the optimization problem in the M-step, or at computing the E-step when it is
intractable. In the first case, one can speak about deterministic algorithms, e.g., Incre-
mental EM (IEM) (Neal and Hinton, 1998), Gradient EM (Lange, 1995), Generalized
EM (GEM) algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997), Ex-
pectation Conditional Maximization (ECM) (Meng and Rubin, 1993) and Expectation
Conditional Maximization Either (ECME) (Liu and Rubin, 1994). In the second case,
one can speak about stochastic algorithms, e.g., Monte Carlo EM (MCEM) (Wei and
Tanner, 1990), Stochastic EM (SEM) (Celeux and Diebolt, 1985; Celeux et al., 1995,
1996) and Simulated Annealing EM (SAEM) (Celeux and Diebolt, 1991, 1992; Celeux
et al., 1995, 1996). Therefore, the purpose of the deterministic variants of EM is on
one hand to increase the speed of convergence of the basic EM, and on the other hand,
to address the problem of the M-step. Indeed, for the E-step, the EM algorithm re-
veals to be impractical for application with large databases. Then the use of partial
E-steps (e.g., Incremental) as suggested by Neal and Hinton (1998), in which the E-
step is performed only for a block of data (or a single data point) at each iteration, can
significantly reduce the computational time with preserving the convergence properties.

When the E-step is intractable, principal extended EM approaches use Monte-Carlo
approximation, e.g., MCEM which approximates the analytically intractable E-step by
the Monte-Carlo average, SEM which arises for the particular case of MCEM when one
single simulation is drawn at each iteration and SAEM which results from a compromise
between estimates provided by SEM and EM.

The M-step can be addressed by a Gradient EM which includes a gradient or a
Newton Raphson procedure for the optimization of the M-step. The GEM algorithm
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2.2 Multidimensional data modeling using finite mixture models

consists of only improving the Q-function at the M-step rather than maximizing it
at each EM iteration. Among the variety of approaches to accelerating EM that are
concerned with the M-step, one can cite the ECM algorithm or the ECME algorithm.
In ECM, the M-step is performed by several conditional maximizations (CM steps)
by dividing the parameter space into sub-spaces. The parameter vector updates are
then performed sequentially, one coordinate block after another in each sub space.
ECME further extends the ECM algorithm where each CM-step either maximizes the
Q-function or the incomplete-data (observed-data) log-likelihood function.

2.2.4 Online versions of the EM algorithm

The EM algorithms described in the previous section require that either the E-step or
the M-step be performed for all data items. This batch mode learning is unsuitable
in real-time applications where the data do arrive sequentially, one at a time. In this
framework, implementing online (recursive) algorithms is a requirement to give quick
parameter updates and to handle real-time problems. In this section we will describe
recursive implementations of the EM algorithm.

Stochastic Gradient EM Algorithms

The first recursive parameter estimation procedure for incomplete data model has been
proposed by Titterington (1984). Given n independent and identically distributed
observations (x1, . . . ,xn), the recursive procedure is given by1 :

Ψ(t+1) = Ψ(t) + λt[Ic(Ψ
(t))]−1∇Ψ log p(xt+1;Ψ

(t)) (2.22)

where Ψ(t) denotes the current value of the parameter estimate after t observations,
the {λt} is a decreasing sequence of positive step sizes and

Ic(Ψ) = −E
[
∇2

Ψ log p(x, z;Ψ)
]

is Fisher information matrix associated with a complete observation (x, z).

The recursion (2.22) is recognizable as a stochastic approximation procedure on Ψ
in the sense where the updating term only depends on the observation at time t + 1.
Indeed, it takes the typical form of the general stochastic algorithm which can be
written as

Ψ(t+1) = Ψ(t) + γt∇ΨJ(xt+1;Ψ
(t)), (2.23)

where {γt} is the learning rate of the algorithm (which corresponds to a matrix in
(2.22)) and the criterion J(xt+1;Ψ

(t)) measures the quality of the model described
by the parameter Ψ(t) given the observation xt+1 (Bottou, 1998, 2004). For further
overview of the stochastic gradient algorithms the reader is referred to Bottou (1998,
2004).

1Here since in the online framework the data are arriving one at a time, we use the notation t to

denote the number of the iteration processed with the data point xt.
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2.2 Multidimensional data modeling using finite mixture models

Wang and Zhao (2006) have established that for mixture models of regular expo-
nential family, under very mild conditions, the algorithm (2.22) converges almost surely
toward a parameter vector from the set

{Ψ :
∂

∂Ψ
E[log p(x;Ψ)] = 0}

which may contain local maxima and saddle points.

Online EM algorithm

A recursive parameter estimation using an online EM algorithm has been proposed by
Sato and Ishii (2000) for normalized Gaussian networks. More recently, Cappé and
Moulines (2009) proposed an online EM algorithm for latent data models, including
mixtures. Cappé and Moulines (2009) proposed an extension of Titterington’s ap-
proach (Titterington, 1984). It consists of replacing the expectation step by a stochas-
tic approximation step, while keeping the maximization step unchanged. Formally, at
iteration t, one computes the following function

Qt+1(Ψ,Ψ(t)) = Qt(Ψ,Ψ(t−1)) + λt

(
E
[
log p(xt+1, zt+1;Ψ)|xt+1;Ψ

(t)
]
−Qt(Ψ,Ψ(t−1))

)

(2.24)

and computes the parameter Ψ(t+1) by maximizing Qt+1(Ψ,Ψ(t)) w.r.t Ψ. The ad-
vantage of (2.24) compared to (2.22) is that it automatically satisfies the parameter
constraints (Cappé and Moulines, 2009). In addition, (2.24) does not explicitly require
a matrix inversion compared to (2.22). Further practical comparisons, and comparisons
in terms of rate of convergence between these two approaches are given in Cappé and
Moulines (2009).

In the case where the complete-data likelihood belongs to the exponential family,
Cappé and Moulines (2009) have established that the online EM algorithm arizing from
(2.24) consists of updating the expectation of the complete-data sufficient statistics of
the model parameters in the E-step by the following approximation recursion

St+1 = (1− λt)St + λtE[T (xt+1, zt+1;Ψ)|xt+1,Ψ
(t)] (2.25)

and then run the M-step basing on the expected complete-data sufficient statistics.
In (2.25), St represents of the expectation of the complete-data sufficient statistics
computed up to time t and T (xt+1, zt+1;Ψ) represents the sufficient statistic associated
with the current complete observation (xt+1, zt+1).

Cappé and Moulines (2009) proved that, if the complete data likelihood belongs to
the exponential family and given suitable conditions on the stepsize λt, the online EM
algorithm (2.25) is guaranteed to converge to a local optimum of the limiting normalised
log-likelihood criterion (see (Cappé and Moulines, 2009)). However, the online EM does
not guarantee increasing the incomplete-data log-likelihood after each update.

In the framework of mixture model-based clustering, Samé et al. (2007) proposed
an online algorithm which consists of a stochastic gradient ascent derived from the
Classification EM algorithm (CEM) and maximizes the expectation of the complete-
data (classification) likelihood. For the case of Hidden Markov Models, recent online
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EM implementations have been proposed for the case of continuous HMMs (Cappé,
2009) or discrete HMMs (Mongillo and Deneve, 2008).

2.3 Multidimensional data clustering

Clustering is often referred to as unsupervised learning in the sense that the class
labels of the data are unknown (missing, hidden). Therefore, unsupervised learning
algorithms, including clustering and segmentation are suitable for many applications
where labeled data is difficult to obtain. Clustering is also often used to explore and
characterize a dataset before running a supervised learning task. In typical clustering
algorithms, the data are grouped by some notion of dissimilarity. Therefore, a similarity
measure must be defined based on the data. The definition of dissimilarity and the
method in which the data are clustered differ based on the clustering algorithm being
applied.

Given a dataset of n i.i.d individuals (inputs)X = (x1, . . . ,xn), the aim of clustering
is to find a partition of the data by dividing them into clusters (groups) such that the
data within a group tend to be more similar to one another as compared to the data
belonging to different groups. In this section, we describe some well-known clustering
algorithms, including distance-based and model-based clustering approaches.

2.3.1 K-means algorithm

The K-means algorithm (MacQueen, 1967), a straightforward and widely used clus-
tering algorithm, is one of the most important algorithms in unsupervised learning.
K-means is an iterative clustering algorithm that partitions a given dataset into a pre-
defined number of clusters K. Typically, the value for K is chosen by prior knowledge
of how many clusters actually appear in the data, how many clusters are desired for
the current application, or the types of clusters found by experimenting with different
values of K. In K-means, each cluster is represented by its mean (cluster centroid)
µk in R

d. The default measure of similarity for K-means is the Euclidean distance
||.||2. It attempts to minimize the following nonnegative objective function referred to
as distortion measure:

J(µ1, . . . ,µK , z) =

K∑

k=1

n∑

i=1

zik||xi − µk||
2 (2.26)

which corresponds to the total squared Euclidean distance between each data point
xi and its closest cluster representative µzi

. After starting with an initial solution

(µ
(0)
1 , . . . ,µ

(0)
K ) (eg, by randomly choosing K points in R

d or some data points), K-
means iteratively performs the minimization of (2.26) by alternating between the two
following steps until convergence:

• Step 1: Assignment step: Each data point is assigned to its closest centroid
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using the Euclidian distance: ∀i = 1, . . . , n

z
(q)
ik =

{
1 if k = argmin

z∈Z
||xi − µz||

2

0 otherwise.
(2.27)

• Step 2: Relocation step: Each cluster representative is relocated to the center
(i.e., arithmetic mean) of all data points assigned to it:

µ
(q+1)
k =

∑n
i=1 z

(q)
ik xi

∑n
i=1 z

(q)
ik

,

q being the current iteration.

The K-means algorithm is simple to implement and relatively fast. It converges
when the assignments (and hence the centroids µ) no longer change. One can show
that the K-means objective function (2.26) will decrease whenever there is a change in
the assignment or the relocation steps. Convergence is guaranteed in a finite number
of iterations since there are only a finite number of possible assignments for the set of
discrete variables zik. However, the algorithm converges toward a local minimum be-
cause the minimized objective function is non-convex which implies that the algorithm
is sensitive to the initial centroid locations. The convergence properties of K-means
can be found in Bottou and Bengio (1995); Dang (1998). The local minima problem
for K-means can be countered by running the algorithm multiple times with different
initializations and then selecting the best result in the sense of the minimal distortion.
Another limitation of K-means lies in the fact that, when running K-means, particu-
larly with large values of K and/or the dimension of the input space is very high, one
can have empty clusters. In these cases, reinitializing the cluster representative of the
empty cluster or taking some points from the largest cluster, are possible.

From a probabilistic point of view, K-means is equivalent to a particular case of
the CEM algorithm (Celeux and Govaert, 1992) (see section 2.3.2) for a mixture of K
Gaussian densities with the same proportions πk = 1

K
∀k and identical isotropic covari-

ance matrices Σk = σ2I ∀k. More precisely, if the soft assignments of data points to the
mixture components are instead performed in a “hard” way so that each data point is
assigned to the most likely mixture component (MAP principle), then one obtains the
K-means algorithm. Therefore, K-means assumes that the dataset is composed of a
mixture of K hyper-spheres of data where each of the K clusters corresponds to one of
the mixture components. This implies thatK-means will not provide good performance
when the data can not be described by well separated spherical Gaussians.

Online K-means: The online (sequential) version of K-means is run as follows.
When the data point xt is presented at time t1, the cluster center µk∗ (k∗ ∈ {1, . . . ,K})
that is the nearest to xt in the sense of the minimum distance (Euclidean) to the data

1Here since we are in an online framework, we use the index t instead of q to denote the iteration

which in this case represents the index number of the data point.
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point is then updated by the following rule:

µ
(t+1)
k∗ =

xt + (#class k∗)(t)µ
(t)
k∗

(#class k∗)(t) + 1
(2.28)

where (#class k∗)(t) is the number of data points assigned to the cluster k at time t.
This updating rule can be rewritten as

µ
(t+1)
k∗ = µ

(t)
k∗ + α(t)(xt − µ

(t)
k∗ ) (2.29)

where α(t) = (#class k∗)(t)

(#class k∗)(t)+1
is the learning rate. It can be seen that this learning rule is

an example of the winner-take-all (WTA) rule in competitive learning (Kohonen, 2001;
Kong and Kosko, 1991), because only the cluster that “wins” the data point can be
updated from it.

2.3.2 Model-based clustering

In the previous section we presented the main common partition-based clustering algo-
rithm, that is K-means. In this section, we describe general clustering methods based
on finite mixture models. This approach is known as the model-based clustering (Ban-
field and Raftery, 1993; Celeux and Govaert, 1993; Fraley and Raftery, 1998, 2002;
McLachlan and Basford, 1988; Scott and Symons, 1971).

Clustering via finite mixture models

In the finite mixture approach for cluster analysis, the data probability density function
is assumed to be a mixture density, each component density being associated with a
cluster. The problem of clustering therefore becomes the one of estimating the parame-
ters of the assumed mixture model (e.g, estimating the mean vector and the covariance
matrix for each component density in the case of Gaussian mixtures). In this way, two
main approaches are possible. The former is refereed to as the mixture approach or the
estimation approach and the latter is known as the classification approach.

The mixture approach In the mixture approach, the parameters of the mixture
density are estimated in a maximum likelihood estimation framework generally via
the EM algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997). After
performing the probability density estimation, the posterior probabilities (c.f., equation
(2.9) are then used to determine the cluster memberships through the MAP principle.

The classification approach The classification approach consists of optimizing clas-
sification likelihood criteria (Scott and Symons, 1971, 1981). More particularly, in
the maximum likelihood classification approach, the optimized classification likelihood
function is the complete-data likelihood (c.f., Equation (2.7)) and the used optimization
algorithm in this case is the CEM algorithm (Celeux and Govaert, 1992). According to

21



2.3 Multidimensional data clustering

the classification approach, the cluster memberships and the model parameters are esti-
mated simultaneously as the learning proceeds (c.f., section 2.3.2). For a more detailed
account of both the mixture and the classification approach, the reader is refereed to
the paper of Celeux and Govaert (1992). In the next section we describe the CEM
algorithm.

Classification EM algorithm (CEM)

The EM algorithm computes the maximum likelihood (ML) estimate of a mixture
model. The Classification EM (CEM) algorithm (Celeux and Govaert, 1992) esti-
mates both the mixture model parameters and the classes’ labels by maximizing the
completed-data log-likelihood Lc(Ψ;X, z) = log p(X, z;Ψ) (Celeux and Govaert, 1992).

After starting with an initial parameter Ψ(0), the CEM algorithm, in its general
formulation, iteratively alternates between the two following steps until convergence:

Step 1: Compute the missing data z(q+1) given the observations and the current
estimated model parameters Ψ(q):

z(q+1) = arg max
z∈Zn

Lc(Ψ
(q);X, z) (2.30)

Step 2: Compute the model parameters update Ψ(q+1) by maximizing the complete-
data log-likelihood given the current estimation of the missing data z(q+1):

Ψ(q+1) = argmax
Ψ∈Ω

Lc(Ψ;X, z(q+1)). (2.31)

As shown by Celeux and Govaert (1992), the CEM algorithm, for the case of mixture
models, is equivalent to integrating a classification step (C-step) between the E- and the
M- steps of the EM algorithm. The C-step assigns the observations to the component
densities by using the MAP rule. Thus, an iteration of CEM for the case of of finite
mixture model can be summarized as follows:

E-step: Compute the conditional posterior probabilities τ
(q)
ik that the observation xi

arises from the kth component density.

C-step: Assign each observation xi to the component maximizing the conditional
posterior probability τik:

z
(q+1)
i = argmax

k∈Z
τ
(q)
ik (i = 1, . . . , n). (2.32)

Therefore this step provides a hard partition of the data and then the completed-data
log-likelihood can be computed based on the obtained partition.
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M-step: Update the mixture model parameters by maximizing the completed-data
log-likelihood for the partition provided by the C-step.

The pseudo code 2 summarizes the CEM algorithm for the case of mixture of Gaussians.

Algorithm 2 Pseudo code of the CEM algorithm for Gaussian mixture models.

Inputs: a data set X and the number of clusters K

1: fix a threshold ǫ > 0

2: set q ← 0 (iteration)

3: Initialize: Ψ(0) = (π
(0)
1 , . . . , π

(0)
K ,Ψ

(0)
1 , . . . ,Ψ

(0)
K ) with Ψ

(0)
k = (µ

(0)
K ,Σ

(0)
K )

4: while increment in the complete-data log-likelihood > ǫ do

5: E-step:

6: for k = 1, . . . ,K do

7: Compute τ
(q)
ik for i = 1, . . . , n using Equation (2.19)

8: end for

9: C-step:

10: for k = 1, . . . ,K do

11: Compute z
(q)
i = argmax

k∈Z
τ
(q)
ik for i = 1, . . . , n

12: Set z
(q)
ik = 1 if z

(q)
i = k and z

(q)
ik = 0 otherwise, for i = 1, . . . , n

13: end for

14: M-step:

15: for k = 1, . . . ,K do

16: Set τ
(q)
ik = z

(q)
ik for i = 1, . . . , n

17: Compute π
(q+1)
k using Equation (2.14)

18: Compute µ
(q+1)
k using Equation (2.20)

19: Compute Σ
(q+1)
k using Equation (2.21)

20: end for

21: q ← q + 1

22: end while

Output: Ψ̂ = Ψ(q)

ẑi = z
(q)
i (i = 1, . . . , n)

The CEM algorithm is easy to implement, typically faster to converge than EM
and monotonically improves the complete-data log-likelihood as the learning proceeds.
In addition, the CEM converges toward a local maximum of the complete-data log-
likelihood (Celeux and Govaert, 1992). However, it can be noted that CEM provides
biased estimates of the mixture model parameters. Indeed, CEM updates the model
parameters from a truncated sample contrary to EM for which the model parameters
are updated from the whole data through the fuzzy posterior probabilities and therefore
the parameter estimations provided by EM are more accurate.

It can be shown that CEM which is formulated in a probabilistic framework, gen-
eralizes several algorithms based on distance criteria such as the well-known K-means
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algorithm (Celeux and Govaert, 1992).

The idea of using model-based clustering is advantageous compared to many other
clustering methods. Indeed, many clustering methods are heuristic and impose a fixed
structure on the clusters. For example using K-means method tends to produce same
size spherical clusters, which is not usually the case in practice where one may need
some flexibility in specifying the form of the clusters. Another problem is that the
number of clusters must be specified such as in K-means. As it will be derived in the
next section, the model-based clustering framework allows for specifying the form of
the clusters for producing different statistical models for the data. Determining the
number of clusters can be accomplished by using some model selection criteria basing
on the optimized likelihood functions.

Parsimonious Gaussian mixture models

Parsimonious Gaussian mixture models (Banfield and Raftery, 1993; Celeux and Go-
vaert, 1995) are statistical models that allow for capturing a specific cluster shapes
(e.g., clusters having the same shape or different shapes, spherical or elliptical clusters,
etc). This is accomplished by introducing particular decompositions of the covariance
matrices for the Gaussian mixture model. Formally, the kth covariance matrix of a
Gaussian mixture is decomposed using the following eigenvalue decomposition:

Σk = λkDkAkD
T
k (2.33)

where

• λk represents the volume of the kth cluster or component density. We note that
the size of the cluster is the number of observations belonging to the cluster, while
the volume is the amount of space of the cluster.

• Dk is a matrix with columns corresponding to the eigenvectors of Σk that deter-
mines the orientation of the cluster.

• Ak is a diagonal matrix, whose diagonal entries are the normalized eigenvalues
of Σk arranged in a decreasing order and its determinant is 1. This matrix is
associated with the shape of the cluster.

This eigenvalue decomposition provides three main families of models: the spherical
family, the diagonal family, and the general family and produces 14 different models,
according to the choice of the configuration for the parameters λk, Ak, and Dk (Celeux
and Govaert, 1995). Celeux and Govaert (1995) provide covariance matrix update
equations based on these models by using the EM algorithm. Some of these models
have a closed form, and others must be solved in an iterative manner.

In addition to providing flexible statistical models for the clusters, parsimonious
Gaussian mixture can be viewed as techniques for reducing the number of parameters
in the model. Indeed, for the general Gaussian mixture model, the EM algorithm may
considerably become slow in the case of high dimensional data. Therefore, imposing
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constraints on the covariance matrices reduces the dimension of the optimization prob-
lem. The EM algorithms therefore provide more accurate estimations compared to the
full mixture model.

2.3.3 Assessing the number of clusters: model selection

The problem of choosing the number of clusters can be seen as a model selection prob-
lem. The model selection task consists of choosing a suitable compromise between
flexibility so that a reasonable fit to the available data is obtained, and over-fitting.
A common way is to use a criterion (score function) that ensure the compromise. In
general, we choose an overall score function that is explicitly composed of two compo-
nents: a component that measures the goodness of fit of the model to the data, and
a penalty component that governs the model complexity. This yields an overall score
function of the form

score(model) = error(model) + penalty(model)

which will be minimized.

As in general the complexity of a model M is related to the number of its (free)
parameters ν, the penalty function then involves the number of model parameters. In
this section, we cite the most commonly used criteria for model selection in a proba-
bilistic modeling framework. LetM denote a model, L(Ψ̂) its log-likelihood and ν the
number of its free parameters. Consider that we fitted M different model structures
(M1, . . . ,MM ), from which we wish to choose the “best” one (ideally the one providing
the best prediction on future data). Assume we have estimated the model parameters
Ψ̂m for each model structure Mm (m = 1, . . . ,M) from a sample of n observations
X = (x1, . . . ,xn) and now we wish to choose among these fitted models. The widely
used information criteria are defined as follows1:

• Akaike Information Criterion (AIC) (Akaike, 1974):

AIC(Mm) = L(Ψ̂m)− νm (2.34)

• AIC3 (Bozdogan, 1983):

AIC3(Mm) = L(Ψ̂m)−
3νm
2

(2.35)

• Bayesian Information Criterion (BIC) (Schwarz, 1978):

BIC(Mm) = L(Ψ̂m)−
νm log(n)

2
(2.36)

1Note that here these criteria are given in such a way we attempt to maximize them (this is

done done by just adding a minus sign to the standard formulation in which the criteria are rather

minimized).

25



2.3 Multidimensional data clustering

• Integrated Classification Likelihood (ICL)(Biernacki et al., 2000):

ICL(Mm) = Lc(Ψ̂m)−
νm log(n)

2
(2.37)

where Lc(Ψ̂m) is the complete-data log-likelihood for the modelMm for the complete
data (X, z) = ((x1, z1), . . . , (xn, zn)), and νm denotes the number of free model pa-
rameters. For example, in the case of a d-dimensional Gaussian mixture model we
have:

ν = (K − 1)︸ ︷︷ ︸
πk’s

+K × d)︸ ︷︷ ︸
{µk}

+K ×
d× (d+ 1)

2︸ ︷︷ ︸
{Σk}

=
K × (d+ 1)× (d+ 2)

2
− 1.

In the case of selecting the number of mixture components for a mixture model, Celeux
and Soromenho (Celeux and Soromenho, 1993, 1996) proposed an entropy criterion
called NEC (Normalized Entropy Criterion). This criterion is derived from a particular
decomposition of the log-likelihood function. Consider the log-likelihood for a mixture
model that is given by Equation (2.4), and denote it by L(K) (to refer to the fact
that it is computed for a mixture of K component densities), it can be shown that the
following decomposition holds

L(K) = C(K) + E(K)

where

C(K) =
K∑

k=1

n∑

i=1

τik log[πkf(xi;Ψk)]

which represents a classification log-likelihood term and

E(K) = −
K∑

k=1

n∑

i=1

τik log τik ≥ 0

which is an entropy term of the fuzzy classification defined by the posterior probabilities

τik =
πkf(xi;Ψk)∑K
ℓ=1 πℓf(xi;Ψℓ)

and which measures the degree of overlap between the clusters. The NEC criterion is
given by:

NEC =
E(K)

L(1)− L(K)
· (2.38)

However, it can be seen from the previous equation that NEC(1) (for one cluster) is not
defined. An extension that deals with this problem was presented by Biernacki et al.
(1999).

Figure 2.4 shows an illustration for clustering using the re-scaled two-dimensional
data Old Faithful geyser data set1.

1These data represent the waiting times (in minutes) between eruptions of the Old Faithful geyser

at Yellowstone (Hand et al., 1994)
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Figure 2.4: Clustering results obtained with K-means algorithm (left) with K = 2 and

the EM algorithm (right). The cluster centers are shown by the red and blue crosses and

the ellipses are the contours of the Gaussian component densities at level 0.4 estimated

by EM. The number of clusters for EM have been chosen by BIC for K = 1, . . . , 4.

2.4 Multidimensional data classification

Until now we considered the problem of unsupervised learning where the class labels are
unknown (hidden). When the class labels are given, the tasks of class prediction for new
observations (inputs) consists of supervised learning for classification. In this section
we will describe some well-known and widely used approaches for multidimensional
data classification.

Given a training data set comprising n labeled observations ((x1, y1), . . . , (xn, yn))
where x denotes the observation (or the input) which is assumed to be continuous-
valued in X = R

d and y denotes the target variable (or the output) representing the
class label which is a discrete-valued variable in Y = {1, . . . , G}, G being the number of
classes. In this context of classification, the aim is to predict the value of the class label
y for a new observation x. Two common approaches based on generative classifiers and
discriminative classifiers, may be used (Jebara, 2001, 2003). Discriminative classifiers
learn a direct map from the inputs x to the class labels y or directly learn a model
of the conditional distribution p(y|x). From this conditional distribution we can make
predictions of y, for any new value of x, by using the MAP rule:

ŷ = argmax
y∈Y

p(y|x). (2.39)

Generative classifiers learn a model of the joint distribution p(x, y) which consist in
modeling the class conditional densities given by p(x|y), together with the prior proba-
bilities p(y) for y = 1, . . . , G. The posterior class probabilities are then computed using
Bayes’ theorem:

p(y|x) =
p(y)p(x|y)∑
y′ p(y

′)p(x|y′)
. (2.40)

In the following we give an overview of probabilistic approaches for multidimensional
data modeling and classification.
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2.4 Multidimensional data classification

2.4.1 Linear Discriminant Analysis

Consider the problem of classification where the aim is to classify the observed variables
into G predefined groups or classes. Typical generative approaches consist of modeling
each conditional-class density by a multivariate Gaussian density:

p(x|y = g;Ψg) =
1

(2π)
d
2 |Σg|

1
2

exp
(
−

1

2
(x− µg)

TΣ−1
g (x− µg)

)
(2.41)

where µg ∈ R
d is the mean vector, Σg ∈ R

d×d is the covariance matrix and Ψg =
(µg,Σg) for g = 1, . . . , G.

Linear Discriminant Analysis (LDA) arises when we assume that all the classes have
a common covariance matrix Σg = Σ ∀g = 1, . . . , G. The term “linear” in LDA is due
to the fact that the decision boundaries between each pair of classes g and h are linear.
In fact, in this generative approach, each observation x is assigned to the class ŷ by
using the Maximum A Posteriori (MAP) rule:

ŷ = argmax
g∈Y

p(y = g|x;Ψg)

= argmax
g∈Y

wgN (x;µg,Σ)
∑G

h=1whN (x;µh,Σ)
(2.42)

where wg = p(y = g) is the prior probability of the class g. The decision boundary
between classes g and h, which is the set of inputs x verifying p(y = g|x) = p(y = h|x),
or by equivalence:

log
p(y = g|x;Ψg)

p(y = h|x;Ψh)
= 0⇔ log

wg

wh

+ log
N (x;µg,Σ)

N (x;µh,Σ)
= 0

⇔ log
wg

wh

−
1

2
(µg + µh)

TΣ−1(µg − µh) + xTΣ−1(µg − µh) = 0,(2.43)

which is a linear function in x and therefore the classes will be separated by hyperplanes
in the input space.

Each of the class prior probabilities wg is calculated with the proportion of the class
g in the training data set and is given by

wg =

∑
i|yi=g

n
=

ng

n
. (2.44)

where ng is the cardinal number of class g. The unknown parameters Ψg for each
class g are estimated by maximum likelihood given a labeled training set. Given and
independent and identically distributed (i.i.d) sample, the log-likelihood of Ψg is given
by:

L(Ψg) = log
∏

i|yi=g

N (xi;µg,Σ) =
∑

i|yi=g

logN (xi;µg,Σ). (2.45)

The problem can be solved in a closed form. Calculating the derivative of L(Ψg) with
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respect to µG and Σg and setting it to zero yields:

µ̂g =
1

ng

∑

i|yi=g

xi, (2.46)

Σ̂ =
1

n−G

G∑

g=1

∑

i|yi=g

(xi − µ̂g)(xi − µ̂g)
T , (2.47)

2.4.2 Quadratic Discriminant Analysis

Quadratic Discriminant Analysis (QDA) is an extension of LDA that considers a dif-
ferent covariance matrix for each class. As in LDA, the decision functions between two
classes g and h are computed from the log-ratio of the posterior probabilities of the
class g and the class h:

log
p(y = g|x)

p(y = h|x)
= log

wg

wh

−
1

2
log
|Σg|

|Σh|

−
1

2
{(x− µg)

TΣ−1
g (x− µg)− (x− µh)

TΣ−1
h (x− µh)} = 0. (2.48)

This function is quadratic in x, we then get quadratic discriminant functions in the
input space. The unknown parameters Ψg for QDA are estimated similarly as for
LDA, except that separate covariance matrices must be estimated for each class. The
estimations are given by:

µ̂g =
1

ng

∑

i|yi=g

xi (2.49)

Σ̂g =
1

ng

∑

i|yi=g

(xi − µ̂g)(xi − µ̂g)
T . (2.50)

2.4.3 Mixture Discriminant Analysis

We have seen for the Gaussian case, in both LDA and QDA, that each class density
is modeled by a single Gaussian density. This may be limited for modeling non ho-
mogeneous classes where the classes are dispersed. In Mixture Discriminant Analysis
(MDA) (Hastie and Tibshirani, 1996), each class density is modeled by a Gaussian
mixture density (McLachlan and Peel., 2000; Titterington et al., 1985). The MDA
approach can therefore capture many specific properties of real data such as multi-
modality, unobserved heterogeneity, heteroskedasticity, etc. For MDA, the Gaussian
mixture density is defined by:

p(x|y = g;Ψg) =

Rg∑

r=1

πgrN (x;µgr,Σgr) (2.51)

where Rg is the number of mixture components for class g,

Ψg = (πg1, . . . , πgRg ,µg1, . . . ,µgRg
, . . . ,Σg1, . . . ,ΣgRg)
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is the parameter vector of the mixture density of class g and the πgr’s (r = 1, . . . , Rg)

are the non-negative mixing proportions satisfying
∑Rg

r=1 πgr = 1 ∀g. Note that here
we allow a different covariance matrix for each mixture mixture component. However,
one can also consider a mixture model where the component densities have a common
covariance matrix (Hastie and Tibshirani, 1996).

Figure 2.5 shows a three-class example in R
2.

The classification methods described in the previous section are based on probabilis-
tic generative methods. In the next section we will discuss a widely used probabilistic
discriminative method for classification: the logistic regression.

2.4.4 Multi-class Logistic Regression

Logistic regression is a probabilistic discriminative approach widely used in supervised
learning (Hastie et al., 2010; Hosmer and Lemeshow, 2000). It is widely used for binary
classification, for example in diagnosis problems: patients have disease or not, etc.

The model

The multi-class logistic regression model directly models the classes’ posterior proba-
bilities via the following model1:

p(y = g|x) = πg(x;w) =
exp(wT

g x)∑G
h=1 exp(w

T
hx)

(2.52)

for g = 1, . . . , G, which is a logistic transformation of a linear functions in x that
ensures that the posterior probabilities are constrained to sum to one and remain in
[0, 1]. The vector w = (w1, . . . ,wG)

T represents the model parameter vector which is
in R

G×(d+1). Since the logistic probabilities sum to one, wG is generally set to the null
vector to ensure this constraint. The learning procedure of the model is given in the
next section.

Parameter estimation

Here we will discuss in detail the multi-class case (the binary case being a partic-
ular case of the general multinomial setting). The maximum likelihood is generally
used to fit the model (Minka, 2001). Suppose we have a labeled independent sample
((x1, y1), . . . , (xn, yn)). The conditional log-likelihood of w for the given class labels

1Notice that in the model (2.52) we add a constant coordinate (1) to the input vector x so that,

hereafter, for logistic regression we have x = (x1, . . . , xd, 1)
T which is in R

d+1. This choice is used to

simplify the mathematical expressions, namely for the derivatives of the logistic function.
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y = (y1, . . . , yn) conditionally on the inputs X = (x1, . . . ,xn) can be written as

L(w) = L(w;X,y) = log
n∏

i=1

p(yi|xi;w)

= log

n∏

i=1

G∏

g=1

p(yi = g|xi;w)yig

=

n∑

i=1

G∑

g=1

yig log πg(xi;w) (2.53)

where yig is an indicator binary variable such that yig = 1 if and only yi = g (i.e, xi

belongs to the class g). This log-likelihood can not be maximized in a closed form.
The Newton-Raphson (NR) algorithm is generally used to perform the maximization
as well as other gradient-based techniques (see (Minka, 2001)). Here we consider the
use of the Newton-Raphson algorithm to maximize L(w) with respect to w.

The Newton-Raphson algorithm is an iterative numerical optimization algorithm
which consists in starting with an initial arbitrary solution w(0), and updating the
estimation of w until a convergence criterion is reached (typically, in this case, when
the relative variation of L(w) is below a prefixed threshold). A single NR update is
given by:

w(l+1) = w(l) −

[
∂2L(w)

∂w∂wT

]−1
∂L(w)

∂w
(2.54)

where the Hessian and the gradient of L(w) (which are respectively the second and
first derivative of L(w)) are evaluated at w = w(l).

The gradient component ∂L(w)
∂wh

(h = 1, . . . , G− 1) is given by (see Appendix A.3:

∂L(w)

∂wh

=
n∑

i=1

(
yih − πh(xi;w)

)
xi (2.55)

which can be formulated in a matrix form as

∂L(w)

∂wh

= XT (yh − ph) (2.56)

where X is the n × (d + 1) matrix whose rows are the input vectors xi, yh is the
n× 1 column vector whose elements are the indicator variables yih for the hth logistic
component:

yh = (y1h, . . . , ynh)
T

and ph is the n×1 column vector of logistic probabilities corresponding to the ith input

ph = (πh(x1;w), . . . , πh(xn;w))T .

Thus, the matrix formulation of the gradient of L(w) for all the logistic components is

∂L(w)

∂w
= X∗T (Y −P) (2.57)

31



2.4 Multidimensional data classification

where Y = (yT
1 , . . . ,y

T
G−1)

T and P = (pT
1 , . . . ,p

T
G−1)

T are n× (G− 1) column vectors
and X∗ is the (n × (G − 1)) by (d + 1) matrix of G − 1 copies of X such that X∗ =
(XT , . . . ,XT )T . It is therefore easy to verify that the gradient vector is of dimension
(G− 1)× (d+ 1).

The Hessian matrix is composed of (G − 1) × (G − 1) block matrices where each
block matrix is of dimension (d+ 1)× (d+ 1) and is given by:

∂2L(w)

∂wh∂w
T
k

= −
n∑

i=1

πh(xi;w) (δhk − πk(xi;w)) xix
T
i (2.58)

(c.f., Appendix A.3, which can be formulated in a matrix form as

∂2L(w)

∂wh∂w
T
k

= −XTWhkX (2.59)

where Whk is the n × n diagonal matrix whose diagonal elements are
πh(xi;w) (δhk − πk(xi;w)) for i = 1, . . . , n. For all the logistic components (h, k =
1, . . . , G− 1), the Hessian takes the following form:

∂2L(w)

∂w∂wT
= −X∗TWX∗ (2.60)

where W is the (n× (G− 1)) by (n× (G− 1)) matrix composed of (G− 1))× (G− 1))
block matrices, each block is Whk (h, k = 1, . . . , G − 1). It can be shown that the
Hessian matrix for the multi-class logistic regression model is positive semi definite and
therefore the optimized log-likelihood is concave (Bishop, 2006). The NR algorithm
(2.54) in this case can therefore be reformulated from the Equations (2.57) and (2.60)
as

w(l+1) = w(l) + (X∗TW(l)X∗)−1X∗T (Y −P(l))

= (X∗TW(l)X∗)−1
[
X∗TW(l)X∗w(l) +X∗T (Y −P(l))

]

= (X∗TW(l)X)−1X∗T
[
W(l)X∗w(l) + (Y −P(l))

]

= (X∗TW(l)X∗)−1X∗TW(l)Y∗ (2.61)

where Y∗ = X∗w(l) + (W(l))−1(Y − P(l)) which yields in the Iteratively Reweighted
Least Squares (IRLS) algorithm.

The main advantage of the Newton-Raphson method is its quadratic convergence
(Boyd and Vandenberghe, 2004).

Illustration

Figure 2.5 shows an illustration of the classification approaches using a synthetic data
set comprising three classes. The decision boundaries are shown and it can be observed
that that MDA can deal with the problem of heterogeneous classes due to the mix-
ture formulation which provides better class separation due to the complex non-linear
decision boundaries.
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Linear Discriminant Analysis (LDA)

 

 

Quadratic Discriminant Analysis (QDA)

 

 

Mixture Discriminant Analysis (MDA)

 

 

Multi−class Logistic Regression

 

 

Figure 2.5: A three-class example of a synthetic data set in which one of the classes

occurs into two sub-classes, with training data points denoted in blue (�), green (×),

and red (◦). Ellipses denote the contours of the class probability density functions, lines

denote the decision boundaries, and the background colors denote the respective classes

of the decision regions. We see that both LDA and Logistic regression provide linear

separation, while QDA and MDA provide non linear separation. MDA can further deal

the problem of heterogeneous classes.

2.5 General approaches for multidimensional sequential

data

Until now we have considered independence assumption for the observations which were
assumed to be independent and identically distributed (i.i.d). In this section we will
relax this assumption by allowing a dependence between the data which are supposed
to be an observation sequence and therefore ordered in the time.

2.5.1 Markov chains

Markov chains are statistical modeling tools used for modeling many phenomena in
several application domains. A Markov chain is a sequence of n random variables
(z1, . . . , zn), generally referred to as the states of the chain, verifying the Markov prop-
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erty that is, the current state given the previous state sequence depends only on the
previous state. Formally,

p(zt|zt−1, zt−2, . . . , z1) = p(zt|zt−1) ∀t > 1. (2.62)

The probabilities p(.|.) computed from the distribution p are called the transition prob-
abilities. When the transition probabilities do not depend on t, the chain is called a
homogeneous or a stationary Markov chain. The standard Markov chain can be ex-
tended by assuming that the current state depends on a history of the state sequence,
in this cas one can speak about high order Markov chains (see for example the thesis
of Muri (1997)). Formally, a Markov chain of order p, p being a finite integer, can be
defined as

p(zt|zt−1, zt−2, . . . , z1) = p(zt|zt−1, . . . , zt−p) ∀t > p. (2.63)

Markov chains are often integrated in a statistical latent data model for sequential
data. In this case, the hidden sequence is assumed to be a Markov chain. The resulting
model, so-called Hidden Markov Model (HMM) will be introduced in the next section.
.

2.5.2 Hidden Markov Models

Hidden Markov Models (HMMs) are a class of latent data models widely used in many
application domains, including speech recognition, image analysis, time series predic-
tion (Derrode and Pieczynski, 2006; Rabiner, 1989), etc. An HMM is a statistical model
appropriate for modeling sequential data in which successive samples are no longer as-
sumed to be independent. It can therefore be seen as a generalization of the mixture
model by relaxing the independence assumption. Let us denote by Y = (y1, . . . ,yn)
the observation sequence where the multidimensional data example yt is observed data
at time t, and let us denote by z = (z1, . . . , zn) the hidden state sequence where the
discrete random variable zt which takes its values in the finite set Z = {1, . . . ,K}
represents the unobserved state associated with yt. An HMM is fully determined by:

• the initial distribution π = (π1, . . . , πK) where πk = p(z1 = k); k ∈ {1, . . . ,K},

• the matrix of transition probabilities A where Aℓk = p(zt = k|zt−1 = ℓ) for
t = 2, . . . , n, satisfying

∑
k Aℓk = 1,

• the set of parameters (Ψ1, . . . ,ΨK) of the parametric conditional probability
densities of the observed data p(yt|zt = k;Ψk) for t = 1, . . . , n and k = 1, . . . ,K.
These probabilities are also called the emission probabilities.

Figure 2.6 shows a graphical model representation of an HMM with Gaussian emission
probabilities.

With this specification of state dependency, the distribution of a particular config-
uration z = (z1, . . . , zn) of the latent state sequence is written as

p(z;π,A) = p(z1;π)
n∏

t=2

p(zt|zt−1;A), (2.64)
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and from the conditional independence of the HMM, that is the observation sequence
is independent given a particular configuration of the hidden state sequence, the con-
ditional distribution of the observed sequence is therefore written as

p(Y|z;Ψ) =
n∏

t=1

p(yt|zt;Ψ). (2.65)

We then get the following joint distribution (the complete-data likelihood):

p(Y, z;Ψ) = p(z;A, π)p(Y|z; θ)

= p(z1;π)p(y1|z1;Ψ)

n∏

t=2

p(zt|zt−1;A)p(yt|zt;Ψ). (2.66)

2.5.3 Types of Hidden Markov Models

Hidden Markov Models can be classified according to the properties of their hidden
Markov chain and also according to the type of the emission state distribution. Homo-
geneous HMMs are concerned with models for which the hidden Markov chain has a
stationary transition matrix. Non-homogeneous HMMs (Diebold et al., 1994; Hughes
et al., 1999) arise in the case when a temporal dependency is assumed for the HMM
transition probabilities. In this way, Meila and Jordan (1996) also proposed a non-
homogeneous HMM as an extension of the mixture of experts (Jacobs et al., 1991).
Sometimes, depending on the application, one may aim at modeling a phenomena in
which the states proceed from left to right according to the state indexes in a successive
manner, for example in speech signals (Rabiner and Juang, 1993). This can be achieved
by imposing some restriction for the model through imposing particular constraints on
the transition matrix, and yields left-right HMMs (Rabiner and Juang, 1993; Rabiner,
1989) for which the transition matrix would have upper-triangular banded transition
matrix. For example, for a 3 state left-right HMM, the transition matrix would have
the following form

A =




a11 a12 0
0 a22 a23
0 0 a33


 .

One can also speak about high order HMMs when the current state depends on a finite
history of the HMM states rather than only on the previous one (see for example the
thesis of (Muri, 1997)). HMMs have also been extended by integrating additional input
variables, in addition of the observations and the hidden sequence, which is particu-
larly adapted for modeling discrete state dynamical systems. This extension is called
Input Output HMMs (IOHMMs) and was introduced by Bengio and Frasconi (1995,
1996). Therefore, IOHMMs allow for not only non-stationary transitions between hid-
den states, but also for modeling output vectors dependent on both hidden states and a
set of input variables and can be seen as a probabilistic version for the deterministic fi-
nite state machine Bengio and Frasconi (1995). Autoregressive HMM further generalize
the standard HMMs by allowing the observations to be Autoregressive Markov chains
(Celeux et al., 2004; Frühwirth-Schnatter, 2006; Juang and Rabiner, 1985; Muri, 1997;
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Rabiner, 1989). Another HMM extension lies in the Semi-Markov HMM (Murphy,
2002) which is like an HMM except each state can emit a sequence of observations.

Consider the case of HMM with continuous observed variables, the emission prob-
ability distribution is this case can be Gaussian and in this case one speaks about
Gaussian HMMs. Non-Gaussian HMM have also been introduced. For example one
can cite the HMMs with Gaussian mixture emission probabilities (Gauvain and Lee,
1992, 1994; Juang et al., 1985, 1986). Further model extensions can be found in Mur-
phy (2002). In the two next paragraphs we describe two types of HMMs that are HMM
with Gaussian emission probabilities and Autoregressive Gaussian HMM.

Gaussian HMM

Consider an HMM with Gaussian emission probabilities. The model can be defined as

yt = µzt + ǫt ; ǫt ∼ N (0,Σzt), (2.67)

for t = 1, . . . , n, where the latent sequence z = (z1, . . . , zn) is drawn from a first-order
homogeneous Markov chain and the ǫt are independent random variables distributed
according to a Gaussian distribution with zero mean and covariance matrix Σzt . Ac-
cording to this model, the state conditional density p(yt|zt = k;Ψk) is Gaussian and is
given by

p(yt|zt = k;Ψk) = N (yt;µk,Σk) (2.68)

where Ψk = (µk,Σk). This Gaussian HMM is illustrated by the graphical structure
representation shown in Figure 2.6. The model parameters of an HMM can be learned in

Figure 2.6: Graphical model structure for a Gaussian HMM.

a maximum likelihood framework by the EM algorithm. However, a Bayesian learning
can also be adopted (for example see (Gauvain and Lee, 1992, 1994) for the case of
learning HMMs with mixture emission probabilities). In the next section we describe
the maximum likelihood parameter estimation scheme for the Gaussian HMM.

Parameter estimation

Let Ψ = (π,A,Ψ1, . . . ,ΨK) denotes be the model parameter vector to be estimated.
The parameter estimation is performed by the maximum likelihood method. The
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observed-data log-likelihood to be maximized is given by:

L(Ψ;Y) = log p(Y;Ψ) = log
∑

z

p(Y, z;Ψ)

= log
∑

z1,...,zn

p(z1;A)p(y1|z1;θ)
n∏

t=2

p(zt|zt−1;A)p(yt|zt,θ). (2.69)

Since this log-likelihood is difficult to maximize directly, the EM algorithm (Dempster
et al., 1977), known as Baum Welch algorithm (Baum et al., 1970) in the context
of HMMs, is generally used to maximize it. With this specification, because of zt
for t = 1, . . . , n uses a one of K representation, the joint distribution (complete-data
likelihood) of a particular configuration z of the state sequence and the observation
sequence Y, (c.f., Equation (2.66)) can be rewritten as

p(Y, z;Ψ)=

K∏

k=1

p(z1 = k;π)z1k
n∏

t=2

K∏

k=1

K∏

ℓ=1

p(zt = k|zt−1 = ℓ;A)zt−1,ℓztk

n∏

t=1

K∏

k=1

p(yt|zt = k;Ψk)
ztk

=
K∏

k=1

πz1k
k

n∏

t=2

K∏

k=1

K∏

ℓ=1

A
zt−1,ℓztk
ℓk

n∏

t=1

K∏

k=1

p(yt|zt = k;Ψk)
ztk (2.70)

where ztk = 1 if zt = k (i.e yt originates from the kth state at time t) and ztk = 0
otherwise. By taking the logarithm of (2.70) we get the complete-data log-likelihood
of Ψ:

Lc(Ψ;Y, z) =
K∑

k=1

z1k log πk+
n∑

t=2

K∑

k=1

K∑

ℓ=1

ztkzt−1,ℓ logAℓk+
n∑

t=1

K∑

k=1

ztk logN (yt;µk,Σk). (2.71)

The EM algorithm starts with an initial parameter Ψ(0) and repeat the following two
steps until convergence:

E-step: This step consists of computing the expectation of the complete-data log-
likelihood:

Q(Ψ,Ψ(q)) = E

[
Lc(Ψ;Y, z)|Y;Ψ(q)

]

=

K∑

k=1

E

[
z1k|Y;Ψ(q)

]
log πk +

n∑

t=2

K∑

k=1

K∑

ℓ=1

E

[
ztkzt−1,ℓ|Y;Ψ(q)

]
logAℓk

+

n∑

t=1

K∑

k=1

E

[
ztk|Y;Ψ(q)

]
logN (yt;µk,Σk)

=

K∑

k=1

p(z1 = k|Y;Ψ(q)) log πk +

n∑

t=2

K∑

k=1

K∑

ℓ=1

p(zt = k, zt−1 = ℓ|Y;Ψ(q)) logAℓk

+
n∑

t=1

K∑

k=1

p(zt = k|Y;Ψ(q)) logN (yt;µk,Σk)

=

K∑

k=1

τ
(q)
1k log πk +

n∑

t=2

K∑

k=1

K∑

ℓ=1

ξ
(q)
tℓk logAℓk +

n∑

t=1

K∑

k=1

τ
(q)
tk logN (yt;µk,Σk),(2.72)

where
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• τ
(q)
tk = p(zt = k|Y;Ψ(q)) ∀t = 1, . . . , n and k = 1, . . . ,K is the posterior probabil-
ity of the state k at time t given the whole observation sequence and the current
parameter estimation Ψ(q). The τtk’s are also referred to as the smoothing prob-
abilities,

• ξ
(q)
tℓk = p(zt = k, zt−1 = ℓ|Y;Ψ(q)) ∀t = 2, . . . , n and k, ℓ = 1, . . . ,K is the joint
posterior probability of the state k at time t and the state ℓ at time t − 1 given
the whole observation sequence and the current parameter estimation Ψ(q).

As shown in the expression of the Q-function, this step requires the computation of

the posterior probabilities τ
(q)
tk and ξ

(q)
tℓk. These posterior probabilities are computed

by the forward-backward procedures. The forward procedure computes recursively the
probabilities

αtk = p(y1, . . . ,yt, zt = k;Ψ), (2.73)

where αtk is the probability of observing the partial sequence (y1, . . . ,yt) and ending
with the state k at time t. It can be seen that log-likelihood (2.69) can be computed after
the forward pass as: log p(Y;Ψ) = log

∑K
k=1 αnk. The backward procedure computes

the probabilities
βtk = p(yt+1, . . . ,yn|zt = k;Ψ) (2.74)

βtk being the probability of observing the rest of the sequence (yt+1, . . . ,y1) know-
ing that we start with the k at time t. The forward and backward probabilities are
computed recursively by the so-called Forward-Backward algorithm (see Appendix A.4
for the details). Notice that in practice, since the recursive computation of the α’s
and the β’s involve repeated multiplications of small numbers which causes underflow
problems, their computation is performed using a scaling technique in order to avoid
underflow problems. See (Rabiner and Juang, 1993; Rabiner, 1989) for further discus-
sion. The posterior probabilities are then expressed in function of the forward backward
probabilities as follows (c.f., Appendix A.5):

τ
(q)
tk =

α
(q)
tk β

(q)
tk∑K

k=1 α
(q)
tk β

(q)
tk

(2.75)

and

ξ
(q)
tℓk =

α
(q)
t−1,ℓp(yt|zt = k;θ(q))β

(q)
tk A

(q)
ℓk

∑K
ℓ=1

∑K
k=1 α

(q)
t−1,ℓp(y

(q)
t |zt = k;Ψ)β

(q)
tk A

(q)
ℓk

. (2.76)

M-step: In this step, the value of the parameter Ψ is updated by computing the
parameter Ψ(q+1) maximizing the expectation Q with respect to Ψ. The Q-function
(2.72) is decomposed as

Q(Ψ,Ψ(q)) = Qπ(π,Ψ
(q)) +QA(A,Ψ(q)) +

K∑

k=1

Q(Ψk,Ψ
(q)) (2.77)
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with

Qπ(π,Ψ
(q)) =

K∑

k=1

τ
(q)
1k log πk, (2.78)

QA(A,Ψ(q)) =
n∑

t=2

K∑

k=1

K∑

ℓ=1

ξ
(q)
tℓk logAℓk, (2.79)

QΨk
(Ψ,Ψ(q)) =

n∑

t=1

τ
(q)
tk logN

(
yt;µk,Σk

)
. (2.80)

The maximization of Q(Ψ,Ψ(q)) with respect to Ψ is then performed by separately
maximizing Qπ(π,Ψ

(q)), QA(A,Ψ(q)) and QΨk
(Ψ,Ψ(q)) (k = 1, . . . ,K). Maximizing

Qπ with respect to π subject to
∑

k πk = 1 consist of constrained optimized problem
which is solved using Lagrange multipliers. The values maximizing QA corresponds to
the expected number of transitions from state ℓ to state k relative to the expected total
number of transitions away from state ℓ (see (Rabiner and Juang, 1993)). Finally, the
maximization of QΨk

with respect to βk for k = 1, . . . ,K consists of a weighted variant
of the problem of estimating the parameters of a Gaussian density (as in Equations
(2.20) and (2.21)). The updating formulas are given by:

π
(q+1)
k = τ

(q)
1k (2.81)

A
(q+1)
ℓk =

∑n
t=2 ξ

(q)
tkℓ∑n

t=2 τ
(q)
tℓ

(2.82)

µ
(q+1)
k =

1
∑n

t=1 τ
(q)
tk

n∑

t=1

τ
(q)
tk yt (2.83)

Σ
(q+1)
k =

1
∑n

t=1 τ
(q)
tk

n∑

t=1

τ
(q)
tk (yt − µ

(q+1)
k )(yt − µ

(q+1)
k )T . (2.84)

Autoregressive Hidden Markov Models

Autoregressive Hidden Markov Models (ARHMMs) (Celeux et al., 2004; Frühwirth-
Schnatter, 2006; Rabiner, 1989), particularly beneficial for speech processing and recog-
nition (Kenny et al., 1990; Rabiner, 1989), generalize the standard HMM by relaxing
the traditional HMM conditional independence assumption. Indeed, ARHMMs assume
temporal dependence in the data not only via the transition probability, but also by
allowing a dependence of the state output yt on past outputs rt = (yt−1, . . . ,yt−p),
p ≥ 1. An autoregressive HMM of order p is illustrated by the graphical model repre-
sentation shown in Figure 5.3. The model parameter estimation is still performed by
maximum likelihood via EM (see for example the paper of Celeux et al. (2004) and the
book of Frühwirth-Schnatter (2006)).
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Figure 2.7: Graphical model structure for a Gaussian ARHMM of order 1.

2.6 Curve modeling

Until this stage we have been interested in modeling and learning approaches from
multidimensional data. In what follows we will focus on probabilistic modeling and
learning from curves (or functional data). We will therefore give an overview of prob-
abilistic approaches for regression, classification and clustering dedicated to curves.
These approaches can be associated with the general framework of Functional data
Analysis.

2.6.1 Functional data analysis context

Most statistical analyses involve one or more observations taken on each of a number of
individuals in a sample, with the aim of making inferences about the general population
from which the sample is drawn. In many application domains, these observations are
functions (e.g., curves, images). For this reason, statistical methods for analyzing such
data are described by the term ‘functional data analysis’ (FDA) (Ramsay and Dalzell,
1991; Ramsay and Silverman, 2002, 2005). Functional Data Analysis is therefore a gen-
eral paradigm of data analysis, where the basic unit of information is the entire observed
function rather than a finite dimensional vector. The goals of FDA are essentially the
same as for other branches of statistics, and include the following: (i) data representa-
tion and transformation for further analysis, (ii) data visualization to highlight various
characteristics, (iii) explaining variation in an outcome or dependent variable by us-
ing input or independent variable, etc. Additional background on FDA, examples and
analysis techniques can be found in Ramsay and Silverman (2002) and Ramsay and Sil-
verman (2005). In this thesis, the considered curves are values of functions, available at
discretized input time points. Therefore several statistical methods for FDA methods
can be used. Particularly, one can cite for example the semi-parametric approach based
on Multilayer Perceptrons (MLP) with functional inputs for functional regression and
classification introduced by Rossi and Conan-Guez (2005b). The functional MLP have
been shown to be universal nonlinear function approximators (Rossi and Conan-Guez,
2006). In this thesis, we will particularly focus on generative regression methods for
FDA in the context of curve modeling, classification and clustering.
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2.6.2 Polynomial regression and spline regression models

This section is dedicated to regression methods for curve modeling. In what follows we
will denote by y the dependent real variable and by t the independent input variable,
which represents the time. From a probabilistic perspective, in regression we aim to
model the conditional distribution of the output y conditionally on the input t, that is
p(y|t):

y = f(t) + ǫ, (2.85)

where the function f(.), which is the conditional expectation E[y|t], can be parametric
or non parametric, linear or non linear and ǫi is an additive noise, typically a standard
Gaussian noise. From the conditional distribution p(y|t) we can make predictions of y,
for any new value of t.

Polynomial regression

Polynomial regression models arises when the regression function f(.) is a polynomial
function of t. As is generally the case in regression, we assume independent standard
Gaussian noise variables ǫi. A polynomial regression model can be defined as

yj = f(tj;β) + σǫj =

p∑

l=0

βlt
l
j + σǫj

= βT tj + σǫj ; ǫj ∼ N (0, 1) (j = 1, . . . ,m) (2.86)

where the finite integer p represents the order of the polynomial, β = (β0, . . . , βp)
T is

the vector of regression coefficients and tj = (1, tj , t
2
j . . . , t

p
j )

T is the p + 1 dimensional
covariate vector at time tj . This model can be reformulated in a matrix form as

y = Xβ + ǫ (2.87)

where y = (y1, . . . , ym)T , ǫ = (ǫ1, . . . , ǫm)T and X = (t1, . . . , tm)T is the n × (p + 1)
regression matrix.

Spline regression

Splines (Deboor, 1978) are widely used for function approximation based on constrained
piecewise polynomials. An order-M spline with ordered knots ζ0 < ζ1, . . . , < ζK <

ζK+1, including K internal knots, ζ0 and ζK+1 being the two boundary knots, is a
piecewise-polynomial of degree p = M − 1 with continuous derivatives at the interior
knots up to order M−2. For example an order-2 spline is a continuous piecewise linear
function. The spline regression function can be written as

f(tj) =

p∑

l=0

βlt
l
j +

K∑

k=1

βk+p(tj − ζk)
p
+ = βT tj (2.88)
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where (tj−ζk)+ = tj−ζk if tj ≥ ζk and (tj−ζk)+ = 0 otherwise, β = (β0, . . . , βK+p)
T is

the vector of spline coefficients in R
M+K and the corresponding independent covariate

vector in this case is given by

tj = (1, tj , t
2
j . . . , t

p
j , (tj − ζ1)

p
+, . . . , (tj − ζK)p+).

The matrix form of the spline regression model (2.88) can be written in the same
manner as for the polynomial regression model (2.86) except the fact that, for the
spline regression model, each ith row of the m× (M +K) regression matrix X is given
by the new covariate vector tj.

Cubic and natural cubic Splines

The most widely used splines are the cubic splines. A cubic spline is an order-4 spline
which corresponds to polynomials of degree p = 3. Cubic splines are adapted to higher
degrees of smoothness thanks to the continuity of the first and the second derivatives
of the piecewise polynomial function at the interior knots.

The piecewise polynomial fitting in the spline regression model can present a bad
behavior beyond the boundaries of the region of the inputs t since the constraints of
continuity of the piecewise polynomial functions do not concern the regions before the
first knot (in [ζ0, ζ1]) and after the last internal knot (in [ζK , ζK+1]). The natural cubic
splines impose additional constraints to deal with this problem by considering that the
spline function is linear in these regions. These constraints, that imply second and
third derivatives of the spline function in the boundary regions, free up some regression
parameters and lead to a particular form of the spline basis function and therefore the
spline regression matrix (Hastie et al., 2010).

Smoothing Splines

Smoothing splines (Wahba, 1990) deals with the over-fitting problem which one may
have with the spline regression model. Indeed, smoothing splines optimize a penalized
function to control the complexity of the spline fit by adding to the optimized criterion
a roughness penalty

λ

∫

u

(f ′′(u))2du

in which the integrated squared second derivative of f(t) measures the curvature of the
fitted function. When

∫
u
(f ′′(u))2du is large, the fitted function is rougher, and when

it is small, the fitted function is smoother. The nonnegative smoothing parameter λ is
for establishing a trade-off between closeness of fit to the data and a smooth fit. As
λ decreases, the fitted function tends to interpolate the data, and we get a rough fit.
When λ increases, the result is a smooth fit.

B-splines

For splines, the columns of the regression matrix X tend to be highly correlated since
each column is a transformed version of t. This collinearity may result in a nearly
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singular matrix and imprecision in the spline fit (Ruppert and Carroll, 2003). B-splines
allows for efficient computations thanks to the block matrix form of the regression
matrix. An order-M B-spline function is defined as a sum of linear combination of
basis functions Bl,M as

f(tj) =
K+M∑

l=1

βlBl,M (tj), tj ∈ [τl, τl+M ] = βT tj (2.89)

where each Mth order B-spline Bl,M is a piecewise polynomial of degree p = M − 1
that has finite support over [τl, τj+M ] and is zero everywhere else. Each of the basis
functions Bl,M(tj) can be computed as in Appendix B.5 (Hastie et al., 2010) and for
the B-spline regression model, each row of the n× (M +K) B-spline regression matrix
X is given by:

tj = (B1,M (tj), B2,M (tj), . . . , BM+K,M(tj)).

Parameter estimation

The parameters Ψ = (β, σ2) of the regression models, including polynomial, spline and
B-spline regression models, are estimated by maximum likelihood. Given a set of m
pairs (y, t) = ((t1,y1), . . . , (tm,ym)), the likelihood function of Ψ is given by:

L(Ψ) = log

m∏

j=1

N (yj;β
T tj, σ

2)

= −
1

2

[ m∑

j=1

(yj − βT tj
σ

)2
+m log σ2

]
+ cst (2.90)

where cst is a constant. The solution for β is therefore computed by minimizing the
corresponding sum of squared error and the estimated coefficient vector β is given by:

β̂ = (XTX)−1XTy (2.91)

where the matrix X differs according to the model. For the smoothing splines, the opti-
mized function corresponds to a penalized sum of least squares which has the same form
as the generalized ridge regression (Hastie et al., 2010) and the estimated regression
coefficients in this case are given by:

β̂ = (XTX+ λΓ)−1XTy

where Γ is a square matrix of the same dimension as the vector β, its elements are the
integrated squared second derivatives of f(.).

Finally, the estimation of the variance σ2 is given by minimizing

1

σ2

m∑

j=1

(yj − β
T tj)

2 +m log σ2
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w.r.t σ2 and is given by:

σ̂2 =
1

m

m∑

j=1

(yj − β̂
T
tj)

2

=
1

m
(y −Xβ̂)T (y −Xβ̂). (2.92)

2.6.3 Polynomial regression and spline regression for a set of curves

In this section we aim at estimating a single “mean curve” for a training set of curves
rather than a single curve. Let Y = (y1, . . . ,yn) be a training data set of n i.i.d curves
where each curve yi consists of m measurements (observations) (yi1, . . . , yim) regularly
observed at the time points (t1, . . . , tm) for all i = 1, . . . , n. In the following, the term
“curves size” will be used to define m.

The general model for a set of curves

The regression models, including polynomial, spline and B-spline regression models
seen in section 2.6.2 can be extended to model a set of curves. In this case, the model
can be written as

yij = f(tj;β) + σǫij, ǫij ∼ N (0, 1) (2.93)

∀i = 1 . . . , n and ∀j = 1, . . . ,m where f is the polynomial (respectively spline, B-spline)
regression function and β is the vector of coefficients and σ is the standard deviation
of an independent zero mean Gaussian noise.

Parameter estimation

The parameters Ψ = (β, σ2) are estimated by maximum likelihood. The likelihood
function of Ψ for a single curve, given the time instants t = (t1, . . . , tm), is given by:

p(yi|t;Ψ) =
m∏

j=1

N (yij ; f(tj;β), σ
2) (2.94)

and the overall log-likelihood given an independent training set Y = (y1, . . . ,yn) of n
curves is therefore given by:

L(Ψ) =
n∑

i=1

m∑

j=1

logN (yij ; f(tj;β), σ
2)

= −
1

2

[ n∑

i=1

m∑

j=1

(yij − f(tj;β)

σ

)2
+ nm log σ2

]
+ cst. (2.95)

The coefficients vector β is then estimated by minimized the corresponding sum of
squared errors

∑n
i=1

∑m
j=1(yij−f(tj;β))

2 and the solution of this least squares problem
is given by:

β̂ = (X∗TX∗)−1X∗TY∗ (2.96)
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where X∗ = (XT , . . . ,XT )T is the nm× (p+K+1) matrix consisting of n copies of the
regression matrix X and y∗ = (yT

1 , . . . ,y
T
n )

T is an nm× 1 column vector consisting of
all the curves constructed by stacking the column vectors of Y = (y1, . . . ,yn) one after
another. For the case of smoothing splines, the solution of the minimized penalized
sum of squared errors over all the curves is

β̂ = (X∗TX∗ + λΓ)−1X∗Ty∗ (2.97)

where Γ is the penalty matrix. Once the coefficients β are estimated, one then obtains
the fitted function ŷ = Xβ̂.

Finally, the estimation of the variance σ2 is obtained by maximizing (2.95) w.r.t σ2

which is straightforward and is given by:

σ̂2 =
1

nm
(y∗ −X∗T β̂)T (y∗ −X∗T β̂) (2.98)

In summary, splines are based on constrained piecewise polynomial fitting with
predefined piecewise locations. Therefore, it should be noticed that in spline regression
models (including B-splines), the placement of the knots are generally either fixed by
the user or placed uniformly over the range of tj (j = 1, . . . ,m) and selecting the
placement of knots can be a combinatorially complex task. Thus, the spline regression
models can not be seen as approaches for automatic detection of regime changes.

Relaxing the regularity constraints for the spline model leads to the standard piece-
wise polynomial regression model in which the placement of the knots (or the transition
points) can be optimized using dynamic programming. However, the resulting approx-
imation is not regular. The next section describes the piecewise polynomial regression
model.

2.6.4 Piecewise polynomial regression

Piecewise polynomial regression (Brailovsky and Kempner, 1992; Ferrari-Trecate and
Muselli, 2002; Hébrail et al., 2010; McGee and Carleton, 1970; Picard et al., 2007) is
a modeling and segmentation method that partitions the curve into K segments, each
segment being characterized by its mean polynomial curve and its variance. For this
type of modeling, the optimal model parameters are estimated by using a dynamic pro-
gramming procedure (Bellman, 1961; Stone, 1961) such as Fisher’s algorithm (Fisher,
1958). This algorithm optimizes an additive cost function over all the segments of the
curve (Brailovsky and Kempner, 1992; Lechevalier, 1990).

The piecewise polynomial regression model

The piecewise polynomial regression model assumes that the curve y = (y1, . . . , ym)
incorporatesK polynomial regimes onK intervals whose bounds indexes can be denoted
by ζ = (ζ1, . . . , ζK+1) with ζ1 = 0 and ζK+1 = m. This defines a partition of the curve
into K polynomial segments of lengths m1, . . . ,mK : {yj |j ∈ I1}, . . . , {yj |j ∈ IK} where
Ik = (ζk, ζk+1] for k = 1, . . . ,K.
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Standard polynomial regression models are homoskedastic models as they assume
that the different polynomial regression models have the same noise variance (Brailovsky
and Kempner, 1992; Ferrari-Trecate and Muselli, 2002; Ferrari-Trecate et al., 2002).
However, in our case we shall consider the more general framework of a heteroskedastic
model which allows the noise level to vary between the different polynomial regression
models. It can be defined as follows:

∀j = 1, . . . ,m, yj =





βT
1 tj + σ1ǫj if j ∈ I1
βT
2 tj + σ2ǫj if j ∈ I2

...

βT
Ktj + σKǫj if j ∈ IK

, (2.99)

where βk is the (p + 1)-dimensional coefficients vector of a p degree polynomial as-
sociated with the kth segment (regime), tj = (1, tj , t

2
j . . . , t

p
j)

T is the time dependent
(p + 1)-dimensional covariate vector associated with βk and the σǫj are independent
Gaussian random variables with zero mean and a standard deviation σ, representing
the additive noise for each segment k. The matrix formulation of (2.99) can be written
as

y =

K∑

k=1

Zk(Xβk + σke), e ∼ N (0, Im), (2.100)

where Zk is a diagonal matrix whose diagonal elements are the labels of the polynomials
regimes (z1k, . . . , zmk), and

X =




1 t1 t21 . . . t
p
1

1 t2 t22 . . . t
p
2

...
...

...
...

...
1 tm t2m . . . t

p
m




is the m× (p+ 1) regression matrix.

Maximum likelihood estimation for the piecewise polynomial regression

model

Let us denote by (ψ, ζ) the piecewise regression parameters where
ψ = (β1, . . . ,βK , σ2

1 , . . . , σ
2
K) is the set of polynomial coefficients and noise variances,

and ζ = (ζ1, . . . , ζK+1) the set of indexes of transition time points. Parameter estima-
tion is performed by maximum likelihood. The independence assumption of the noise
variables ǫij (j ∈ Ik) involves the independence of yij (j ∈ Ik) given the time points tj
(j ∈ Ik). Thus, according to the model (2.99), it can be easily proved that, within the
segment k, the observation yij given tj , has a Gaussian distribution with mean βT

k tj
and variance σ2

k. The log-likelihood of the parameter vector (ψ, ζ) characterizing the
piecewise regression model is the sum of the local log-likelihoods over the K segments
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that can be written as

L(ψ, ζ) = log p(y|t;ψ, ζ)

=
K∑

k=1

∑

j∈Ik

logN
(
yj ;β

T
k tj, σ

2
k

)
. (2.101)

Maximizing this log-likelihood is equivalent to minimizing the criterion

J(ψ, ζ) =

K∑

k=1

[ 1
σ2
k

∑

j∈Ik

(yj − β
T
k tj)

2 + nk log σ
2
k

]
(2.102)

with respect to ψ and ζ, where nk is the number of elements in segment k. Since
the criterion J is additive over the K segments, a dynamic programming procedure
(Bellman, 1961; Stone, 1961), can be used to perform the global minimization. The
dynamic programming will be given in section 2.6.5 which is concerned with the case of
a set of n curves. This dynamic procedure has a time complexity of O(Kp2m2) which
can be computationally expensive for large sample sizes.

Curve approximation and segmentation with the piecewise regression model

Once the model parameters have been estimated, a segmentation of the curve, equiv-
alently represented by the vector of segment labels ẑ = (ẑ1, . . . , ẑm), where ẑj ∈

{1, . . . ,K}, can be derived by setting ẑj = k if j ∈ (ζ̂k; ζ̂k+1], the parameters (ψ̂, ζ̂)
being the parameters provided by the dynamic programming procedure.

An approximation of the curve y is then given by the piecewise polynomial function

ŷ = (ŷ1, . . . , ŷm) where ŷj =
∑K

k=1 ẑjkβ̂
T

k tj, with ẑjk = 1 if ẑj = k and ẑjk = 0
otherwise. The vectorial formulation of the approximated curve ŷ can be written as

ŷ =

K∑

k=1

ẐkXβ̂k, (2.103)

where Ẑk is a diagonal matrix whose diagonal elements are (ẑ1k, . . . , ẑmk).

However, it should be noticed that since the estimated curve (2.103) is computed
as piecewise polynomial functions, the piecewise regression model does not necessarily
guarantees a continuous smooth function approximation (since the binary indicator
variables ẑik represent a hard segmentation of the curve). The piecewise approach is
therefore more adapted for modeling curve presenting abrupt regime changes and may
be less efficient for curve including regimes with smooth transitions.

2.6.5 Piecewise polynomial regression for a set of curves

This section provides an overview of the piecewise polynomial regression model in
a context of modeling a set of curves and recalls the algorithm used for parameter
estimation.
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Modeling a set of curves by the piecewise polynomial regression model

Piecewise polynomial regression, generally used to model a single curve, as seen in
section 2.6.4 (Brailovsky and Kempner, 1992; Chamroukhi et al., 2009b; Ferrari-Trecate
and Muselli, 2002; McGee and Carleton, 1970), can also be used to model a set of curves
(Chamroukhi et al., 2010; Hébrail et al., 2010; Hugueney et al., 2009). The parameters
estimation is performed using dynamic programming (Bellman, 1961; Fisher, 1958;
Lechevalier, 1990; Stone, 1961) due to the additivity of the optimized cost function
over the K segments.

The piecewise polynomial regression model assumes that the curvesY = (y1, . . . ,yn)
incorporate K polynomial regimes defined on K intervals whose bounds indexes can
be denoted by ζ = (ζ1, . . . , ζK+1) with ζ1 = 0 and ζK+1 = m. This defines a partition
of Y into K segments of curves of lengths m1, . . . ,mK respectively:

{yij |i ∈ [1, n] and j ∈ I1}, . . . , {yij |i ∈ [1, n] and j ∈ IK}

where Ik = (ζk, ζk+1]. Therefore, the piecewise polynomial regression model for the set
of curves can be defined as follows:

∀i = 1, . . . , n, ∀j = 1, . . . ,m, yij =





βT
1 tj + σ1ǫj if j ∈ I1
βT
2 tj + σ2ǫj if j ∈ I2

...

βT
Ktj + σKǫj if j ∈ IK

, (2.104)

The model parameters denoted by (ψ, ζ) where ψ = (β1, . . . ,βK , σ2
1 , . . . , σ

2
K) and

ζ = (ζ1, . . . , ζK+1) are estimated by maximum likelihood.

Maximum likelihood estimation for the piecewise polynomial regression

model

As in classical model-based learning problems where each observation is described by
a feature vector (Hastie et al., 2010), we assume that the curves sample (y1, . . . ,yn) is
independent. Therefore, the distribution of a curve yi is given by:

p(yi|t;ψ, ζ) =
K∏

k=1

∏

j∈Ik

N
(
yij ;β

T
k tj, σ

2
k

)
, (2.105)

and the log-likelihood of the parameter vector (ψ, ζ) characterizing the piecewise re-
gression model, given the set of curves (y1, . . . ,yn) is then written as follows:

L(ψ, ζ) = log
n∏

i=1

p(yi|t;ψ, ζ)

=

K∑

k=1

n∑

i=1

∑

j∈Ik

logN
(
yij ;β

T
k tj , σ

2
k

)

= −
1

2

K∑

k=1

[ 1

σ2
k

n∑

i=1

∑

j∈Ik

(yij − β
T
k tj)

2+nmk log σ
2
k

]
+ cst (2.106)
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where mk is the cardinal number of Ik. Maximizing this log-likelihood is equivalent to
minimizing the criterion

J(ψ, ζ) =

K∑

k=1

[ 1

σ2
k

n∑

i=1

∑

j∈Ik

(
yij − β

T
k tj
)2

+ nmk log σ
2
k

]
(2.107)

with respect to (ψ, ζ). The next section shows how the parameters ψ and ζ can be
estimated using dynamic programming.

Parameter estimation by dynamic programming

A dynamic programming procedure can be used to minimize the additive criterion
(2.107) with respect to (ψ, ζ) or equivalently to minimize (2.108) with respect to ζ:

C(ζ) = min
ψ

J(ψ, ζ) =

K∑

k=1

min
(βk,σ

2
k
)

[ 1

σ2
k

n∑

i=1

ζk+1∑

j=ζk+1

(
yij − β

T
k tj
)2

+ nmk log σ
2
k

]

=

K∑

k=1

[ 1

σ̂2
k

n∑

i=1

ζk+1∑

j=ζk+1

(yij − β̂
T

k tj)
2 + nmk log σ̂

2
k

]
, (2.108)

where β̂k and σ̂2
k are given by:

β̂k = arg min
βk∈R

p+1

n∑

i=1

ζk+1∑

j=ζk+1

(yij − β
T
k tj)

2 =
[ n∑

i=1

ζk+1∑

j=ζk+1

tjt
T
j

]−1
n∑

i=1

ζk+1∑

j=ζk+1

yijtj

(2.109)
and

σ̂2
k = arg min

σ2
k
∈R+

1

σ2
k

n∑

i=1

ζk+1∑

j=ζk+1

(yij − β̂
T

k tj)
2 +nmk log σ

2
k =

1

nmk

n∑

i=1

ζk+1∑

j=ζk+1

(yij − β̂
T

k tj)
2.

(2.110)
It can be seen that the criterion C(ζ) given by Equation (2.108) is additive over the
K segments. Thanks to its additivity, this criterion can be optimized globally using
a dynamic programming procedure (Bellman, 1961; Lechevalier, 1990; Stone, 1961).
Dynamic programming considers that an optimal partition of the data into K segments
is the union of an optimal partition into K − 1 segments and one segment. Thus, by
denoting by C1(a, b) the optimal cost within one segment whose elements indexes are
(a, b] with 0 ≤ a < b ≤ m, the optimal costs Ck(a, b) for a partition into k segments,
k = 2, . . . ,K, is recursively computed as follows:





C1(a, b) = min(β,σ2)

[
1
σ2

∑n
i=1

∑b
j=a+1

(
yij − β

T tj
)2

+ n(b− a) log σ2
]

= 1
σ̂2

∑n
i=1

∑b
j=a+1(yij − β̂

T
tj)

2 + n(b− a) log σ̂2 (2.111a)

Ck (a, b) = min
a≤h≤b

[Ck−1 (a, h) + C1 (h+ 1, b)] for k = 2, . . . ,K. (2.111b)
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2.6 Curve modeling

where β̂ and σ̂2 are computed respectively according to the equations (2.109) and
(2.110) by replacing (ζk, ζk+1] by (a, b], mk by (b−a) and β̂k by β̂. Thus, the algorithm
works as follows:

Step 1. (Initialization) This step consists of computing the cost matrix C1(a, b)
for one segment (a, b] for 0 ≤ a < b ≤ m using (2.111a).

Step 2. (Dynamic programming procedure) This step consists of recursively
computing the optimal cost Ck(a, b) for k = 2, . . . ,K and 0 ≤ a < b ≤ m using (2.111b).

Step 3. (Finding the optimal segmentation) The optimal segmentation can be
deduced from the optimal costs Ck(a, b). (For more details see appendix A of Brailovsky
and Kempner (1992)).

This algorithm has a time complexity ofO(Kp2n2m2) which can be computationally
expensive for large sample sizes.

Approximating a set of curves with the piecewise regression model

Once the model parameters are estimated, the set of curves can be approximated by
a single “mean curve” ŷ = (ŷ1, . . . , ŷm) where each point from this curve is given by

ŷj =
∑K

k=1 ẑjkβ̂
T

k tj, ∀ j = 1, . . . ,m where ẑjk = 1 if j ∈ (ζ̂k, ζ̂k+1] (i.e., the observation
yij belongs to the kth regime) and ẑjk = 0 otherwise. The vectorial formulation of the
“mean curve” ŷ can be written as

ŷ =

K∑

k=1

ẐkXβ̂k, (2.112)

where Ẑk is a diagonal matrix whose diagonal elements are (ẑ1k, . . . , ẑmk), and X is the
m× (p+ 1) regression matrix.

The piecewise regression model uses dynamic programming for parameter estima-
tion. However, it is well-known that dynamic programming procedures are computa-
tionally expensive especially for large samples. In addition, the piecewise regression
approach is more adapted for modeling curve presenting abrupt changes, since the
“mean curve” is computed from a hard segmentation of the curves, and therefore may
be less efficient for curves including smooth regime changes. For the case of a single
curve, an alternative approach is to use a Hidden Markov Model Regression (Fridman,
1993) whose parameters are iteratively estimated by the Baum-Welch algorithm (Baum
et al., 1970). This is presented in the next section.

2.6.6 Hidden Markov Model Regression

This section recalls the Hidden Markov Model Regression (Fridman, 1993) for curve
modeling.
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2.6 Curve modeling

A general description of Hidden Markov Model Regression

In a Hidden Markov Model Regression (HMMR), the curve is assumed to be generated
by the following regression model (Fridman, 1993):

yj = β
T
zj
ti + σzj ǫj (j = 1, . . . ,m) (2.113)

where zj is a hidden discrete-valued variable taking its values in the set {1, . . . ,K}.
The variable zj controls the switching from one polynomial regression model to another
of K models at each time tj. The HMMR assumes that the hidden sequence z =
(z1, . . . , zn) is a homogeneous Markov chain of first order parametrized by the initial
state distribution π and the transition matrixA. The distribution of the latent sequence
z = (z1, . . . , zn) is defined by Equation (2.64).

Note that if the curve we aim to model consists of successive contiguous regimes, we
can impose the following constraints on the transition probabilities. These constraints
consist of setting p(zj = k|zj−1 = ℓ) = 0 if k < ℓ or if k > ℓ + 1 which imply that no
transitions are allowed for the states whose indexes are lower than the current state
and no jumps of more than one state are possible. This leads to a particular case of
the well known left-right model (Rabiner, 1989) (see section 2.5.3).

Parameter estimation

From the model defined by Equation (2.113), it can be proved that, conditionally
on a regression model k (zj = k), yj has a Gaussian distribution with mean βT

k tj
and variance σ2

k. Thus, the HMMR is parameterized by the parameter vector Ψ =
(π,A,β1, . . . ,βK , σ2

1 , . . . , σ
2
K). The parameter vector Ψ is estimated by the maximum

likelihood method. The log-likelihood to be maximized in this case is written as

L(Ψ;y) = log p(y;Ψ)

= log
∑

z1

. . .
∑

zm

p(z1;π)

m∏

j=2

p(zj |zj−1;A)

m∏

j=1

N (yj ;β
T
zj
tj, σ

2
zj
). (2.114)

Since this log-likelihood can not be maximized in a closed form, this is done by the
EM algorithm (Dempster et al., 1977), which is known as the Baum-Welch algorithm
(Baum et al., 1970) in the context of HMMs.

The time complexity of both the Forward and Backward procedure of standard
HMMs for unidimensional sequence observation is of O(K2m) per iteration (Cappé
et al., 2005; Murphy, 2002; Rabiner and Juang, 1993). In addition, in this regression
context, the calculation of the regression coefficients in the M-step requires an inversion
of (p+1)× (p+1) matrix and a multiplication by the observation sequence of length m

which is done with a complexity ofO(p2m) (see for example (Makarenkov and Legendre,
1999)). The Baum-Welch algorithm has therefore a time complexity of O(IEMK2p2m),
where IEM is the number of iterations of the EM (Baum-Welch) algorithm.
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2.7 Curve clustering

Curve approximation and segmentation with Hidden Markov Model Re-

gression

To approximate the curve y at each time tj , a common way is to combine the different
regression models using the posterior component probabilities (the smoothing probabil-
ities) given the estimated model parameters Ψ̂ which we denote by τ̂jk = p(zj = k|y; Ψ̂)
for the kth regression model. These probabilities are computed by using the so-called
forward-backward procedure (Rabiner, 1989) (see Equation (2.75) in section 2.5.3 and
Appendix A.4 for the details). Thus, each point ŷj of the estimated curve is given by:

ŷj =

K∑

k=1

τ̂jkβ̂
T

k tj, (j = 1, . . . ,m). (2.115)

The vectorial formulation of the approximated curve ŷ can be written as

ŷ =

K∑

k=1

ŴkXβ̂k, (2.116)

where Ŵk is a diagonal matrix whose diagonal elements are (τ̂1k, . . . , τ̂mk), and X is
the m× (p + 1) regression matrix.

Moreover, given the estimated model parameters Ψ̂, a segmentation of the curve
can be deduced by computing the optimal sequence ẑ = (ẑ1, . . . , ẑm) of the segment
labels by using the Viterbi algorithm (Forney, 1973; Viterbi, 1967) (c.f., Appendix A.6).

It is worth to note that, while HMMs can be applied to model sets of curves and
we would have a single HMM for each set of curves, as we will see it in section 2.7.4,
to my knowledge, there is no an existing method for approximating a set of curves by
a single curve for HMM regression. As alternative, one can think about an empirical
mean of the n smoothed curves to give a single representation for a set of curves.

Illustration

Figure 2.8 shows fitted curves to noisy nonlinear regression function using different
models.

2.7 Curve clustering

In this section, we describe some models and algorithms that address the curve cluster-
ing problem. The clustering methods presented here are model-based curve clustering
approaches relying on regression mixtures, including polynomial regression, spline re-
gression and piecewise regression. In this context, a generative model has been devel-
oped by Gaffney (2004); Gaffney and Smyth (2004) which consists of clustering curves
with polynomial regression mixtures. Another approach based on splines is concerned
with clustering sparsely sampled curves (James and Sugar, 2003). More recently, Liu
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Figure 2.8: Plot of fitted curves to the noisy regression function given in the left plot

and given by y = 0.41 + 0.3 exp(−t)(sin(3.8πt) + exp(−9t)) + ǫt; ǫt ∼ N (0, 0.052);

for m = 100 data points. The plot in the middle shows the solutions obtained with

different polynomial spline regression models. All splines are of order M = 4 (cubic)

with internal knots placement at [0.2 0.4 0.6 0.8]. The right plot shows the fitted curves

obtained with a polynomial fit using a polynomial of degree p = 3, polynomial piecewise

regression and polynomial HMM regression with K = 2 polynomial components of

degree p = 3.

and Yang (2009) proposed a curve clustering approach using B-spline basis functions to
model each cluster. All these approaches use the EM algorithm to estimate the model
parameters.

A distance-based curve clustering approach, that allows for fitting several constant
(or polynomial) models to the curves, consists of the piecewise regression model using
a K-means-like algorithm (Hébrail et al., 2010; Hugueney et al., 2009). This approach
simultaneously performs curve clustering and optimal segmentation using dynamic pro-
gramming.

In this section we describe these generative approaches for curve clustering. Next we
consider the piecewise regression approach for curve clustering of Hébrail et al. (2010)
from a probabilistic prospective, and we give a model-based curve clustering which is
the piecewise regression mixture. The proposed approach which uses the EM algorithm
in the case of maximum likelihood estimation and the CEM algorithm in the case of
classification likelihood estimation. It also performs both curve clustering and optimal
segmentation using dynamic programming.

2.7.1 Polynomial regression mixture and spline regression mixture

The mixture model

In this section we describe curve clustering approaches based on polynomial regression
mixture models (PRM) and polynomial spline regression mixtures (PSRM) (Gaffney,
2004). These approaches assume that each curve is drawn from one of R clusters of
curves which are mixed at random in proportion to the relative cluster sizes (α1, . . . , αR).
Each cluster of curves is supposed to be a set of homogeneous curves modeled by either
a polynomial regression model or a spline regression model. Thus, the mixture density

53



2.7 Curve clustering

of a curve yi (i = 1, . . . , n) can be written as:

p(yi|t;Ψ) =

R∑

r=1

αr

m∏

j=1

N (yij;β
T
r tj, σ

2
r ) =

R∑

r=1

αr N (yi;Xβr, σ
2
rIm), (2.117)

where X is the regression matrix, βr is the polynomial coefficient vector of the cluster
r (r = 1, . . . , R), the αr’s are the non-negative mixing proportions that sum to 1 and
Ψ = (α1, . . . , αr,θ1, . . . ,θR) with θr = (βr, σ

2
r ), σ

2
r being the noise variance for the

cluster r. The unknown parameter vector Ψ is estimated by maximum likelihood via
the EM algorithm (Gaffney, 2004).

Parameter estimation via the EM algorithm

Given an i.i.d training set of n curves Y = (y1, . . . ,yn) regularly sample at the time
points t = (t1, . . . , tm), the log-likelihood of Ψ is given by:

L(Ψ;Y, t) = log

n∏

i=1

p(yi;Ψ) =

n∑

i=1

log

R∑

r=1

αr N (yi;Xβr, σ
2
rIm). (2.118)

The log-likelihood is maximized by the EM algorithm. Before giving the EM steps, the
complete-data log-likelihood is given by:

Lc(Ψ;Y,h) =

n∑

i=1

R∑

r=1

hir log αr +

n∑

i=1

R∑

r=1

hir logN (yi;β
T
r tj, σ

2
rIm) (2.119)

where h = (h1, . . . , hn) is the vector of cluster labels for the n curves and hir is an
indicator binary-valued variable such that hir = 1 if hi = r (i.e., if yi is generated by
the cluster r). The EM algorithm for PRMs and PSRMs starts with an initial model
parameters Ψ(0) and alternates between the two following steps until convergence:

E-step: Compute the expected complete-data log-likelihood given the curves Y, the
time vector t and the current value of the parameter Ψ denoted by Ψ(q):

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;Y,h)|Y, t;Ψ(q)

]

=

n∑

i=1

R∑

r=1

E
[
hir|Y, t;Ψ(q)

]
logαr +

n∑

i=1

R∑

r=1

E
[
hir|Y, t;Ψ(q)

]
logN (yi;Xβr, σ

2
rIm)

=

n∑

i=1

R∑

r=1

τ
(q)
ir logαr +

n∑

i=1

R∑

r=1

τ
(q)
ir logN (yi;Xβr, σ

2
rIm) (2.120)

where

τ
(q)
ir = p(hi = r|yi, t;Ψ

(q)) =
α
(q)
r N

(
yi;Xβ

T (q)
r , σ

2(q)
r Im

)
∑R

r′=1 α
(q)
r′ N (yi;Xβ

(q)T
r′ , σ

2(q)
r′ Im)

(2.121)

is the posterior probability that the curve yi is generated by the cluster r. This step

therefore only requires the computation of the posterior cluster probabilities τ
(q)
ir (i =

1, . . . , n) for each of the R clusters.
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M-step: Compute the update Ψ(q+1) fo Ψ by maximizing the Q-function (2.120)
with respect to Ψ. The two terms of the Q-function are maximized separately. The

first term, that is the function
∑n

i=1

∑R
r=1 τ

(q)
ir log αr is maximized with respect to

(α1, . . . , αR) subject to the constraint
∑R

r=1 αr = 1 using Lagrange multipliers which
gives the following updates:

α(q+1)
r =

1

n

n∑

i=1

τ
(q)
ir (r = 1, . . . , R). (2.122)

The second term of (2.120) can also be decomposed independently as a sum of R

functions of (βr, σ
2
r ) to performR separate maximizations. The maximization of each of

theR functions, that is
∑n

i=1 τ
(q)
ir logN (yi;Xβr, σ

2
rIm), corresponds therefore to solving

a weighted least-squares problem. The solution of this problem is straightforward and
is given by:

β(q+1)
r =

(
X∗TW(q)

r X∗
)−1

X∗TW(q)
r y∗ (2.123)

σ2(q+1)
r =

1
∑n

i=1 τ
(q)
ir

(y∗ −X∗Tβ(q+1)
r )TW(q)

r (y∗ −X∗Tβ(q+1)
r ) (2.124)

where X∗ is a matrix composed of n copies of the regression matrix X (including spline
regression and B-spline regression) such that we have X∗ = (XT , . . . ,XT )T , the vector
y∗ is an nm × 1 vector composed of the n curves by stacking them one curve after

another, that is y∗ = (yT
1 , . . . ,y

T
n )

T and W
(q)
r is the nm× nm diagonal matrix whose

diagonal elements are (τ
(q)
1r , . . . , τ

(q)
1r︸ ︷︷ ︸

m times

, . . . , τ (q)nr , . . . , τ
(q)
nr︸ ︷︷ ︸

m times

).

2.7.2 Piecewise regression for curve clustering via a K-means-like al-

gorithm

In this section we recall the piecewise polynomial regression model proposed by Hébrail
et al. (2010); Hugueney et al. (2009) for clustering and optimal segmentation of a set
of curves. In this approach, the authors use a piecewise constant regression model
for both clustering and segmenting a set of curves. An euclidean distance criterion
is used to perform the segmentation of each cluster of curves. The segmentation is
performed in an optimal way using dynamic programming thanks to the additivity of
the distance criterion over the set of segments for each cluster. The euclidean distance
criterion, relative to each cluster of curves, is integrated in an overall sum of euclidean
distances over the clusters and is iteratively minimized to find a partition of the curves
into R clusters. The resulting algorithm is a K-means-like algorithm. More precisely,
the clustering and segmentation algorithm proposed in (Hébrail et al., 2010; Hugueney
et al., 2009) optimizes the following distance criterion:

E (h, {Irk}, {µrk}) =
R∑

r=1

∑

i|hi=r

Kr∑

k=1

∑

j∈Irk

(yij − µrk)
2 (2.125)
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where Irk = (ζrk, ζr,k+1] represent the indexes of elements of segment k (k = 1, . . . ,Kr)
for cluster r and µrk its constant mean, Kr being its own total number of segments. It
can be seen, as noted by Hébrail et al. (2010), that the distance criterion (2.125) can
be rewritten as

E (h, {Irk}, {µrk}) =
R∑

r=1

∑

i|hi=r

||yi − gr||
2 (2.126)

where gr = (gr1, . . . , grm) is an m× 1 dimensional vector such that grj = µrk if j ∈ Irk
for all j = 1, . . . ,m (i.e., the jth observation yij belongs to segment k of cluster r).
Thus, the vector of piecewise mean constants gr can be seen as the “centroid” of cluster
r (r = 1, . . . , R) and the criterion (2.126) as the distortion criterion optimized by the
standard K-means in the case of multidimensional data (c.f., Equation (2.26) in section
2.3.1). This criterion is then iteratively optimized as follows. After starting with an
initial cluster partition h(0) (e.g., initialized randomly), the K-means-like algorithm
alternating between the two following steps until convergence.

Relocation step: This step consists of finding the optimal piecewise constant pro-
totype for a given cluster r as follows:

• Find the segmentation of each cluster r by minimizing the additive criterion
relative to each cluster r given by (c.f., Equation (2.125)):

Er(h
(q), {Irk}, {µrk}) =

∑Kr

k=1

∑
i|h

(q)
i =r

∑
j∈Irk

(yij − µrk)
2

w.r.t the segment bounds {Irk} and the constant means {µrk} for each segment.
Due to its additivity over the segments, the segmentation can therefore be per-
formed in an optimal way using dynamic programming, similarly as in section
2.6.5 by using the schemes (2.111a) and (2.111b) for which the constant means
µrk are computed as the arithmetic mean:

µrk = 1
#Irk

∑

i|h
(q)
i

=r

∑
i|h

(q)
i =r

∑
j∈Irk

yij.

• Each cluster representative is relocated to the piecewise constant prototype, which
is the arithmetic mean of all data points assigned to it, that is, for each cluster r

find a piecewise constant prototype g
(q)
k with elements

µ
(q)
rk = 1

#I
(q)
rk

∑

i|h
(q)
i

=r

∑
i|h

(q)
i =r

∑
j∈I

(q)
rk

yij where {I
(q)
rk } corresponds to the opti-

mal segmentation of cluster r provided by dynamic programming.

Assignment step: Assign each curve yi to the near piecewise constant prototype in

the sense of the euclidean distance: h
(q+1)
i = argmin1≤r≤R ||yi − g

(q)
r ||2.

Notice that this approach can be easily generalized to perform piecewise polynomial
regression in which the cluster representative is a piecewise polynomial function rather
than than a piecewise constant function. Additional details can be found in Hébrail
et al. (2010).
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2.7.3 Piecewise polynomial regression mixture

In this section, we will use the piecewise polynomial regression model in a mixture
model-based curve clustering framework. Each curve yi (i = 1, . . . , n) is assumed to be
generated by a piecewise regression model among R models defined by (2.105), with a
prior probability αr. Thus the distribution of a curve is given by the following piecewise
polynomial regression mixture model:

p(yi|t;Ψ) =

R∑

r=1

αr

Kr∏

k=1

∏

j∈Irk

N (yij;β
T
rktj , σ

2
rk), (2.127)

where ∈ Irk is the set of indexes of elements of segment k for the cluster r (r = 1, . . . , R),
βrk is the p+1-dimensional vector of polynomial coefficients and αr (r = 1, . . . , R) are
the non-negative mixing proportions that sum to 1. The model parameters Ψ can
therefore denoted by:

Ψ = (α1, . . . , αR,ψ1, . . . ,ψR, ζ1, . . . , ζR)

where ψr = (βr1, . . . ,βrKr
, σ2

r1, . . . , σ
2
rKr

) and ζr = (ζr1, . . . , ζr,Kr+1) are respectively
the set of polynomial coefficients and noise variances, and the set of transition points
which correspond to the segmentation of the cluster r (r = 1, . . . , R).

Maximum likelihood estimation via EM

Parameter estimation can be performed in maximum likelihood framework. Assume
we have the set of i.i.d n curves Y = (y1, . . . ,yn) sampled at the time points t. The
log-likelihood of Ψ for the observed data is therefore written as

L(Ψ;Y, t) = log
n∏

i=1

p(yi|t;Ψ) =
n∑

i=1

log
R∑

r=1

αr

Kr∏

k=1

∏

j∈Irk

N
(
yij;β

T
rktj, σ

2
rk

)
. (2.128)

The maximization of this log-likelihood can be performed by the EM algorithm. In
this framework, the complete-data log-likelihood, for a particular configuration h =
(h1, . . . , hn), where hi is the cluster label of the ith curve, is given by:

Lc(Ψ;Y, t,h) =
n∑

i=1

R∑

r=1

hir logαr +
n∑

i=1

R∑

r=1

Kr∑

k=1

∑

j∈Irk

hir logN (yij;β
T
rktj, σ

2
rk) (2.129)

where hir is an indicator binary-valued variable such that hir = 1 if yi is generated
by the cluster r. The next paragraph shows how the observed-data log-likelihood is
maximized by the EM algorithm to perform curve clustering and segmentation.

The EM algorithm for piecewise polynomial regression mixture

The EM algorithm for the polynomial piecewise regression mixture model starts with an
initial solution Ψ(0) (e.g., computed from a random partition) and alternates between
the two following steps until convergence (e.g., when there is no longer change in the
relative variation of the log-likelihood):
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2.7 Curve clustering

E-step Compute the expected complete-data log-likelihood given the curves Y, the
time vector t and the current value of the parameters denoted by Ψ(q):

Q(Ψ,Ψ(q)) = E
[
Lc(Ψ;Y, t,h)|Y, t;Ψ(q)

]

=

n∑

i=1

R∑

r=1

E
[
hir|Y, t;Ψ(q)

]
logαr

+

n∑

i=1

R∑

r=1

Kr∑

k=1

∑

j∈I
(q)
rk

E
[
hir|Y, t;Ψ(q)

]
logN (yij ;β

T
rktj, σ

2
rk)

=

n∑

i=1

R∑

r=1

τ
(q)
ir log αr +

n∑

i=1

R∑

r=1

Kr∑

k=1

∑

j∈I
(q)
rk

τ
(q)
ir logN (yij;β

T
rktj, σ

2
rk) (2.130)

where

τ
(q)
ir = p(hir = 1|yi, t;Ψ

(q)) = p(hi = r|yi, t;Ψ
(q))

=
α
(q)
r

∏Kr

k=1

∏
j∈I

(q)
rk

N
(
yij;β

T (q)
rk tj, σ

2(q)
rk

)

∑R
r′=1 α

(q)
r′

∏Kr

k=1

∏
j∈I

(q)

r′k

N (yij ;β
(q)T
r′k tj, σ

2(q)
r′k )

(2.131)

is the posterior probability that the curve yi belongs to the cluster r. This step therefore

only requires the computation of the posterior cluster probabilities τ
(q)
ir (i = 1, . . . , n)

for each of the R clusters.

M-step Compute the parameter updateΨ(q+1) by maximizing the Q-function (2.130)
with respect to Ψ. The maximization of the Q-function is performed by separately
maximizing the two terms of (2.130) as follows. The first term, that is the function∑n

i=1

∑R
r=1 τ

(q)
ir logαr, is maximized with respect to (α1, . . . , αR) ∈ [0, 1]R subject to the

constraint
∑R

r=1 αr = 1 using Lagrange multipliers, which gives the following updates:

α(q+1)
r =

1

n

n∑

i=1

τ
(q)
ir (r = 1, . . . , R). (2.132)

To find the regression parameters and the segmentation (ψr, ζr) for each of the R

clusters (note that here the segmentation of cluster r is defined via the parameters ζr),
it can be seen that the second term of (2.129) can be decomposed independently into
R independent functions, each of the R functions is given as in (2.106). Therefore, this
consists of performing R separate maximizations, or equivalently minimizations, w.r.t
(ψr, ζr) where each of these minimizations involves a fuzzy cluster r (r = 1, . . . , R) and
which we perform by dynamic programming thanks to the additivity of the resulting
function over the segments. The updating rules for the regression parameters for each
cluster are given similarly as in (2.109) and (2.110).

After convergence of the EM algorithm, a partition of the curves can then de-
duced by assigning each curve to the class maximizing the posterior cluster probabilities
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2.7 Curve clustering

(2.131), that is:
ĥi = arg max

1≤r≤R
τir(Ψ̂), (i = 1, . . . , n). (2.133)

The CEM algorithm for piecewise polynomial regression mixture

In this paragraph we adopt the classification version of EM, that is the CEM algorithm
(Celeux and Govaert, 1992) to optimize the polynomial piecewise regression mixture
model for curve clustering. The CEM algorithm maximizes the complete-data log-
likelihood (2.129) w.r.t the model parameters Ψ and the partition represented by the
vector cluster labels h in an iterative manner in the following way. After starting with
an initial model parameters Ψ(0) (e.g., computed from a randomly chosen partition),
the CEM algorithm alternates between the two following steps at each iteration q until
convergence (e.g., when the is no longer change in the partition or in the relative
variation of the complete-data log-likelihood):

Step 1: Update the cluster labels for the current model defined byΨ(q) by maximizing
the complete-data log-likelihood (2.129) w.r.t to the vector h

h(q+1) = arg max
h∈{1,...,R}n

Lc(h,Ψ
(q)). (2.134)

Step 2: Update the model parameters for the current partition defined by h(q) by
maximizing the complete-data log-likelihood w.r.t to the model parameters Ψ:

Ψ(q+1) = argmax
Ψ∈Ω

Lc(h
(q+1),Ψ). (2.135)

This step consists of estimating a piecewise polynomial regression model for the set
of curves for each of the R clusters. This is performed using a dynamic programming
procedure (see sections 2.6.5 and 2.6.5).

This scheme is equivalent to integrating a classification step between the E-step and
the M-step of the EM algorithm (Celeux and Govaert, 1992):

E-step: Compute the posterior cluster probabilities τ
(q)
ir (i = 1, . . . , n) given by Equa-

tion (2.131) for each of the R clusters.

C-step: Compute a hard partition of the n curves by estimating the cluster labels
through the MAP rule:

h
(q)
i = arg max

1≤r≤R
τ
(q)
ir (i = 1, . . . , n). (2.136)

M-step: Update the model parameters by computing the parameter Ψ(q+1) which
maximizes the complete-data log-likelihood (2.129) with respect to Ψ given the esti-
mated cluster labels h(q). The mixing proportions αr’s are updated by maximizing the
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function
∑n

i=1

∑R
r=1 h

(q)
ir log αr w.r.t (α1, . . . , αR) ∈ [0, 1]R subject to the constraint∑R

r=1 αr = 1 using Lagrange multipliers which gives the following updates:

α(q+1)
r =

1

n

n∑

i=1

h
(q)
ir (r = 1, . . . , R). (2.137)

The regression parameters and the segmentation (ψr, ζr) for each of the R clusters are
updated by maximizing the function (see the second term in Equation (2.129), that is:

J
(
h(q), {βrk, σ

2
rk, Irk}

)
=

R∑

r=1

Jr
(
h(q),

{
βrk, σ

2
rk, Irk

}Kr

k=1

)
(2.138)

with
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r mrk log σ
2
rk

]
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(2.139)

for r = 1, . . . , R where Irk is the cardinal number of Irk and n
(q)
r is the number of

curved assigned to the cluster r at the current iteration q.

Thus, we perform R independent maximizations by decomposing (2.138) into R

functions, each of them is given by (2.139) and is relative to the cluster r (r = 1, . . . , R).
The criterion (2.139) is itself additive on k and therefore can be optimized in an optimal
way by using dynamic programming. The optimized function for each set of curves
belonging to the cluster r is close to the criterion (2.107) for which the optimization
procedure and the estimated parameters have been provided (c.f., section 2.6.5).

It is therefore worth mentioning that the complete-data log-likelihood (2.129) opti-
mized by the CEM algorithm, as it can be deduced from Equations (2.138, 2.139), is
equivalent to the criterion optimized by the K-means-like algorithm of Hébrail et al.
(2010) (c.f., Equation (2.125)) in the case of polynomial piecewise regression, if partic-
ular constraints are imposed on the mixing proportions αr’s and the variances σ2

rk’s:
αr = 1

R
∀R and σ2

rk = σ2
r ∀k = 1, . . . ,Kr for each cluster r. Therefore, the CEM

algorithm for piecewise polynomial regression mixture is a probabilistic view for hard
curve clustering with the K-means-like algorithm.

2.7.4 Curve clustering with Hidden Markov Models

Hidden Markov Models can also be integrated in a mixture framework to perform
sequence clustering, as developed by Smyth (1996). In this probabilistic model-based
clustering (Alon et al., 2003; Smyth, 1996), an observation sequence (in this case a
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curve) is assumed to be generated according to a mixture distribution of R components,
each of the R components is an HMM. Formally, the mixture distribution of each curve
yi (i = 1, . . . , n) is defined as

p(yi|t;Ψ) =

R∑

r=1

αr p(yi|hi = r, t;Ψr), (2.140)

where αr = p(hi = r) is the prior probability of the cluster r (r = 1, . . . , R), the
class conditional distribution p(yi|hi = r, t;Ψr) is assumed to be an HMM, typically in
this case of curves with unidimensional Gaussian emission probabilities, with param-
eters Ψr = (πr,Ar, µr1, , . . . , µrK , σ2

rk, . . . , σ
2
rK) where πr = (πr

1, . . . , π
r
K) is the initial

distribution, Ar = (Ar
ℓk)1≤ℓ,k≤K is the transition matrix with and µrk and σ2

rk for
r = 1, . . . , R and k = 1, . . . ,K, are respectively the constant mean and the variance
of an unidimensional Gaussian density. The distribution of a curve can therefore be
defined in a similar way as in Equation (2.69). This model is therefore specified by the
parameter vector

Ψ = (α1, . . . , αR,Ψ1, . . . ,ΨR).

Two different clustering formulations can be adopted for estimating this mixture of
HMMs. Two such techniques are the hard-clustering k-means approach and the soft-
clustering EM approach. A K-means-like approach for hard clustering is used in (Alon
et al., 2003; Smyth, 1996) in which the optimized fucntion is the complete-data log-
likelihood. The resulting clustering scheme consists of assigning sequences to clusters
in each iteration and use only the sequences assigned to a cluster for re-estimation of
its HMM parameters. The soft clustering approach is described in Alon et al. (2003)
where the model parameters are estimated in a maximum likelihood framework by EM.

Notice that for the two approaches, one needs to use the Baum-Welch algorithm
to compute the joint posterior probabilities for the HMM states and the conditional
distribution (the HMM likelihood) for each curve through the forward-backward pro-
cedures. The parameter updating formulas are given in a closed form and can be found
in Alon et al. (2003); Jebara et al. (2007).

2.8 Curve classification

In the previous section, we considered the problem of curve clustering in which a par-
tition of the curves is automatically estimated from a set of curves, typically het-
erogeneous. In this part we describe some methods for curve classification. Curve
classification arises when the class labels are available for a given training set, and we
aim at predicting the class labels for new observed curves.

Curve classification problem have been already addressed using discriminative ap-
proaches which include neural network approaches (Rossi and Conan-Guez, 2005a) and
kernel-based learning methods (Rossi and Villa, 2006) as well as generative approaches
like spline regression (James and Hastie, 2001). Here we focus on generative approaches
for modeling the classes of curves. They include polynomial regression, polynomial
splines and B-splines, and polynomial piecewise regression. After the learning step, a
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class prediction can then be performed by using Bayes’ theorem which yields to Func-
tional Linear Discriminant Analysis (FLDA) as in (James and Hastie, 2001) where a
natural cubic spline is used to model a set curves. This approach is analogous to Linear
Discriminant Analysis in the case of multidimensional data. The principle of FLDA for
different curve models is given in the next section.

2.8.1 Functional Linear Discriminant Analysis

Let us denote by ((y1, c1), . . . , (yn, cn)) a given labeled training set of curves issued
from G classes with (ci ∈ {1, . . . , G}) is the class label of the ith curve. FLDA arises
when we model each class of curves (functions) with a single model (e.g., polynomial,
spline, B-spline or a piecewise function). Assume we have learned the class parameter
vectors (Ψ̂1, . . . , Ψ̂G) from the labeled training set of curves, where Ψ̂g is an estimation
of the parameter vector Ψg of class g (g = 1, . . . , G) provided by the corresponding
estimation procedure (c.f., see section 2.6 for detail on the optimization procedure for
these different models). A new curve yi is then assigned to the class ĉi using the MAP
rule. Formally, the class of a new curve is given by

ĉi = arg max
1≤g≤G

p(ci = g|yi, t; Ψ̂g), (2.141)

where

p(ci = g|yi, t; Ψ̂g) =
p(ci = g)p(yi|ci = g, t; Ψ̂g)∑G

g′=1 p(ci = g′)p(yi|ci = g′, t; Ψ̂g′)
, (2.142)

is the class posterior probability, p(ci = g) being the proportion of the class g in the
training set and p(yi|ci = g, t; Ψ̂g) the conditional density of the class g defined by
Equations (2.94) and (2.105).

It is worth to note that this mode is more suitable for homogeneous classes of curves.
However, when one or more classes are dispersed, using a single model description
becomes unsuitable. There exists an extension of FLDA called Functional Mixture
Discriminant Analysis (FMDA) to handle the problem of sub-classes of curves.

2.8.2 Functional Mixture Discriminant Analysis

Motivated by the complexity of the gene functions, for which modeling each class with
a single function using FLDA is not adapted, Gui and Li (2003) proposed a Functional
Mixture Discriminant Analysis approach (FMDA) for funtional data classification by
analogy to Mixture Discriminant Analysis (MDA) (Hastie and Tibshirani, 1996) for
the case of multidimensional data. In the FMDA approach developed in Gui and Li
(2003), each class of functions is modeled by a mixture of several sub-classes, each of
the sub-classes is a B-spline function with Gaussian noise. The EM algorithm is used
for estimating the parameters in a maximum likelihood framework.

Notice that the choice of the component density model is generic and can be assumed
to be a spline function as well as a polynomial or a piecewise polynomial function. The
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density of a curve given the class (the group) g (g = 1, . . . , G) for FMDA is a mixture
density which can be written as

p(yi|ci = g, t;Ψg) =

Rg∑

r=1

αgr p(yi|ci = g, hi = r, t;Ψgr)

where Rg is the number of component densities for class g, the αgr’s (r = 1, . . . , Rg)
are the corresponding non-negative mixing proportions that sum to 1 and the com-
ponent density p(yi|ci = g, hi = r, t;Ψgr) parametrized by Ψgr can be defined by a
polynomial regression or a polynomial spline (including B-spline) regression model (c.f.,
Equation (2.94)) or a polynomial piecewise regression model (c.f., Equation (2.105)).
The parameters of the mixture model for each class g denoted by

Ψg = (αg1, . . . , αgRg ,Ψg1, . . . ,ΨgRg)

can be estimated by maximum likelihood using the EM algorithm Dempster et al.
(1977). Indeed, estimating the parameters for each class is equivalent to performing
a curve clustering for the set of curves belonging to this class, which was detailed in
section 2.7. The number of component densities can be chosen by using some model
selection criteria such as BIC or AIC. Note that in Gui and Li (2003) the number of
sub-classes are fixed by the user.

2.9 Summary

In this chapter, we reviewed probabilistic models used for modeling, classification and
clustering multidimensional data and functional data.We also considered both the static
and the dynamic aspects. For the static aspect, the sample is assumed to be indepen-
dent, and for the dynamic aspect, time dependency of the data can be inferred through
dedicated models for sequence modeling.

For multidimensional data classification, MDA has shown good performance by
providing accurate class separation as compared to LDA, QDA and logistic regression.
For the case of sequential observations, although HMMs and ARHMMs are suitable to
capture dynamical aspects of a system given an observation sequence, they assume a
homogeneous Markov chain. Therefore, extending them to the non-homogeneous case
should be beneficial for modeling time-varying state transitions.

The methods presented for curve modeling, clustering and classification are mainly
model-based and rely on regression, piecewise regression and HMMs. However, the
majority of these approaches do not address the problem of regime changes within
curves. Indeed, the approaches based on polynomial regression or spline regression
are not dedicated to regime change detection problems. Fitting several models to a
curve or a set of curves for different time ranges is possible with a piecewise polynomial
regression. However, this approach may be computationally expensive and does not
guarantee the continuity of the estimated curve. Finally, although HMM regression
can be used for modeling a single curve with regime changes, its formulation for a set
of curves is not adapted for providing a single “mean curve” representation.
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Curve modeling by a regression

model with a hidden logistic

process

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 The regression model with a hidden logistic process (RHLP) 67

3.2.1 The hidden logistic process . . . . . . . . . . . . . . . . . . . 67

3.2.2 The generative model . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Parameter estimation by a dedicated EM algorithm . . . . 69

3.3.1 The dedicated EM algorithm . . . . . . . . . . . . . . . . . . 71

3.3.2 Curve approximation and segmentation . . . . . . . . . . . . 75

3.3.3 Model selection . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Application to curve classification . . . . . . . . . . . . . . . 77

3.4.1 Modeling the curves with mixture models: a two steps strategy 77

3.4.2 Application to curve classification with MDA . . . . . . . . . 78

3.5 Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.1 Introduction

This chapter focuses on modeling and classifying curves with regime changes. Figure
3.1 shows examples of curves issued from the railway switch operations. We focus on
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Figure 3.1: Example of curves of electrical power consumed during two switch opera-

tions.

curves that present non-linearities and various regime changes, which is the case for
the switch operation curves that we are studying in this thesis (see Figure 3.1). The
aim is to provide an accurate representation of such curves through a dedicated mod-
eling approach. In particular, a parametric model that provides a feature vector of
reduced dimension and, at the same time, preserves most of the relevant information
concerned with the dynamical behavior of the regimes (including their temporal loca-
tion, their shapes and their dispersion) should, without doubt, be very promising for
curve classification and/or curve clustering tasks. More specifically, generative mod-
els are parametric models that help us understand the underlying processes generating
such curves. We therefore opt for a parametric generative approach for curve modeling.

As shown in Figure 3.1, we have nonlinear regimes in which the changes over time
may be smooth and/or abrupt. In such a context, basic parametric methods based on
linear or polynomial regression are not appropriate. The piecewise regression model
shown in 2 may be used as an alternative. Recall that piecewise polynomial regression
is a modeling and segmentation method that partitions the curve into K segments or
regimes, with each segment characterized by its mean polynomial curve and its vari-
ance. For this type of modeling, because the optimized criterion is additive over the
segments (or regimes), parameter estimation can be performed using dynamic program-
ming (Bellman, 1961; Stone, 1961). Another alternative approach is to use the Hidden
Markov Model Regression (Fridman, 1993) in which model parameters are estimated
using the Baum-Welch algorithm (Baum et al., 1970).

In this chapter, we present a new approach for curve modeling (Chamroukhi et al.,
2009c). It consists of a regression model that incorporates a discrete hidden logistic
process. We call this model RHLP. This approach is related to the switching regression
model introduced by Quandt and Ramsey (1978) and is linked to the Mixture of Experts
(ME) model developed by Jordan and Jacobs (1994) by the use of a time-dependent
logistic transition function. The ME model, as discussed in Waterhouse (1997), uses a
conditional mixture modeling in which model parameters are estimated using the EM
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997).
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The proposed model allows for activating smoothly and/or abruptly different poly-
nomial regression models over time. The model parameters are estimated by the max-
imum likelihood method performed with a dedicated Expectation-Maximization (EM)
algorithm. Then, we apply the RHLP model for curve classification using Mixture Dis-
criminant Analysis (MDA) (Hastie and Tibshirani, 1996). The contribution we present
here involves curve modeling.

This chapter is organized as follows. Section 3.2 introduces the proposed regression
model and the hidden logistic process. Section 3.3 details parameter estimation via
a dedicated EM algorithm. In section 3.4, the RHLP method is applied to curve
classification using Mixture Discriminant Analysis. Finally, in section 3.5 we provide
illustrations on simulated curves using the proposed RHLP model.

3.2 The regression model with a hidden logistic process

(RHLP)

The proposed regression model is defined, as for the HMMR model, by

yj = β
T
zj
tj + σzjǫj ; ǫj ∼ N (0, 1), (j = 1, . . . ,m) (3.1)

where in this case a logistic process is used to model the hidden sequence z = (z1, . . . , zm).
In the next section we give the details of the proposed hidden logistic process and
highlight its flexibility for modeling the dynamical behavior within a curve through
accurately capturing the regime changes.

3.2.1 The hidden logistic process

This section defines the probability distribution of the process
z = (z1, . . . , zm) that allows for the switching from one regression model to another.

The proposed hidden logistic process assumes that the variables zj (j = 1, . . . ,m),
given the vector t = (t1, . . . , tm), are generated independently according to the multi-
nomial distribution M(1, π1(tj ;w), . . . , πK(tj ;w)), where

πk(tj ;w) = p(zj = k|tj ;w) =
exp (wT

k vj)∑K
ℓ=1 exp (w

T
ℓ vj)

, (3.2)

is the logistic transformation of a linear function of the time-dependent covariate vec-
tor vj = (1, tj , t

2
j , . . . , t

u
j )

T , wk = (wk0, . . . ,wku)
T is the (u + 1)-dimensional coef-

ficients vector associated with vj and w = (w1, . . . ,wK). Thus, given the vector
t = (t1, . . . , tm), the distribution of z can be written as

p(z|t;w) =
m∏

j=1

K∏

k=1

p(zj = k|tj;w)zjk =
m∏

j=1

K∏

k=1

(
exp (wT

k vj)∑K
ℓ=1 exp (w

T
ℓ vj)

)zjk

, (3.3)

where zjk is an indicator-binary variable such that zjk = 1 if zj = k (i.e., when yj is
generated by the kth regression model), and 0 otherwise.
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The relevance of the logistic transformation in terms of flexibility of transitions can
be illustrated through simple examples with K = 2 components. In this case, only the

probability π1(tj ;w) =
exp(wT

1 vj)

1+exp(wT
1 vj)

should be described, since π2(tj;w) = 1−π1(tj ;w).

The first example is designed to show the effect of the dimension u ofwk on the temporal
variation of the probabilities πk(tj ;w). We consider different values of the dimension
uof wk (u = 0, 1, 2).

As shown in Figure 3.2, the dimension u controls the number of temporal transitions
of πk(tj ;w). In fact, the larger the dimension of wk, the more complex the temporal
variation of πk(tj ;w). More particularly, if the goal is to segment the curves into
contiguous segments, the dimension u of wk must be set to 1, what will be assumed
hereafter.
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Figure 3.2: Variation of π1(tj ;w) over time for different values of the dimension q of

w1, for K = 2 and (a) u = 0 and w1 = 0, (b) u = 1 and w1 = (10,−5)T and (c) u = 2

and w1 = (−10,−20,−4)T .

For a fixed dimension u of the parameter wk, the variation of the proportions
πk(tj ;w) over time, in relation to the parameter wk, is illustrated by an example of
2 regimes with u = 1. For this purpose, we use the parametrization wk = λk(γk, 1)

T

of wk, where λk = wk1 and γk = wk0
wk1
· As shown in Figure 3.3 (a), the parameter λk

controls the quality of transitions between the regimes, the higher absolute value of λk,
the more abrupt the transition between the regimes zj . Whereas the parameter γk, as
it can be seen in Figure 3.3 (b), is directly related to the placement of the transition
time point.

In this particular regression model, the variable zj controls the switching from one
regression model to another of K regression models at each time tj . Therefore, un-
like basic polynomial regression models which can be seen as stationary models as
they assume uniform regression parameters over time, the proposed dynamical regres-
sion model allows for polynomial coefficients to vary over time by switching from one
regression model to another. This modeling is therefore beneficial for capturing non-
stationary behavior involved by regime changes for a curve.
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Figure 3.3: Variation of π1(tj;w) over time for a dimension u = 1 ofw1 and (a) different

values of λ1 = w11 with γ1 = −2 and (b) different values of γ1 =
w10
w11

with λ1 = −5.

3.2.2 The generative model

The generative model for a curve yi = (y1, . . . , ym) given the parameter vector
θ = (w,β1, . . . ,βK , σ2

1 , . . . , σ
2
K) consists of 2 steps:

• generate the hidden process z = (z1, . . . , zm) according to the multinomial distri-
bution zj |tj ∼M(1, π1(tj ;w), . . . , πK(tj ;w)),

• generate each observation yj according to the Gaussian distributionN (·;βT
zj
tj, σ

2
zj
).

A graphical representation for the RHLP model is presented in Figure 3.4.

Figure 3.4: Graphical model structure for the proposed regression model with a hidden

logistic process (RHLP).

3.3 Parameter estimation by a dedicated EM algorithm

For the proposed model, conditionally on a regression model k, yj is distributed ac-
cording to a normal density with mean βT

k tj and variance σ2
k:

p(yj |zj = k, tj ;θk) = N
(
yj;β

T
k tj, σ

2
k

)
(3.4)
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where θk = (βk, σ
2
k). Thus, the observation yj at each time point tj is distributed

according to the following normal mixture density:

p(yj |tj;θ) =
K∑

k=1

p(zj = k|tj ;w)p(yj |zj = k, tj ;θk)

=

K∑

k=1

πk(tj;w)N
(
yj;β

T
k tj, σ

2
k

)
, (3.5)

where θ = (w,β1, . . . ,βK , σ2
1 , . . . , σ

2
K) is the unknown parameter vector to be esti-

mated. The parameter θ is estimated by the maximum likelihood method. As in the
classic regression models we assume that, given t = (t1, . . . , tm), the ǫj are independent.
This also implies the independence of yj (j = 1, . . . ,m) given the time vector t. The
log-likelihood of θ is therefore written as

L(θ;y, t) = log

m∏

j=1

p(yj|tj ;θ)

=
m∑

j=1

log
K∑

k=1

πk(tj;w)N
(
yj;β

T
k tj , σ

2
k

)
. (3.6)

The maximization of this log-likelihood can not be performed in a closed form as it
results in a complex nonlinear function due to the logarithm of the sum. However, in
this latent data framework, the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977; McLachlan and Krishnan, 1997) is particularly adapted for maximizing the
log-likelihood. With this specification, given a particular configuration z of the hidden
process, the complete-data log-likelihood of θ is given by:

Lc(θ;y, z) = log p(y, z|t;θ) = log[p(y|z, t;θ)p(z|t;w)]. (3.7)

Since for a particular configuration of the hidden process z, the conditional distribution
of the observed curve y given the vector of time points t is given by:

p(y|z, t;θ) =
m∏

j=1

p(yj|zj , tj ;θ)

=

m∏

j=1

K∏

k=1

p(yj|zj = k, tj ;θk)
zjk , (3.8)

thus, after collecting together (4.4) and (3.8) in (3.7), we then obtain the expression of
the complete-data log-likelihood (3.7) :

Lc(θ;y, z, t) =

m∑

j=1

K∑

k=1

zjk log
[
πk(tj;w)N

(
yj;β

T
k tj , σ

2
k

)]
. (3.9)

The next section presents the proposed EM algorithm for the regression model with
hidden logistic process (RHLP).
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3.3 Parameter estimation by a dedicated EM algorithm

3.3.1 The dedicated EM algorithm

The proposed EM algorithm starts with an initial parameter θ(0) and alternates between
the two following steps until convergence:

E-Step: This step consists of computing the expectation of the complete-data log-
likelihood (3.9) , given the observations and the current value θ(q) of the parameter θ
(q being the current iteration):

Q(θ,θ(q)) = E

[
Lc(θ;y, t, z)|y, t;θ

(q)
]

=

m∑

j=1

K∑

k=1

E[zjk|yj , tj ;θ
(q)] log

[
πk(tj ;w)N (yj ;β

T
k tj, σ

2
k)
]

=
m∑

j=1

K∑

k=1

τ
(q)
jk log

[
πk(tj ;w)N

(
yj;β

T
k tj, σ

2
k

)]

=

m∑

j=1

K∑

k=1

τ
(q)
jk log πk(tj ;w) +

m∑

j=1

K∑

k=1

τ
(q)
jk logN

(
yj;β

T
k tj, σ

2
k

)
, (3.10)

where

τ
(q)
jk = p(zjk = 1|yj, tj ;θ

(q))

=
πk(tj;w

(q))N (yj ;β
T (q)
k tj, σ

2(q)
k )

∑K
ℓ=1 πℓ(tj ;w

(q))N (yj ;β
T (q)
ℓ tj, σ

2(q)
ℓ )

(3.11)

is the posterior probability that yj originates from the kth polynomial regression model.
As shown in the expression of the Q-function, this step simply requires the computation

of the posterior probabilities τ
(q)
jk .

M-Step: In this step, the value of the parameter θ is updated by computing the
parameter θ(q+1) maximizing the conditional expectation Q with respect to θ:

θ(q+1) = argmax
θ∈Θ

Q(θ,θ(q)) (3.12)

where Θ is the parameter space.

Let us denote by Qw(w,θ(q)) the term in Q(θ,θ(q)) that is function of w and by
Qθk(θ,θ

(q)) the term in Q(θ,θ(q)) that depends on θk = (βk, σ
2
k), we obtain:

Q(θ,θ(q)) = Qw(w,θ(q)) +
K∑

k=1

Qθk(θ,θ
(q)), (3.13)

where

Qw(w,θ(q)) =
m∑

j=1

K∑

k=1

τ
(q)
jk log πk(tj ;w), (3.14)
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and

Qθk(θ,θ
(q)) =

m∑

j=1

τ
(q)
jk logN

(
yj;β

T
k tj, σ

2
k

)

= −
1

2

[ 1

σ2
k

m∑

j=1

τ
(q)
jk

(
yj − β

T
k tj
)2

+m
(q)
k log σ2

k

]
−

m
(q)
k

2
log 2π(3.15)

for k = 1, . . . ,K, where m
(q)
k =

∑m
j=1 τ

(q)
jk can be seen as the number of points of the

component k estimated at the iteration q. Thus, the maximization of Q with respect
to θ can be performed by separately maximizing Qw(w,θ(q)) with respect to w and
Qθk(θ,θ

(q)) with respect to (βk, σ
2
k) for all k = 1, . . . ,K.

In order to maximize Qθk(θ,θ
(q)) with respect to the regression coefficients βk,

let us denote by Qβk
(θ,θ(q)) the term in Qθk(θ,θ

(q)) that references the regression
coefficients βk, we get:

Qβk
(θ,θ(q)) = −

1

2σ2
k

m∑

j=1

τ
(q)
jk

(
yj − β

T
k tj
)2

. (3.16)

Thus, maximizing Qβk
(θ,θ(q)) w.r.t βk consists of solving the weighted least-squares

problem where the weights are the posterior probabilities τ
(q)
jjk

β
(q+1)
k = arg min

βk∈R
p+1

m∑

j=1

τ
(q)
jk (yj − β

T
k tj)

2.

The solution of this problem is obtained in a closed form from the so-called normal
equations and is given by:

β
(q+1)
k =

[ m∑

j=1

τ
(q)
jk tjt

T
j

]−1
m∑

j=1

τ
(q)
jk yjtj

= (XTW
(q)
k X)−1XTW

(q)
k y, (3.17)

where W
(q)
k is an m × m diagonal matrix of weights whose diagonal elements are

(τ
(q)
1k , . . . , τ

(q)
mk) and X is the n× (p + 1) regression matrix.

To update the estimation of the variance σ2
k for each of the K polynomial regimes,

letting Qσk
(θ,θ(q)) denotes the terms in Qθk(θ,θ

(q)) that are function of σ2
k, we obtain:

Qσk
(θ,θ(q)) = −

1

2

m∑

j=1

τ
(q)
jk

[(yj − βT (q+1)
k tj)

2

σ2
k

+ log σ2
k

]
. (3.18)

Thus, maximizing Qσk
(θ,θ(q)) w.r.t σ2

k is a weighted variant of the problem of esti-
mating the variance of an univariate Gaussian density. The problem can be solved in
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a closed form. Taking the derivative of (3.18) with respect to σ2
k and setting to zero

yields:

σ
2(q+1)
k =

1

m
(q)
k

m∑

j=1

τ
(q)
jk (yj − β

T (q+1)
k tj)

2

=
1

m
(q)
k

(y −Xβ
(q+1)
k )TW

(q)
k (y −Xβ

(q+1)
k ). (3.19)

The maximization of Qw(w,θ(q)) with respect to w is a multinomial logistic regression

problem weighted by τ
(q)
jk which we solve with a multi-class Iterative Reweighted Least

Squares (IRLS) algorithm (Chamroukhi et al., 2009a; Chen et al., 1999; Green, 1984;
Krishnapuram et al., 2005). The IRLS algorithm is detailed in the following paragraph.

The Iteratively Reweighted Least Squares (IRLS) algorithm: The IRLS al-
gorithm is used to maximize

Qw(w,θ(q)) =
m∑

j=1

K∑

k=1

τ
(q)
jk log πk(tj ;w)

with respect to the parameter w in the M step at each iteration q of the EM algorithm.
This criterion is concave. We derive the concavity proof in Appendix A.7. To estimate
the parameter vector w = (w1, . . . ,wK), the component vector wK is set to the null
vector to satisfy

∑K
k=1 πk(tj;w) = 1. The IRLS algorithm is equivalent to the Newton-

Raphson algorithm, which consists of starting with a vector w(0), and updating the
estimation of w as follows:

w(l+1) = w(l) −
[∂2Qw(w,θ(q))

∂w∂wT

]−1

w=w(l)

∂Qw(w,θ(q))

∂w

∣∣∣
w=w(l)

(3.20)

where ∂2Qw(w,θ(q))
∂w∂wT and ∂Qw(w,θ(q))

∂w
are respectively the Hessian matrix and the gradient

of Qw(w,θ(q)). At each IRLS iteration the Hessian and the gradient are evaluated at
w = w(l) and are computed similarly as in the IRLS algorithm described in section
2.4.4, by replacing the binary membership variables yig and the logistic probabilities
πg(xi;w) in both Equation (2.55) and Equation (2.58), by the posterior probabilities
τjk and the logistic probabilities πk(tj ;w). The calculation details are also given in
Appendix A.7.

The parameter update w(q+1) is taken at convergence of the IRLS algorithm (3.20).

One can limit the number of iterations of the IRLS procedure of the EM algorithm.
This version would consist of only increasing the criterion Qw(w,w(q)) at each EM
iteration rather than maximizing it. One can, for example, limit the number of IRLS
iterations up to a single iteration. This scheme yields to a Generalized EM (GEM)
algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997) which has the same
convergence properties as the EM algorithm. However, in practice, we observed that
this restriction results in an increase of the total EM iterations. We opted for the
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following initialization strategy. The IRLS procedure is initialized randomly only for
the first EM iteration. For this first initialization, the convergence of the IRLS al-
gorithm requires about fifteen iterations (recall that the main advantage of the IRLS
algorithm, as a Newton Raphson procedure has a quadratic convergence rate (Boyd
and Vandenberghe, 2004)). From the second iteration of the EM algorithm, the IRLS
algorithm defined by Equation (3.20) is initialized with the parameter w(q) estimated
at the previous EM iteration. Beyond the fourth iteration of the EM algorithm, we
observed that the IRLS algorithm converges after only about 5 iterations.

The time complexity of the E-step of this EM algorithm is of O(Km). The cal-
culation of the regression coefficients in the M-step requires the computation and the
inversion of the square matrix XTX which is of dimension p+ 1, and a multiplication
by the observation sequence of length m which has a time complexity of O(p2m). In
addition, each IRLS loop requires an inversion of the Hessian matrix which is of dimen-
sion (u+1)× (K − 1). Therefore for a small u (here we used u = 1), the complexity of
the IRLS loop is approximatively of O(IIRLSK

2) where IIRLS is the average number of
iterations required by the internal IRLS algorithm. Therefore the proposed algorithm
is performed with a time complexity of O(IEMIIRLSK

3p2m), where IEM is the number
of iterations of the EM algorithm.

The pseudo code 3 summarizes one run of the proposed EM algorithm.
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3.3 Parameter estimation by a dedicated EM algorithm

Algorithm 3 Pseudo code of the proposed algorithm for the RHLP model.

Inputs: a curve y, the number of polynomial components K, the polynomial degree p

and the sampling time t1, . . . , tm.

1: Initialize: θ(0) = (w(0),β
(0)
1 , . . . ,β

(0)
K , σ

2(0)
1 , . . . , σ

2(0)
K )

2: fix a threshold ǫ > 0

3: set q ← 0 (EM iteration)

4: while increment in log-likelihood > ǫ do

5: E-step:

6: for k = 1, . . . ,K do

7: compute τ
(q)
jk for j = 1, . . . ,m using equation (3.11)

8: end for

9: M-step:

10: for k = 1, . . . ,K do

11: compute β
(q+1)
k using equation (3.17)

12: compute σ
2(q+1)
k using equation (3.19)

13: end for

14: IRLS:

15: Initialize: set w(l) = w(q)

16: set a threshold δ > 0

17: l ← 0 (IRLS iteration)

18: while increment in Qw(w,θ(q)) > δ do

19: compute w(l+1) using equation (3.20)

20: l← it+ 1

21: end while

22: w(q+1) ← w(l)

23: q ← q + 1

24: end while

25: θ̂ = θ(q)

Output: θ̂ = (ŵ, β̂1, . . . , β̂K , σ̂2
1 , . . . , σ̂

2
K)

3.3.2 Curve approximation and segmentation

In addition to performing curve modeling, the proposed approach can be used to ap-
proximate (or denoise) and segment curves. The curve approximation is given by the
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expectation vector E[y|t; θ̂] =
(
E[y1|t1; θ̂], . . . ,E[ym|tm; θ̂]

)
, where

E[yj|tj ; θ̂] =

∫

R

yj p(yj|tj; θ̂)dyj

=

∫

R

yj

K∑

k=1

πk(tj ; ŵ)N
(
yj; β̂

T

k tj, σ̂
2
k

)
dyj

=

K∑

k=1

πk(tj ; ŵ)

∫

R

yj N
(
yj; β̂

T

k tj, σ̂
2
k

)
dyj

=

K∑

k=1

πk(tj ; ŵ)β̂
T

k tj ,∀j = 1, . . . ,m, (3.21)

and θ̂ = (ŵ, β̂1, . . . , β̂K , σ̂2
1 , . . . , σ̂

2
K) is the parameter vector obtained at convergence

of the EM algorithm. The matrix formulation of the curve approximation equation can
be written as

ŷ =
K∑

k=1

Π̂kXβ̂k, (3.22)

where Π̂k is an (m × m) diagonal matrix whose diagonal elements are the logistic
proportions (πk(t1; ŵ), . . . , πk(tm; ŵ)) associated with the kth regression model.

On the other hand, a curve segmentation can also be obtained by computing the
estimated label ẑj of the polynomial regime generating yj according to the following
rule:

ẑj = arg max
1≤k≤K

πk(tj; ŵ), (j = 1, . . . ,m). (3.23)

Applying this rule guarantees the curves are segmented into contiguous segments if the
probabilities πk are computed with a dimension u = 1 of wk (k = 1, . . . ,K). This result
lies in the fact that with this specification on the dimension the vector wk, and at the
same time on the covariate vector vj , the separation between the polynomial regimes is
linear in t. Indeed, the “decision boundary” between two regression models indexed by
k and ℓ is represented by the set of time points for which we have πk(tj ;w) = πℓ(tj;w)

or by equivalence the log-ratios log
πk(tj ;w)
πℓ(tj ;w) are zero, that is:

log
πk(tj ;w)

πℓ(tj ;w)
= log

exp(wT
k vj)

exp(wT
ℓ vj)

= (wk −wℓ)
Tvj = 0.

Let us recall that vj = (1, tj , . . . , t
u
j )

T . Therefore, if we set u = 1 we have vj = (1, tj)
T

and the obtained “decision boundary”, which corresponds in this case to the set of
transition time points tj satisfying

(wk0 − wℓ0) + (wk1 − wℓ1)tj = 0

is linear in tj. We therefore have a single transition point between the polynomial
regimes k and ℓ given by

tj =
wk0 − wℓ0

wℓ1 − wk1
.
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3.4 Application to curve classification

When the degree u increases, the decision boundaries become nonlinear and arise in
various transition time points (for example for u = 2 we can have 2 transition time
points, etc (see Figure 3.2)), and therefore having contiguous segments will not be
ensured.

3.3.3 Model selection

In a general application of the proposed model, the optimal values of (K, p, q) can be
computed by using the Bayesian Information Criterion (BIC) (Schwarz, 1978) which is
a penalized likelihood criterion, defined by

BIC(K, p, u) = L(θ̂)−
νθ log(m)

2
, (3.24)

where νθ = K(p+ u+ 3)− (u+ 1) is the number of free parameters of the model and
L(θ̂) is the observed-data log-likelihood obtained at convergence of the EM algorithm.
To ensure a curve segmentation into contiguous polynomial segments u must be set to
1 which we adopt in the rest of this thesis. The dimension of the parameter space of
in that case is given by νθ = K(p+ 4)− 2.

3.4 Application to curve classification

While the first objective of the RHLP model is to give a synthetic model that represents
at best a rough curve, on the other hand, it is also a feature extraction technique
for dimensionality reduction of the rough curves. Indeed, the RHLP model, given
an observed curve, provides a parameter vector of dimension much lower than the
number of total points necessary to describe the rough curve. In addition, this feature
extraction technique does not lead to a loss in information that can has a strong effect
on the resulting curve model as it can be seen through the examples shown in Figure
3.5 and Figure 3.6. In this way, the RHLP model is also promising for an accurate curve
classification, based on the extracted features. The curve classifier to be built may be
chosen from the existing machinery for multidimensional classification (supervised or
unsupervised).

In the following sections we will therefore show how one can perform curve classifi-
cation in both the supervised and the unsupervised contexts.

3.4.1 Modeling the curves with mixture models: a two steps strategy

The curve classification scheme is two-fold. Given a training set of n independent
curves (y1, . . . ,yn) where, the RHLP model detailed above is first applied to each of
n curves. The estimated parameter vector for each curve is then used as its feature
vector. The classification task is then performed in the resulting feature space (space
of descriptors).

For the unsupervised curve classification context, we use the mixture model-based
clustering. In this approach, given a training set of extracted feature vectors (y1, . . . ,yn),
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3.4 Application to curve classification

where yi denotes the feature vector θ extracted from the curve yi, the density for yi
is modeled by a Gaussian mixture distribution defined by:

p(yi;Ψ) =

R∑

r=1

αrN (yi;µr,Σr) , (3.25)

where
Ψ = (α1, . . . , αR,Ψ1, . . . ,ΨR)

is the parameter vector of the mixture, Ψr = (µr,Σr) being the parameters of the
Gaussian component r, and the corresponding non negative mixing proportions αr

(r = 1, . . . , R) satisfy
∑R

r=1 αr = 1. The optimal number of Gaussian distributions R
can be computed by maximizing the BIC criterion (Schwarz, 1978):

BIC(R) = L(Ψ̂)−
νR

2
log(n), (3.26)

where Ψ̂ is the maximum likelihood estimate of Ψ provided by the EM algorithm and
νR = R(νθ+1)(νθ+2)

2 − 1 is the dimension of Ψ.

Estimating a partition for the curves using the MAP rule

Given the estimated model parameters Ψ̂ from a training set of n curves by, a partition
of the curves into R clusters can then be estimated by using the MAP rule. According
to this rule, the cluster label of the ith curve is calculated as:

ĥi = arg max
1≤r≤R

p(hi = r|yi; Ψ̂r), (3.27)

where

p(hi = r|yi; Ψ̂r) =
α̂rN (yi; Ψ̂r)∑R

r′=1 α̂r′ p(yi; Ψ̂r′)
(3.28)

is the posterior probability of cluster r.

3.4.2 Application to curve classification with MDA

This part is devoted to the application of the RHLP model to curve classification into
predefined classes using Mixture Discriminant Analysis.

To perform the curve classification, we opt for Mixture Discriminant Analysis
(Hastie and Tibshirani, 1996) which allows for complex decision boundaries and is
able to handle the class dispersion problem. Given a training set of a labeled collection
of extracted feature vectors ((y1, c1), . . . , (yn, cn)), where yi denotes the feature vector
θ extracted from the curve yi, the parameters of each class are learned using Mixture
Discriminant Analysis (MDA) (Hastie and Tibshirani, 1996). In this approach, the
density of each class g (g = 1, .., G) is modeled by a Gaussian mixture distribution
defined by:

p(yi|ci = g;Ψg) =

Rg∑

r=1

αgrN
(
yi;µgr,Σgr

)
, (3.29)
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3.5 Illustration

where ci is the discrete-valued variable in {1, . . . , G} representing the class label of the
curve described by the feature vector yi,

Ψg =
(
αg1, . . . , αgRg ,µg1, . . . ,µgRg

, . . . ,Σg1, . . . ,ΣgRg

)

is the parameter vector of the mixture of Rg component densities of class g and
the corresponding non negative mixing proportions αgr (r = 1, . . . , Rg) satisfying∑Rg

r=1 αgr = 1 represent the prior probability of sub-class r (r = 1, . . . , Rg) for class g

(g = 1, . . . , G). The optimal number of Gaussian distributions Rg for each class g is
computed by maximizing the BIC criterion (Schwarz, 1978):

BIC(Rg) = L(Ψ̂g)−
νRg

2
log(ng), (3.30)

where Ψ̂g is the maximum likelihood estimate of Ψg provided by the EM algorithm,

νRg =
Rg(νθ+1)(νθ+2)

2 − 1 is the dimension of the parameter vector Ψg, and ng is the
cardinal number of class g.

Curve classification by the MAP rule

After performing the supervised learning procedure for MDA using the EM algorithm,
one obtains the classes’ parameter vectors (Ψ̂1, . . . , Ψ̂G). To classify a new acquired
curve, a feature vector is first extracted from this curve by applying the proposed RHLP
model. Then, a new curve designed by its feature vector yi, is assigned to the class ĉi
maximizing the posterior probability, that is:

ĉi = arg max
1≤g≤G

p(ci = g|yi; Ψ̂g), (3.31)

where

p(ci = g|yi; Ψ̂g) =
wg p(yi|ci = g; Ψ̂g)∑G

h=1wh p(yi|ci = h; Ψ̂h)
, (3.32)

where wg = p(ci = g) is the prior probability of class g (g = 1, . . . , G) calculated as the

proportion of the class g in the training set and p(yi|ci = g; Ψ̂g) is the class conditional
mixture density for class g given by (3.29) and computed with the estimated parameter
vector Ψ̂g.

3.5 Illustration

This paragraph is devoted to an illustration of the curve modeling performed by the
proposed RHLP model using nonlinear noisy functions.

The first curve example shown in Figure 3.5 consists in a curve including smooth
regime transitions over time, and the second one (c.f., Figure 3.6) includes both smooth
and abrupt regime changes. The estimated curve obtained with the RHLP for these
two situations clearly shows that RHLP model provides an accurate representation for
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curves including abrupt and/or smooth transitions. The temporal location and the
fuzziness of the regime transitions are controlled by the logistic process. Indeed, as it
can be seen on Figure 3.5 (c) and Figure 3.6 (c), the logistic probabilities πk corre-
sponding to the kth polynomial component are very close to 1 when the kth regime is
active, and are closed to 0 otherwise. Figure 3.7 includes solutions provided by alter-
native regression models, including splines, piecewise regression and HMM regression.
One can see that the spline model is not well adapted to handle the problem of abrupt
regime changes. On the other hand, the HMMR and the piecewise regression models
are more adapted for abrupt regime changes as it can be seen on the bottom plots in
Figure 3.7. While, the RHLP model can handle both the abrupt and smooth transitions
thanks to the flexibility of the logistic process.

3.6 Summary

In this chapter, we proposed a new approach for curve modeling based on a regression
model that incorporates a discrete hidden logistic process. The logistic probability
function used for the hidden variables allows for smooth and/or abrupt transitions
between various polynomial regression components over time. In addition to curve
modeling, the proposed model can provide accurate curve segmentation and smoothing.
The EM algorithm provides an elegant framework for estimating the model parameters
and the M-step of the EM algorithm uses a multi-class IRLS algorithm to estimate the
hidden process parameters.

Based on the proposed modeling approach, one can perform curve classification
by means of a two-step process, that is, feature extraction from the curves using the
RHLP model followed by multidimensional data clustering using the mixture model-
based clustering approach or classification using MDA.

The good performance of the proposed modeling approach as compared to other
alternative approaches is demonstrated in Chapter 4. In that chapter, we extend the
RHLP approach to simultaneously model a set of curves, and a new curve classification
rule is then derived.

The application to real-world curves from the railway switch operations is reported
in Chapter 6.
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Figure 3.5: Results obtained by applying the RHLP model on a simulated curve of m =

300 points where each point is given by: yt = e−0.4t(sin(πt) − sin(6πt)) sin(−2.5πt) +

ǫt with ǫt ∼ N (0, 0.12). The plot in (a) shows the original noisy curve (in gray)

and the estimated polynomial components over time with K = 4 and p = 3. The

polynomial components for which the logistic probabilities are more than 0.5 are shown

in continuous line (that is the temporal phase for which the polynomial component is

active) and those for which the corresponding logistic proportions are less that 0.5 are

shown in dashed line. The logistic probabilities corresponding to the five polynomial

components are shown in (c). The plot (b) shows the polynomial components weighted

by the logistic probabilities. In (d) we can see the true simulated mean curve and the

curve estimated by the proposed approach.
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Figure 3.6: Results obtained by applying the RHLP model on a simulated curve of

m = 300 points. The curve consists of three piecewise functions where the first and the

last are constant (-0.5) and are composed of 40 points, and each point of the second

is given by: yt = −2e
−4t sin(2.5πt) + ǫt with ǫt ∼ N (0, 0.022). The plot in (a) shows

the original noisy curve (in gray) and the estimated polynomial components over time

with K = 5 and p = 2. The polynomial components for which the logistic probabilities

are more than 0.5 are shown in continuous line and those for which the corresponding

logistic proportions are less that 0.5 are shown in dashed line. The logistic probabilities

corresponding to the five polynomial components are shown in (c). The plot (b) shows

the polynomial components weighted by the logistic probabilities. In (d) we can see

the true simulated mean curve and the curve estimated by the proposed approach.
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Figure 3.7: The true mean curve corresponding to the second situation presented above

and estimated curves obtained by applying different regression models seen in Chapter

3. The splines are quadratic (p = 2) with 10 internal knots placed uniformly on the

range of t. The HMMR and the RHLP models are used with K = 5 and p = 2. Each

of the three bottom plots presents a zoom for upper plot in a specified location.
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4.1 Introduction

4.1 Introduction

The work presented in this chapter involves modeling and classifying sets of curves with
regime changes. Figure 4.1 shows examples of two sets of curves from the real-world
switch operations. In the previous chapter, we saw that the classification task can
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Figure 4.1: Examples of curves of electrical power consumed during various switch oper-

ations; 35 curves correspond to operations without defect (a), and 45 curves correspond

to operations with critical defect (b).

be achieved by summarizing each curve in a low-dimensional feature vector using the
RHLP model and then applying a multidimensional data classification approach.

In this chapter, we extend the regression model with a hidden logistic process
(RHLP) presented in the previous chapter for a single curve to a set of curves. The
RHLP model applied to a set of curves provides a compact and simplified representa-
tion for the curves. In addition, the RHLP model with this specification can be used
to directly perform curve classification through the Maximum a Posteriori (MAP) rule
(Chamroukhi et al., 2010) and curve clustering. Indeed, the term “direct” refers to
the fact that in contrast to the two-fold classification approach found in the previous
chapter (i.e., the RHLP model followed by classification or clustering), the approach
presented here does not require an external classification model. The curve classifica-
tion based on the RHLP model for a set of curves is directly performed in the space of
curves.

In contrast to classical model-based functional discriminant and functional clus-
tering approaches, the approach presented here uses an RHLP model for each class
of curves so that it is particularly appropriate for capturing the dynamical aspect
within each class of curves through the underlying logistic process. Both the standard
Functional Linear Discriminant Analysis (FLDA) (James and Hastie, 2001) and the
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4.2 The RHLP model for a set of curves

regression mixture model (Gaffney, 2004; James and Sugar, 2003) use splines to model
curve classes, which require the setting of knots. In addition, we saw in the illustra-
tive example in Chapter 3 that when the curve to be modeled has complex regime
transitions, the RHLP model is more promising with respect to providing an accurate
approximation. Another alternative approach consists of using the piecewise polyno-
mial regression model that allows for fitting several (polynomial) models to the curves
for different time ranges.

We then provide another extension of the RHLP model using an original framework
for learning from a set of heterogeneous curves with missing information. This extension
leads us to a mixture of RHLP models, abbreviated as MixRHLP, which is particularly
appropriate for the supervised classification of curves in the case of complex shaped
classes and for curve clustering.

A related method for curve clustering is the segmentation-clustering approach of
Picard et al. (2007) applied to array CGH data. In particular, one can also distinguish
the recently proposed K-means-like algorithm (Hébrail et al., 2010; Hugueney et al.,
2009) for curve clustering and segmentation using piecewise regression (see section
2.7.2).

In addition to the use of the MixRHLP model as model-based curve clustering, we
formulate it in a supervised curve classification framework to address the problem of
complex shaped classes. The resulting classification approach can be integrated into a
Functional Mixture Discriminant Analysis (FMDA) context as presented by Gui and
Li (2003) (see section 2.8.2). The advantages of the FMDA presented here is that it
includes a dynamical process for modeling the various regimes governing the set of
curves.

The parameters of the models are estimated in a maximum likelihood framework
through a dedicated Expectation-Maximization (EM) algorithm. For clustering, we also
formulate a CEM algorithm to learn the MixRHLP model in a classification maximum
likelihood context.

This chapter is organized as follows. Section 4.2 defines the RHLP model for a set
of curves and provides a parameter estimation technique using EM. In this section, we
also derive the FLDA approach for curve classification based on the RHLP model. In
section 4.3, we develop the MixRHLP model for a set of heterogeneous curves. Section
4.3.5 is concerned with curve clustering using the MixRHLP model, and in section
4.3.6, we use the MixRHLP model for curve classification. Finally, section 4.4 presents
an experimental study to assess the performance of the proposed approaches in terms
of curve modeling, classification and clustering.

4.2 The RHLP model for a set of curves

This section presents the proposed regression model based on a hidden logistic pro-
cess for modeling a set of curves. We give the scheme of generating a set of curves
according to this model and we derive the parameter estimation. Then we show how
to approximate and classify curves using this model.
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4.2 The RHLP model for a set of curves

4.2.1 Model definition

In the proposed model, each curve yi (i = 1, . . . , n) is assumed to be generated by the
following regression model with a discrete hidden process z = (z1, . . . , zm):

yij = β
T
zj
tj + σzjǫij , ǫij ∼ N (0, 1), (4.1)

for j = 1, . . . ,m, where zj ∈ {1, . . . ,K} is a hidden discrete variable representing the
label of the polynomial regression model generating yij. This model can be reformulated
in a matrix form as

yi =
K∑

k=1

Zk(Xβk + σkǫi), ǫi ∼ N (0, Im), (4.2)

where Zk is the m × m diagonal matrix whose diagonal elements are (z1k, . . . , zmk),
with zjk = 1 if zj = k (i.e., if yij is generated by the kth regression model) and zjk = 0
otherwise, and

X =




1 t1 t21 . . . t
p
1

1 t2 t22 . . . t
p
2

...
...

...
...

...
1 tm t2m . . . t

p
m




is the m × (p + 1) regression matrix. The variable ǫi = (ǫi1, . . . , ǫim)T is an m × 1
noise vector distributed according to a Gaussian density with zero mean and identity
covariance matrix.
A graphical representation for the RHLP model for a set of curves is presented in Figure
4.2.

Figure 4.2: Graphical model structure for the proposed regression model with a hidden

logistic process for a set of curves (RHLP).

The probability distribution of the process z = (z1, . . . , zm) that allows for the
switching from one regression model to another is defined in the following way. The
proposed hidden logistic process assumes that the variables zj , given the vector t =
(t1, . . . , tm), are generated independently according to the multinomial distribution
M(1, π1(tj ;w), . . . , πK(tj ;w)), where

πk(tj ;w) = p(zj = k|tj;w) =
exp (wk0 + wk1tj)∑K
ℓ=1 exp (wℓ0 + wℓ1tj)

, (4.3)
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4.2 The RHLP model for a set of curves

is the logistic transformation of a linear function of the time point tj ,
wk = (wk0, wk1)

T is the 2 dimensional coefficient vector for the kth component of
(4.3) and w = (w1, . . . ,wK). Thus, given the vector t = (t1, . . . , tm), the distribution
of a given configuration of the process z can be written as

p(z|t;w) =

m∏

j=1

K∏

k=1

p(zj = k|tj ;w)zjk =

m∏

j=1

K∏

k=1

(
exp (wk0 + wk1tj)∑K
ℓ=1 exp (wℓ0 + wℓ1tj)

)zjk

. (4.4)

In this particular regression model, the variable zj controls the switching from one
regression model to another of K regression models within the curves at each time tj .

The use of the logistic process for modeling the sequence of variables zj allows
for modeling both abrupt and smooth regime transitions within the curves, unlike the
piecewise regression model, which is adapted only for regimes with abrupt transitions.
The relevance of the logistic transformation in terms of flexibility of transitions has
been illustrated in Chapter 3 (c.f., section 3.2.1).

4.2.2 Generating a set of curves with the RHLP model

According to the model (4.1), given a regression model k and the time point tj, the ob-
servation yij is distributed according to a normal density with mean βT

k tj and variance
σ2
k, that is:

p(yij |zj = k, tj ;θk) = N
(
yij;β

T
k tj, σ

2
k

)
(4.5)

where θk = (βk, σ
2
k). Thus, the generative scheme of n curves, given a fixed parameter

vector θ = (w,β1, . . . ,βK , σ2
1 , . . . , σ

2
K), consists of two steps:

• generate the hidden process z = (z1, . . . , zm) according to the multinomial distri-
bution zj |tj ∼M(1, π1(tj ;w), . . . , πK(tj ;w)), (j = 1, . . . ,m),

• for i = 1, . . . , n and for j = 1, . . . ,m, given zj = k and tj, generate each observa-
tion yij according to the Gaussian distribution N (·;βT

k tj, σ
2
k).

4.2.3 Parameter estimation by the EM algorithm

From equations (4.1) and (4.5), the distribution of yij given tj is the following normal
mixture density:

p(yij |tj;θ) =

K∑

k=1

p(zj = k|tj ;w)p(yij |zj = k, tj ;θk)

=

K∑

k=1

πk(tj;w)N
(
yij;β

T
k tj , σ

2
k

)
, (4.6)

where θ = (w,β1, . . . ,βK , σ2
1 , . . . , σ

2
K) is the parameter vector to be estimated. The

parameter θ is estimated by the maximum likelihood method.
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As in the piecewise polynomial regression model, we assume that the curves sample
Y = (y1, . . . ,yn) is independent. The independence of the ǫij ’s (j = 1, . . . ,m) implies
the independence of the yij’s (j = 1, . . . ,m) given the time vector t = (t1, . . . , tm).
It should be noted that the temporal dependence between the underlying segments is
controlled by the logistic distribution. The distribution of yi given t is therefore written
as

p(yi|t;θ) =
m∏

j=1

K∑

k=1

πk(tj ;w)N
(
yij;β

T
k tj, σ

2
k

)
(4.7)

and the log-likelihood of θ for the observed set of curves Y = (y1, . . . ,yn) at the time
points t is given by:

L(θ;Y, t) = log p(y1, . . . ,yn|t;θ)

= log

n∏

i=1

p(yi|t;θ)

=
n∑

i=1

m∑

j=1

log
K∑

k=1

πk(tj ;w)N
(
yij;β

T
k tj, σ

2
k

)
. (4.8)

Since this log-likelihood cannot be maximized directly, we use a dedicated Expectation-
Maximization (EM) algorithm (Dempster et al., 1977; McLachlan and Krishnan, 1997)
to perform the maximization.

With this specification, the complete-data log-likelihood of θ given a configuration
z of the hidden logistic process is written as

Lc(θ;Y, z, t) = log p(y1, . . . ,yn, z|t;θ)

= log
n∏

i=1

p(yi, z|t;θ)

= log
n∏

i=1

p(z|t;w)p(yi|z, t;θ)

= log

n∏

i=1

m∏

j=1

K∏

k=1

[p(zj = k|tj ;w)p(yij |zj = k, tj ;θk)]
zjk

=

n∑

i=1

m∑

j=1

K∑

k=1

zjk log
[
πk(tj ;w)N

(
yij ;β

T
k tj, σ

2
k

)]
. (4.9)

The next section gives the proposed EM algorithm for maximizing the observed-data
log-likelihood (4.8).

4.2.4 The dedicated EM algorithm

The proposed EM algorithm starts with an initial parameter θ(0) and alternates between
the two following steps until convergence:
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E-step

This step computes the expectation of the complete-data log-likelihood (4.9), condi-
tionally on the observed data Y and the time vector t using the current parameter
estimation denoted by θ(q) (q being the current iteration):

Q(θ,θ(q)) = E

[
Lc(θ;Y, z)|Y, t;θ(q)

]

=

n∑

i=1

m∑

j=1

K∑

k=1

E
[
zjk|yij, tj ;θ

(q)
]
log
[
πk(tj ;w)N (yij ;β

T
k tj , σ

2
k)
]

=
n∑

i=1

m∑

j=1

K∑

k=1

τ
(q)
ijk log

[
πk(tj ;w)N

(
yij;β

T
k tj, σ

2
k

)]

=

n∑

i=1

m∑

j=1

K∑

k=1

τ
(q)
ijk log πk(tj ;w)+

n∑

i=1

m∑

j=1

K∑

k=1

τ
(q)
ijk logN

(
yij;β

T
k tj, σ

2
k

)
,(4.10)

where

τ
(q)
ijk = p(zjk = 1|yij , tj;θ

(q)) =
πjk(w

(q))N (yij ;β
T (q)
k tj, σ

2(q)
k )

∑K
ℓ=1 πℓ(tj ;w

(q))N (yij ;β
T (q)
ℓ tj, σ

2(q)
ℓ )

(4.11)

is the posterior probability that yij originates from the kth regression model.

As shown in the expression of Q(θ,θ(q)), this step simply requires the computation of

the posterior probabilities τ
(q)
ijk .

M-step

In this step, the value of the parameter θ is updated by maximizing the expected
complete-data log-likelihood Q(θ,θ(q)) with respect to θ, that is:

θ(q+1) = argmax
θ

Q(θ,θ(q)). (4.12)

Let Qw(w,θ(q)) and Qθk(θk,θ
(q)) denote the terms in Equation (4.10) that are function

of w and θk respectively, we have:

Q(θ,θ(q)) = Qw(w,θ(q)) +
K∑

k=1

Qθk(θk,θ
(q)), (4.13)

with

Qw(w,θ(q)) =

n∑

i=1

m∑

j=1

K∑

k=1

τ
(q)
ijk log πk(tj ;w) (4.14)

and, for k = 1, . . . ,K,

Qθk(θk,θ
(q)) =

n∑

i=1

m∑

j=1

τ
(q)
ijk logN

(
yij;β

T
k ti, σ

2
k

)

= −
1

2

n∑

i=1

m∑

j=1

τ
(q)
ijk

[(
yij − β

T
k tj
)2

σ2
k

+ log σ2
k + log 2π

]
. (4.15)
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Thus, the maximization of Q(θ,θ(q)) can be performed by separately maximizing
Qw(w,θ(q)) with respect to w and Qθk(θk,θ

(q)) with respect to θk for k = 1, . . . ,K.

Consider the update for the regression coefficients βk. As it can be seen from

Equation (4.15), the regression coefficients update β
(q+1)
k are obtained by:

β
(q+1)
k = arg min

βk∈R
p+1

1

2

n∑

i=1

m∑

j=1

τ
(q)
ijk(yij − β

T
k tj)

2 (4.16)

which corresponds to solving a weighted least-squares problem. This problem can be
solved analytically. Calculating the derivative of the weighted least-squares criterion in
(4.16) w.r.t βk and setting it to zero yields:

β
(q+1)
k =

[ n∑

i=1

m∑

j=1

τ
(q)
ijktjt

T
j

]−1
n∑

i=1

m∑

j=1

τ
(q)
ijkyijtj (4.17)

which can be written in a matrix form as

β
(q+1)
k = (X∗TW

(q)
k X∗)−1X∗TW

(q)
k y∗ (4.18)

where W
(q)
k is the nm×nm diagonal matrix whose diagonal elements are the posterior

probabilities (τ
(q)
11k, . . . , τ

(q)
1mk, . . . , τ

(q)
n1k, . . . , τ

(q)
nmk) for the kth regression component, and

X∗ = (XT , . . . ,XT )T is the nm× (p+1) matrix composed of n copies of the regression
matrix X and y∗ = (yT

1 , . . . ,y
T
n )

T is an nm × 1 column vector composed of all the
curves, one curve after another, by stacking the column vectors of Y = (y1, . . . ,yn)
using the vec operator y∗ = vec(Y).

Now consider the update for the variance σ2
k (k = 1, . . . ,K). The updating value

σ
2(q+1)
k of the variance is obtained by maximizing the terms in Equation (4.15) that

depend on σ2
k, or by equivalence as

σ
2(q+1)
k = arg min

σ2
k
∈R+

1

2

n∑

i=1

m∑

j=1

τ
(q)
ijk

[
(yij − β

T (q+1)
k tj)

2

σ2
k

+ log σ2
k

]
(4.19)

which corresponds to a weighted variant of the problem of estimating the variance for
an univariate Gaussian density, its closed form solution is given by:

σ
2(q+1)
k =

1

nm
(q)
k

n∑

i=1

m∑

j=1

τ
(q)
ijk(yij − β

T (q+1)
k tj)

2. (4.20)

This can be formulated in a matrix form as

σ
2(q+1)
k =

1

nm
(q)
k

(y∗ −X∗β
(q+1)
k )TW

(q)
k (y∗ −X∗β

(q+1)
k ) (4.21)

where m
(q)
k =

∑m
j=1 τ

(q)
ijk can be seen as the number of elements in the kth polynomial

component for each curve yi, estimated at iteration q.
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4.2 The RHLP model for a set of curves

Finally, the maximization of Qw(w,θ(q)) with respect to the parameter vector w is

a multinomial logistic regression problem weighted by the posterior probabilities τ
(q)
ijk

which can be solved using a multi-class Iterative Reweighted Least Squares (IRLS)
algorithm (Chamroukhi et al., 2009c; Chen et al., 1999; Green, 1984; Krishnapuram
et al., 2005). The IRLS algorithm is given in the next paragraph.

The Iteratively Reweighted Least Squares (IRLS) algorithm

The IRLS algorithm is used to maximize Qw(w,θ(q)) with respect tow = (w1, . . . ,wK)
in the M-step at each iteration q of the EM algorithm. The vector wK is set to the null
vector to guarantee

∑K
k=1 πk(tj;w) = 1. After starting with an initial solution w(0),

the estimation of w is updated iteratively by the IRLS algorithm where a single update
at iteration l is given by

w(l+1) = w(l) −
[∂2Qw(w,θ(q))

∂w∂wT

]−1

w=w(l)

∂Qw(w,θ(q))

∂w

∣∣∣
w=w(l)

. (4.22)

The Hessian matrix and the gradient vector of Qw(w,θ(q)) evaluated at w = w(l) are
computed similarly as in equations (A.26) and (A.22) respectively, as follows:

∂2Qw(w,θ(q))

∂wk∂w
T
ℓ

∣∣∣
w=w(l)

= −
n∑

i=1

m∑

j=1

πk(tj ;w
(l))
(
δkℓ − πℓ(tj;w

(l))
)
vjv

T
j , (4.23)

where vj = (1, tj)
T . The gradient vector ∂Qw(w,θ(q))

∂w
is composed of K − 1 gradient

component vectors has the following form:

∂Qw(w,θ(q))

∂w
=
(∂Qw(w,θ(q))

∂w1
, . . . ,

∂Qw(w,θ(q))

∂wK−1

)T
(4.24)

where each of the K − 1 gradient component vectors is given by

∂Qw(w,θ(q))

∂wk

∣∣∣
w=w(l)

=
n∑

i=1

m∑

j=1

(
τ
(q)
ijk − πk(tj ;w

(l))
)
vj. (4.25)

After applying the IRLS algorithm (c.f., Equation (4.22)) in the inner loop of the EM
algorithm, we obtain the parameter update w(q+1).

The proposed algorithm is performed with a time complexity ofO(IEMIIRLSnmK3p2),
where IEM is the number of iterations of the EM algorithm and IIRLS is the average num-
ber of iterations required by the IRLS algorithm used in the maximization step at each
iteration of the EM algorithm. In practice, a particular strategy is used to initialize the
IRLS algorithm which reduces its running time. It consists of choosing an arbitrary
value of the parameter w only for the first EM iteration, and then from the second M
iteration, the internal IRLS algorithm is initialized with the previous EM estimation
of w. In this framework of the EM algorithm, since at each iteration we maximize
the Q-function, and according to Jensen’s inequality (Jensen, 1906), the observed-data
log-likelihood always monotonically increases from one EM iteration to another. In
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4.2 The RHLP model for a set of curves

addition, the EM sequence of parameter estimates {θ(q)} is guaranteed to converge
toward a local maximum of the log-likelihood function. For further details on the con-
vergence proof of the EM algorithm the reader is referred to the articles of Wu (1983)
and Xu and Jordan (1996).

Practical considerations

SinceWk is an nm×nm diagonal matrix, direct operations with this matrix in equations
(4.18) and (4.21) may be very inefficient. The following modified formulas are provided
for efficient calculations:

β
(q+1)
k = (X̃∗T X̃∗)−1X̃∗T ỹ∗ (4.26)

σ
2(q+1)
k =

1

nm
(q)
k

(ỹ∗ − X̃∗β
(q+1)
k )T (ỹ∗ − X̃∗β

(q+1)
k ) (4.27)

where X̃∗ is the nm×(p+1) matrix, each of its columns is the entry-wise multiplication
(Hadamard product, c.f., Appendix B.4) of each column of the matrix X∗ by the nm×1
column vector of the square roots of the posterior probabilities τ k

τ k =
(√

τ
(q)
11k, . . . ,

√
τ
(q)
1mk, . . . ,

√
τ
(q)
n1k, . . . ,

√
τ
(q)
nmk

)T
.

The nm× 1 column vector ỹ∗ is the Hadamard product of y∗ and τ k.

The pseudo code 4 summarizes the EM algorithm for the proposed RHLP model.
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4.2 The RHLP model for a set of curves

Algorithm 4 Pseudo code of the proposed algorithm for the RHLP model for a set of

curves.
Inputs: training set of n curves (y1, . . . ,yn) sampled at the time points t =

(t1, . . . , tm), the number of polynomial components K and the polynomial degree

p

1: Initialize: θ(0) = (w(0),β
(0)
1 , . . . ,β

(0)
K , σ

2(0)
1 , . . . , σ

2(0)
K )

2: fix a threshold ǫ > 0

3: set q ← 0 (EM iteration)

4: while increment in log-likelihood > ǫ do

5: E-Step:

6: for k = 1, . . . ,K do

7: compute τ
(q)
ijk for i = 1, . . . , n and j = 1, . . . ,m using Equation (4.11)

8: end for

9: M-Step:

10: for for k = 1, . . . ,K do

11: compute β
(q+1)
k using Equation (4.26)

12: compute σ
2(q+1)
k using Equation (4.27)

13: end for

14: IRLS:

15: Initialize: set w(l) = w(q)

16: set a threshold δ > 0

17: l ← 0 (IRLS iteration)

18: while increment in Qw(w,θ(q)) > δ do

19: compute w(l+1) using Equation (4.22)

20: l← l + 1

21: end while

22: w(q+1) ← w(l)

23: q ← q + 1

24: end while

25: θ̂ = θ(q)

Output: θ̂ maximum likelihood estimate of θ

4.2.5 Model selection

The optimal value of the pair (K, p) can be computed by using the Bayesian Information
Criterion (BIC) (Schwarz, 1978) which is a penalized likelihood criterion, defined by

BIC(K, p) = L(θ̂;Y)−
νθ log(n)

2
, (4.28)

where νθ = K(p + 4) − 2 is the number of free parameters of the model, L(θ̂) is
incomplete-data log-likelihood obtained at convergence of the EM algorithm and n is
the sample size. Note that here the sample size refers to the number of curves where
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4.2 The RHLP model for a set of curves

each curve has m observations, by equivalence to the case of multidimensional data
where the sample comprises n individuals, each of them has d observations (e.g., see
the expression of BIC in the case of a set of curves in Liu and Yang (2009)).

4.2.6 Curves approximation and classification with the RHLP model

Approximating a set of curves with the RHLP model

Using the proposed model, the set of curves belonging to the same class is approxi-
mated by a single “mean” curve. Each point of this curve is defined by the conditional
expectation E[yij|tj; θ̂], where

E[yij|tj ; θ̂] =

∫

R

yijp(yij |tj; θ̂)dyij

=

K∑

k=1

πk(tj ; ŵ)

∫

R

yijN
(
yij; β̂

T

k tj, σ̂
2
k

)
dyij

=
K∑

k=1

πk(tj ; ŵ)β̂
T

k tj, (4.29)

θ̂ = (ŵ, β̂1, . . . , β̂K , σ̂2
1 , . . . , σ̂

2
K) being the parameter vector obtained at convergence of

the algorithm. The matrix formulation of the mean curve is given by:

ŷ =

K∑

k=1

Π̂kXβ̂k, (4.30)

where Π̂k = diag(πk(t1; ŵ), . . . , πk(tm; ŵ)) is them×m diagonal matrix whose diagonal
elements are the logistic proportions associated with the kth regression model.

Curve classification

A curve discrimination rule can be derived from the Bayes theorem, which is similar
to the Functional Linear Discriminant Analysis (FLDA) rule proposed by (James and
Hastie, 2001). Given a training set of n labeled curves ((y1, c1), . . . , (yn, cn)) where ci
represents the class label of the curve yi (i = 1, . . . , n), the parameters (θ1, . . . ,θG) of
the G classes of curves are first estimated by applying the proposed RHLP model to
each class of curves. Basing on the learned classes’ parameters, the curve classification
task is then performed in “functional space”. Thus, once the classes parameters are
estimated by the EM algorithm, a new acquired curve yi is directly assigned to the
class ĉi by the MAP rule:

ĉi = arg max
1≤g≤G

p(ci = g|yi, t; θ̂g), (4.31)

where, for each class g (g = 1, . . . , G),

p(ci = g|yi, t; θ̂g) =
wgp(yi|ci = g, t; θ̂g)∑G
g′=1 wg′p(yi|ci = g′; θ̂g′)

(4.32)
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4.2 The RHLP model for a set of curves

is the posterior probability, wg = p(ci = g) is the prior probability estimated by the
proportion of the curves belonging to class g in the training phase, p(yi|ci = g, t;θg) is
the conditional density of yi defined by Equation (4.7) as

p(yi|ci = g, t;θg) =
m∏

j=1

K∑

k=1

πk(tj ;wg)N
(
yij;β

T
gktj, σ

2
gk

)
(4.33)

and θ̂g is the maximum likelihood estimation of θg = (wg,βg1, . . . ,βgK , σ2
g1, . . . , σ

2
gK).

Behavior of the proposed approach for complex shaped classes

It should be mentioned that this approach may have limitations in the case of an het-
erogeneous set of curves, as it provides a single model which is more suitable for an ho-
mogeneous set of curves. This paragraph illustrates this limitation through a simulated
example. Consider simulated curves from a class which is composed two subclasses (see
Figure 4.3). As it can be clearly seen in Figure 4.3 (left), the representation provided
by the RHLP model is not adapted.

To deal with the problem of complex shaped classes of curves, the next section
integrates the RHLP model into a mixture framework. The resulting model is able to
handle the problem of heterogeneity in a set of curves. Adopting this mixture approach
clearly improves the modeling accuracy, as it can be seen in Figure 4.3 (right), where
an adapted representation is provided for each sub-class.
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Figure 4.3: Illustrative example of a non homogeneous class having two sub-classes

(composed respectively of 10 and 5 curves with m = 350 points per curve) generated

as piecewise function over time, with the results obtained by the RHLP model (left)

and the MixRHLP model (right).

In the next section we develop the mixture of regression models with hidden logistic
processes (MixRHLP) for a set of curves and its parameter estimation procedure in a
maximum likelihood framework.
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4.3 Mixture of regression models with hidden logistic process (MixRHLP)

4.3 Mixture of regression models with hidden logistic pro-

cess (MixRHLP)

4.3.1 Model definition

According to the mixture of regression models with hidden logistic processes (MixRHLP),
the population of curves Y = (y1, . . . ,yn) is assumed to be made up of R homogeneous
subpopulations, mixed at random in proportion to the relative group sizes α1, . . . , αR.
Each of the R subpopulations of curves is governed by K1 polynomial regimes and
is modeled by the regression model with hidden logistic process (RHLP) presented in
section 4.2, that is to say, the distribution of a curve yi (i = 1, . . . , n) given a sub-class
r ∈ {1, . . . , R}, is defined as in Equation (4.33) by:

p(yi|hi = r, t;θr) =

m∏

j=1

K∑

k=1

πk(tj;wr)N
(
yij;β

T
rktj, σ

2
rk

)
(4.34)

where hi is a discrete-valued variable representing the hidden label of the sub-class
generating the curve yi (i = 1, . . . , n) and θr = (wr,βr1, . . . ,βrK , σ2

r1, . . . , σ
2
rK) is the

parameter vector of the sub-class r. Thus, the resulting distribution of each curve yi

given the time points t can be defined by the following mixture density:

p(yi|t;Ψ) =

R∑

r=1

p(hi = r)p(yi|hi = r, t;θr)

=
R∑

r=1

αr

m∏

j=1

K∑

k=1

πk(tj;wr)N
(
yij;β

T
rktj, σ

2
rk

)
(4.35)

that is the MixRHLP model. The αr’s (r = 1, . . . , R) are the non negative mixing
proportions that sum to 1 and Ψ = (α1, . . . , αR,θ1, . . . ,θR) is the parameter vector of
the MixRHLP model.

In this specific mixture model, each sub-class (or cluster) of curves r is governed
by its own hidden logistic process zr = (zr1, . . . , zrm) that allows for the switching
from one regression model to another among K polynomial models. The variable zrj
(j = 1, . . . ,m) is a discrete-valued variable in {1, . . . ,K} such that zrj = k indicates
that yij belongs to the kth polynomial component of sub-class r. The process zr
is assumed to be logistic and parametrized by the parameter vector wr, as defined
in section 4.4. According to this definition, the variables zrj , given the time vector
t = (t1, . . . , tm), are generated independently according to the multinomial distribution
M(1, π1(tj ;wr), . . . , πK(tj ;wr)), where the probability distribution of each component k
is logistic, that is:

πk(tj;wr) = p(zrj = k|tj;wr) =
exp (wrk0 + wrk1tj)∑K
ℓ=1 exp (wrℓ0 + wrℓ1tj)

, (4.36)

1Notice that in this section we consider a common value ofK for all the model components, however,

the model can be easily formulated with a value Kr for each of the R model components.

98



4.3 Mixture of regression models with hidden logistic process (MixRHLP)

wrk = (wrk0, wrk1)
T being the 2-dimensional coefficient vector for the kth logistic

component and wr = (wr1, . . . ,wrK). The probability distribution of a particular
configuration zr of the underlying process governing the sub-class r is therefore given
by:

p(zr|t;wr) =

m∏

j=1

K∏

k=1

(πk(tj ;wr))
zrjk , (4.37)

where zrjk is a binary variable such that zrjk = 1 if zrj = k (i.e., the ith curve belongs
to the sub-class r and the jth point yij of that curve belongs to the kth regime) and
zrjk = 0 otherwise.

A matrix formulation of the model for a heterogeneous set of curves is formulated as
follows. Knowing the labels of sub-groups within the set of n curves, which we denote
by the vector h = (h1, . . . , hn) where hi ∈ {1, . . . , R}, and a configuration of the logistic
process zr (r = 1, . . . , R) governing each of the R sub-classes, the model can therefore
be reformulated as

yi =

R∑

r=1

hir

K∑

k=1

Zrk(Xβrk + σrkǫi) ; ǫi ∼ N (0, Im) (4.38)

where hir is a binary variable such that hir = 1 if hi = r (i.e., when yi is issued from
the sub-class (cluster) r) and hir = 0 otherwise, Zrk is an m×m diagonal matrix whose
diagonal elements are (zr1k, . . . , zrmk) and ǫi = (ǫi1, . . . , ǫim)T is an m×1 vector of i.i.d
standard Gaussian variables.

This model can be understood as follows. The variable hi refers to the group
generating the ith curve yi. Knowing the group hi = r of that curve, the variable zrj
refers to the regime (polynomial component) generating the jth observation yij.

4.3.2 Generating a set of curves with the MixRHLP model

The generative model of n curves from a given parameter vectorΨ = (α1, . . . , αR,θ1, . . . ,θR)
consists of the following three steps:

For i = 1, . . . , n:

• generate the hidden variable representing the cluster label according to the multi-
nomial distribution, that is hi ∼M(1, α1, . . . , αR)

For j = 1, . . . ,m

• given the cluster label hi = r, generate the hidden variable representing the
polynomial regime at each time point tj according to the multinomial distribution:
zrj |tj ∼M(1, π1(tj ;wr), . . . , πK(tj ;wr)),

• finally, given the cluster label hi = r and the polynomial component zrj = k the
observation yij is generated according to the Gaussian distributionN (·;βT

rktj , σ
2
rk).
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Figure 4.4: Graphical model structure for the mixture of regression models with hidden

logistic processes for a set of curves (MixRHLP).

This generative scheme for a set of n curves is illustrated by the graphical representation
given in Figure 4.4

The next section presents the unsupervised learning of the model parameters from
a set of curves through the EM algorithm.

4.3.3 Maximum likelihood estimation via the EM algorithm

The parameter vector Ψ of the proposed MixRHLP model is estimated by maximum
likelihood from a set of curves. Assuming that the set of n curves Y = (y1, . . . ,yn)
are independent and identically distributed, the log-likelihood of Ψ given the observed
data Y and the sampling time points t = (t1, . . . , tm) is then written as:

L(Ψ;Y, t) = log p(y1, . . . ,yn|t;Ψ) = log

n∏

i=1

p(yi|t;Ψ)

=

n∑

i=1

log

R∑

r=1

αr

m∏

j=1

K∑

k=1

πk(tj;wr)N
(
yij;β

T
rktj , σ

2
rk

)
. (4.39)

The maximization of this log-likelihood cannot be performed in a closed form. We
maximize it iteratively by using a dedicated EM algorithm. In this context of the EM
algorithm, the complete data consist of the observed set of curves Y = (y1, . . . ,yn)
sampled at the time points t = (t1, . . . ,m), their corresponding vector of class labels
h = (h1, . . . , hn) and the vector of regime labels zr = (zr1, . . . , zrm) for each group r

(r = 1, . . . , R). The complete-data likelihood of Ψ is therefore given by:

p(Y,h, z1, . . . , zR|t;Ψ) = p(h)p(Y, z1, . . . , zR|h, t;Ψ)

= p(h1, . . . , hn)p(y1, . . . ,yn, z1, . . . , zR|h, t;Ψ)

=
n∏

i=1

p(hi)p(zhi
|t;whi

)p(yi|zhi
, t;θhi

). (4.40)
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where in the first step we have used the fact that h does not depend on t. By using
the fact that the class label of a curve hi is in {1, . . . , R} and plugging the conditional
density of a curve (c.f., Equation (3.8)) and the distribution of zr (c.f., Equation (4.37))
into the expression of the complete-data likelihood (4.40) leads to

p(Y,h, z1, . . . , zR|t;Ψ)=

n∏

i=1

R∏

r=1

[
p(hi = r)p(zr |t;wr)p(yi|zr, t; θr)

]hir

=

n∏

i=1

R∏

r=1

p(hi = r)hir

m∏

j=1

K∏

k=1

[
p(zrj = k|tj ;wr)p(yij |zrj = k, tj ; θrk)

]zrjkhir

=

n∏

i=1

R∏

r=1

αhir
r

m∏

j=1

K∏

k=1

[
πk(tj ;wr)N (yij ;β

T
rktj , σ

2
rk)
]zrjkhir

(4.41)

where θrk = (βrk, σ
2
rk). The complete-data log-likelihood is finally given by taking the

logarithm of (4.41):

Lc(Ψ;Y, t,h, z1, . . . , zR) =

n∑

i=1

R∑

r=1

hir log αr +

n∑

i=1

R∑

r=1

m∑

j=1

K∑

k=1

hirzrjk log πk(tj;wr)

+
n∑

i=1

R∑

r=1

m∑

j=1

K∑

k=1

hirzrjk logN
(
yij;β

T
rktj, σ

2
rk

)
. (4.42)

The EM algorithm alternates iteratively between the computation of the conditional
expectation of complete-data log-likelihood (4.42) and the maximization of this condi-
tional expectation given a current parameter estimation, until convergence.

The dedicated EM algorithm

The proposed EM algorithm starts with an initial parameter Ψ(0) and alternates be-
tween the two following steps until convergence:

E-step: Compute the conditional expectation of the complete-data log-likelihood
given the observations Y, the time vector t and the current parameter estimation
Ψ(q):

Q(Ψ,Ψ(q)) = E

[
Lc(Ψ;Y, t,h, z1, . . . , zR)|Y, t;Ψ(q)

]

=

n∑

i=1

R∑

r=1

Eh

[
hir|Y, t;Ψ(q)

]
logαr +

n∑

i=1

R∑

r=1

m∑

j=1

K∑

k=1

Eh,z

[
hirzrjk|Y, t;Ψ(q)

]
log πk(tj ;wr)

+

n∑

i=1

R∑

r=1

m∑

j=1

K∑

k=1

Eh,z

[
hirzrjk|Y, t;Ψ(q)

]
logN

(
yij ;β

T
rktj , σ

2
rk

)

=

n∑

i=1

R∑

r=1

γ
(q)
ir logαr +

n∑

i=1

R∑

r=1

m∑

j=1

K∑

k=1

γ
(q)
ir τ

(q)
ijrk log πk(tj ;wr)

+

n∑

i=1

R∑

r=1

m∑

j=1

K∑

k=1

γ
(q)
ir τ

(q)
ijrk logN

(
yij ;β

T
rktj , σ

2
rk

)
, (4.43)
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where the notation Eh means that the expectation is computed over the variable h indi-
cating the sub-class membership and Eh,z means that the expectation is computed over
both the variable h and the variable z indicating polynomial component membership
for each sub-class,

γ
(q)
ir = p(hir = 1|yi, t;Ψ

(q))

=
α
(q)
r p(yi|hi = r, t;θ

(q)
r )

∑R
r′=1 α

(q)
r′ p(yi|hi = r′, t;θ

(q)
r′ )

=
α
(q)
r

∏m
j=1

∑K
k=1 πk(tj ;w

(q)
r )N

(
yij;β

T (q)
rk tj, σ

2(q)
rk

)

∑R
r′=1 α

(q)
r′

∏m
j=1

∑K
k=1 πk(tj ;w

(q)
r′ )N (yij ;β

(q)T
r′k tj , σ

2(q)
r′k )

(4.44)

is the posterior probability of sub-class r and

τ
(q)
ijrk = p(zrjk = 1|yij , tj, hi = r;Ψ(q)) = p(zrj = k|yij , tj;θ

(q)
r )

=
πk(tj ;w

(q)
r )N (yij ;β

T (q)
rk tj, σ

2(q)
rk )

∑K
ℓ=1 πℓ(tj ;w

(q)
r )N (yij ;β

T (q)
rℓ tj , σ

2(q)
rℓ )

(4.45)

is the posterior probability that the observed data point yij at time tj originates from
the kth regression model of sub-class r. We note that in computing the conditional
expectation Eh and Eh,z we used the fact that conditional expectations and conditional
probabilities are the same for the indicator binary-valued variables hir, zrjk so that

E[hir|Y, t;Ψ(q)] = p(hir = 1|Y, t;Ψ(q)) and E[zrjk|Y, t;Ψ(q)] = p(zrjk = 1|Y, t;Ψ(q)).
Additionally, since the set of curves Y = (y1, . . . ,yn) is assumed to be independent, we
therefore have p(hir = 1|Y, t;Ψ(q)) = p(hir = 1|yi, t;Ψ

(q)), and similarly for each curve

yi we have p(zrjk = 1|yi, t;θ
(q)
r ) = p(zrjk = 1|yij , tj ;θ

(q)
r ). The conditional expectation

over the variables h and z is obtained in the same manner as

Eh,z[hirzhijk|Y, t;Ψ(q)] = p(hir = 1, zrjk = 1|Y, t;Ψ(q))

= p(hi = r|Y, t;Ψ(q))p(zhij = k|hi = r,Y, t;Ψ(q))

= p(hi = r|yi, t;Ψ
(q))p(zrj = k|yij , tj ;Ψ

(q))

= γ
(q)
ir τ

(q)
ijrk. (4.46)

As shown in the expression of Q(Ψ,Ψ(q)) (c.f., Equation (4.43)), this step simply

requires the computation of the posterior group probabilities γ
(q)
ir and the posterior

polynomial regression component probabilities τ
(q)
ijrk for K polynomial regimes for each

group r (r = 1, . . . , R).

M-step: Update the value of the parameterΨ by maximizing the functionQ(Ψ,Ψ(q))
with respect to Ψ, that is:

Ψ(q+1) = argmax
Ψ∈Ω

Q(Ψ,Ψ(q)), (4.47)

where Ω is the parameter space.
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To perform this maximization, the Q-function is first decomposed as

Q(Ψ,Ψ(q)) = Qα(α1, . . . , αR,Ψ
(q))+

R∑

r=1

[
Qwr(wr,Ψ

(q))+
K∑

k=1

Qθrk(θrk,Ψ
(q))
]
, (4.48)

where

Qα(α1, . . . , αR,Ψ
(q)) =

n∑

i=1

R∑

r=1

γ
(q)
ir logαr, (4.49)

Qwr(wr,Ψ
(q)) =

n∑

i=1

m∑

j=1

K∑

k=1

γ
(q)
ir τ

(q)
ijrk log πk(tj ;wr) (4.50)

and

Qθrk(θrk,Ψ
(q)) =

n∑

i=1

m∑

j=1

γ
(q)
ir τ

(q)
ijrk logN

(
yij;β

T
rktj, σ

2
rk

)
. (4.51)

Then, the maximization of Q(Ψ,Ψ(q)) is performed by the separate maximizations of
Qα(α1, . . . , αR,Ψ

(q)), Qwr(wr,Ψ
(q)) and Qθrk(θrk,Ψ

(q)). The function
Qα(α1, . . . , αR,Ψ

(q)) is maximized with respect to the mixing proportions (α1, . . . , αR)
subject to the constraint

∑R
r=1 αr = 1. The updates are given by (see Appendix A.1):

α(q+1)
r =

1

n

n∑

i=1

γ
(q)
ir , (r = 1, . . . , R). (4.52)

For each group r (r = 1, . . . , R), the maximization of Qθrk(θrk,Ψ
(q)) with respect to

βrk (k = 1, . . . ,K) includes separate analytic solutions of K weighted least-squares
problems, each of them is defined as

β
(q+1)
rk = arg min

βrk∈R
p+1

n∑

i=1

m∑

j=1

γ
(q)
ir τ

(q)
ijrk(yij − βrk

T tj)
2. (4.53)

This task is performed in a similar way as for (4.16) in section 4.2.4, except that the

weights in this case are the product of the posterior probability γ
(q)
ir of the group r

and the posterior probability τ
(q)
ijrk of the polynomial component k for group r. The

estimates are given by:

β
(q+1)
rk =

[ n∑

i=1

m∑

j=1

γ
(q)
ir τ

(q)
ijrktjt

T
j

]−1
n∑

i=1

m∑

j=1

γ
(q)
ir τ

(q)
ijrkyijtj

= (X∗TW
(q)
rk X

∗)−1X∗TW
(q)
rk y

∗, (4.54)

where W
(q)
rk is the nm× nm diagonal matrix whose diagonal elements are the weights

γ
(q)
ir τ

(q)
ijrk for all i = 1, . . . , n and j = 1, . . . ,m, that is:

W
(q)
rk = diag(γ

(q)
1r τ

(q)
11rk, . . . , γ

(q)
1r τ

(q)
1mrk, . . . , γ

(q)
nr τ

(q)
n1rk, . . . , γ

(q)
nr τ

(q)
nmrk).

103



4.3 Mixture of regression models with hidden logistic process (MixRHLP)

The maximization of Qθrk(θrk,Ψ
(q)) with respect to σ2

rk also corresponds toK separate
maximizations, or by equivalence minimizations where the criterion corresponding to
component k (k = 1, . . . ,K) is performed as

σ
2(q+1)
rk = arg min

σ2
rk

∈R+

n∑

i=1

m∑

j=1

γ
(q)
ir τ

(q)
ijrk

[(yij − βT (q+1)
rk tj)

2

σ2
rk

+ log σ2
rk

]
(4.55)

which is also performed in a similar way as for (4.19) by adding the weights correspond-
ing to the fuzzy group memberships that are the posterior group probabilities, which
provides the following update formula by

σ
2(q+1)
rk =

1
∑n

i=1

∑m
j=1 γ

(q)
ir τ

(q)
ijrk

n∑

i=1

m∑

j=1

γ
(q)
ir τ

(q)
ijrk(yij − β

T (q+1)
rk tj)

2

=
1

∑n
i=1

∑m
j=1 γ

(q)
ir τ

(q)
ijrk

(y∗ −X∗β
(q+1)
rk )TW

(q)
rk (y

∗ −X∗β
(q+1)
rk ) (4.56)

Finally, the maximization of Qwr(wr,Ψ
(q)) with respect to wr for each group r (r =

1, . . . , R) is a multinomial logistic regression problem weighted by γ
(q)
ir τ

(q)
ijrk which we

solve with a multi-class IRLS algorithm.

The Iteratively Reweighted Least Squares (IRLS) algorithm The IRLS al-
gorithm is used to maximize Qwr(wr,Ψ

(q)) with respect to the parameter wr for each
of the R groups in the M-step, at each iteration q of the EM algorithm. To estimate
the parameter vector wr = (wr1, . . . ,wrK) the vector wrK is set to the null vector
to guarantee

∑K
k=1 πk(tj;wr) = 1. After starting with an initial solution wr

(0), the
estimation of wr is updated iteratively where a single update at iteration l is given by

w(l+1)
r = w(l)

r −
[∂2Qwr(wr,Ψ

(q))

∂wr∂wr
T

]−1

wr=w
(l)
r

∂Qwr(wr,Ψ
(q))

∂wr

∣∣∣
wr=w

(l)
r

. (4.57)

The gradient vector of Qwr(wr,Ψ
(q)) consists of K − 1 gradient component vectors

where each component vector that corresponds to the kth componentwrk (k = 1, . . . ,K−

1) for wr = w
(l)
r is given by

∂Qwr(wr,Ψ
(q))

∂wrk

∣∣∣
wr=w

(l)
r

=
n∑

i=1

m∑

j=1

γ
(q)
ir

(
τ
(q)
ijrk − πk(tj ;w

(l)
r )
)
vj (4.58)

The Hessian matrix of Qwr(wr,Ψ
(q)) consists of (K−1)× (K−1) block matrices, each

component evaluated at wr = w
(l)
r is given by

∂2Qwr(wr,Ψ
(q))

∂wrk∂w
T
rℓ

∣∣∣
wr=w

(l)
r

= −
n∑

i=1

m∑

j=1

γ
(q)
ir πk(tj ;w

(l)
r )
(
δkℓ − πℓ(tj;w

(l)
r )
)
vjv

T
j , (4.59)

for ℓ, k = 1, . . . ,K − 1. It can be see that the Gradient and the Hessian in this case
are simply weighted variants of those given in Equation (4.25) and (4.23) respectively,

where the weights are the fuzzy group memberships γ
(q)
ir .

The IRLS algorithm (4.57) provides the parameter w
(q+1)
r for each of the R groups.

The pseudo code 5 summarizes the EM algorithm for the proposed MixRHLP model.
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4.3 Mixture of regression models with hidden logistic process (MixRHLP)

Algorithm 5 Pseudo code of the proposed algorithm for the MixRHLP model for a

set of curves.
Inputs: training set of n curves (y1, . . . ,yn) sampled at the time points t =

(t1, . . . , tm), the number of groups R, the number of polynomial components K for

each of the R groups and the polynomial degree p

1: Initialize: Ψ(0) = (α
(0)
1 , . . . , α

(0)
R ,θ

(0)
1 , . . . ,θ

(0)
R )

2: fix a threshold ǫ > 0

3: set q ← 0 (EM iteration)

4: while increment in log-likelihood > ǫ do

5: E-Step:

6: for r = 1, . . . , R do

7: compute γ
(q)
ir for i = 1, . . . , n using Equation (4.44)

8: for k = 1, . . . ,K do

9: compute τ
(q)
ijrk for i = 1, . . . , n and j = 1, . . . ,m using Equation (4.45)

10: end for

11: end for

12: M-Step:

13: for r = 1, . . . , R do

14: compute the mixing proportion α
(q+1)
r using Equation (4.52)

15: for for k = 1, . . . ,K do

16: compute β
(q+1)
rk using Equation (4.54)

17: compute σ
2(q+1)
rk using Equation (4.56)

18: end for

19: IRLS:

20: Initialize: set w
(l)
r = w

(q)
r

21: set a threshold δ > 0

22: l← 0 (IRLS iteration)

23: while increment in Qwr(wr,Ψ
(q)) > δ do

24: compute w
(l+1)
r using Equation (4.57)

25: l← l + 1

26: end while

27: w
(q+1)
r ← w

(l)
r

28: q ← q + 1

29: end for

30: end while

31: Ψ̂ = (α
(q)
1 , . . . , α

(q)
R ,θ

(q)
1 , . . . θ

(q)
R )

Output: Ψ̂ the maximum likelihood estimate of Ψ
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Model selection

The optimal number of groups or sub-classes R can be computed by maximizing the
BIC criterion (Schwarz, 1978):

BIC(R,K, p) = L(Ψ̂)−
νR

2
log(n), (4.60)

where Ψ̂ is the maximum likelihood estimate of the parameter vector Ψ provided by the
EM algorithm, νR = R − 1 +

∑R
r=1 νθr is the number of free parameters of MixRHLP

model where R−1 represent the number of mixing proportions and νθr = (K(p+4)−2)
represents the number of free parameters of the sub-model associated with group r, and
n is the sample size.

4.3.4 Curves approximation with the MixRHLP model

With the proposed mixture modeling approach, each group (sub-class) of curves r is
approximated by a single “mean” curve that is given by the conditional expectation
E[yi|t, hi = r; θ̂r] as for the RHLP model presented in section 4.2. Each point of this
curve is given by:

ŷij =

∫

R

yijp(yij |hi = r, tj ; θ̂r)dyij

=

∫

R

yij

K∑

k=1

πk(tj; ŵr)N
(
yij; β̂

T

rktj, σ̂
2
rk

)
dyij

=
K∑

k=1

πk(tj; ŵr)β̂
T

rktj. (4.61)

The matrix formulation of the mean curve approximating the curves of the group r is
then given by:

ŷr =

K∑

k=1

Π̂rkXβ̂rk (4.62)

where Π̂rk = diag(πk(t1; ŵr), . . . , πk(tm; ŵr)) is a diagonal matrix whose diagonal el-
ements are the logistic proportions associated with the kth regression model for the
sub-class r.

The MixRHLP is naturally tailored to the unsupervised context for automatically
searching for a homogeneous groups within a heterogeneous set of curves, that is the
curve clustering problem.

4.3.5 Curve clustering with the MixRHLP model

In this section we use the MixRHLP model for clustering curves presenting regime
changes. The use of the MixRHLP model in a curve clustering framework may arise
in two different schemes, similarly as for the case of clustering multidimensional data
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4.3 Mixture of regression models with hidden logistic process (MixRHLP)

with mixture models. The first one is referred to as the maximum likelihood estimation
approach or the mixture approach. While the second approach is known as the classifi-
cation likelihood approach or the classification approach. We derive the two approaches
in the following sections.

The mixture approach

The principle of the estimation approach is to first estimate the model parameters in a
maximum likelihood framework and then, given the estimated model parameters, find
a partition of the curves into R clusters by applying the MAP rule on the estimated
posterior probabilities. More precisely, given a set of unlabeled n curves which are
assumed to be i.i.d generated according to the MixRHLP model presented in section 4.3,
we first run the EM algorithm summarized by pseudo code 5 to obtain an estimation
Ψ̂. Then, the cluster labels are determined from the posterior cluster probabilities
(c.f., Equation (4.44)) obtained at convergence of the EM algorithm through the MAP
decision rule, that is:

ĥi = arg max
1≤r≤R

γir(Ψ̂) (i = 1, . . . , n) (4.63)

where the notation γir(Ψ̂) refers to the fact that the posterior probabilities γir in (4.44)
are computed with the parameter vector obtained at convergence of the EM algorithm
5.

The classification approach

The classification approach simultaneously performs the clustering and the parameter
estimation by maximizing some classification log-likelihood criteria. The maximization
is generally performed through the Classification EM (CEM) algorithm (Celeux and
Govaert, 1992).

In the context of the MixRHLP model, we propose to maximize the classification
log-likelihood criterion defined by:

CL(Ψ,h) = log p(Y,h|t;Ψ) = log p(y1, . . . ,yn, h1, . . . , hn|t;Ψ)

= log

n∏

i=1

R∏

r=1

[p(hi = r)p(yi|hi = r, t; θr)]
hir

=

n∑

i=1

R∑

r=1

hir log[αrp(yi|hi = r, t; θr)]

=

n∑

i=1

R∑

r=1

hir logαr +

n∑

i=1

R∑

r=1

hir log

m∏

j=1

K∑

k=1

πk(tj ;wr)N
(
yij ;β

T
rktj , σ

2
rk

)
,(4.64)

with respect to the parameter vector Ψ and the curves partition h. This criterion
is the log-likelihood of the parameter vector Ψ, given the observed data Y and the
partition of the curves represented by the class labels h.

In the following section, we describe the CEM algorithm (Celeux and Govaert, 1992)
used to maximize the proposed classification criterion.
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The CEM algorithm for the MixRHLP model

After starting with an initial model parameters Ψ(0), each iteration of the CEM al-
gorithm consists of computing a partition of the curves into R clusters and updating
the model parameters from the obtained partition. More specifically, in this case, the
CEM algorithm starts with an initial parameter vector Ψ(0) and iteratively alternates
between the following steps until convergence:

Step 1: Compute the missing cluster labels h(q+1) for the current estimated model
parameters Ψ(q) using the MAP decision rule:

h(q+1) = arg max
h∈{1,...,R}n

CL(Ψ(q),h), (4.65)

which is equivalent to

h
(q+1)
i = arg max

1≤r≤R
γ
(q)
ir (i = 1, . . . , n) (4.66)

where γ
(q)
ir is the posterior probability that the ith curve belongs to cluster r (c.f.,

Equation (4.44).

Step 2: Compute the model parameters update Ψ(q+1), given the current cluster
labels h(q+1). This is achieved by maximizing the classification log-likelihood function
w.r.t Ψ:

Ψ(q+1) = argmax
Ψ

CL(Ψ,h(q+1)). (4.67)

As it can be seen in (4.64), the maximization of CL(Ψ,h(q+1)) w.r.tΨ can be performed
by separately maximizing

CLα(α1, . . . , αR,h
(q+1)) =

n∑

i=1

R∑

r=1

h
(q+1)
ir logαr

w.r.t (α1, . . . , αR), and

CLθ(θ1, . . . ,θR,h
(q+1)) =

R∑

r=1

n∑

i=1

h
(q+1)
ir

m∑

j=1

log
K∑

k=1

πk(tj ;wr)N
(
yij;β

T
rktj, σ

2
rk

)

w.r.t (θ1, . . . ,θR) where θr = (wr,βr1, . . . ,βrK , σ2
r1, . . . , σ

2
rK) is the parameter vector

of the rth RHLP model.

Hence, the maximization of CLα with respect to the mixing proportions (α1, . . . , αR)
is performed directly in a similar way as for the maximization (4.49) in the case of the
EM algorithm for the MixRHLP model (c.f., paragraph 4.3.3 in section 4.3.3). The
updating formula is therefore given by:

α(q+1)
r =

1

n

n∑

i=1

h
(q+1)
ir (r = 1, . . . , R). (4.68)
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The maximization of CLθ consists itself of R separate maximization problems, each of
them consisting of maximizing

CLθr(θr,h
(q+1)) =

n∑

i|h
(q+1)
i =r

m∑

j=1

log
K∑

k=1

πk(tj;wr)N
(
yij;β

T
rktj , σ

2
rk

)

with respect to θr. This maximization can not be performed in a closed form. The
difficulty arises from the presence of the summation over k that appears inside the
logarithm, which is due to the fact that process zr that control the regime changes
within each cluster of curves is still missing. However, it can be seen that the criterion
CLθr is none other than the log-likelihood function for the RHLP model given the set
of curves of cluster r (c.f., Equation 4.8). Therefore, this problem can be solved by
applying the EM algorithm for the RHLP model detailed in section 4.2.4. The corre-

sponding parameter update θ
(q+1)
r is then taken at convergence of the EM algorithm

implemented by pseudo code 4, the algorithm being initialized with θ
(q)
r obtained at

the previous CEM iteration.

By construction, this CEM algorithm always monotonically increases the classifi-
cation log-likelihood CL(Ψ,h) (c.f., Equation (4.64)) and convergence is guaranteed
toward a local maximum of the optimized function in a finite number of iterations,
since there are only a finite number of curves partitions (Celeux and Govaert, 1992).
Notice that the number of EM iterations in the second step of the CEM algorithm can
be limited. In this case, the obtained algorithm can be seen as a “generalized CEM”
algorithm which has the same properties as the CEM algorithm described above.

Algorithm 6 gives the pseudo code of the CEM algorithm for curve clustering by
using the proposed MixRHLP model.
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Algorithm 6 Pseudo code of the CEM algorithm for the proposed MixRHLP model.

Inputs: training set of n curves (y1, . . . ,yn), the number of clusters R, the number

of polynomial components K, the polynomial degree p and the sampling time t =

(t1, . . . , tm)

1: Initialize: Ψ(0) = (α
(0)
1 , . . . , α

(0)
R ,θ

(0)
1 , . . . ,θ

(0)
R )

2: while increment in log-likelihood > ǫ do

3: Step 1:

4: for r = 1, . . . , R do

5: compute γ
(q)
ir for i = 1, . . . , n using Equation (4.44)

6: end for

7: for r = 1, . . . , R do

8: compute the cluster labels h
(q+1)
i for i = 1, . . . , n using (4.66)

9: end for

10: Step 2:

11: for r = 1, . . . , R do

12: compute θ
(q+1)
r using the procedure RHLP({yi|h

(q+1)
i = r},t, K,θ(q)) imple-

mented by Algorithm 4, Algorithm 4 being initialized with θ(q).

13: end for

14: q ← q + 1

15: end while

16: Ψ̂ = Ψ(q)

17: ĥ = h(q)

Outputs: Ψ̂ = (α̂1, . . . , α̂R, θ̂1, . . . , θ̂R) ; ĥ = (ĥ1, . . . , ĥn)

The MixRHLP model for curve clustering can naturally be used in a supervised
context, to perform curve classification, in particular in the case of complex shaped
classes of curves. In the next section we will develop the classification rule resulting
from the MixRHLP model.

4.3.6 Curve classification with the MixRHLP model

This section describes the use of the MixRHLP model in curve classification. In par-
ticular, we consider classes which may have complex shapes. In that heterogeneous
case, the FLDA classification rule (c.f., section 4.2.6), which is based on a single RHLP
model for each class of curves, may has limited performance. The mixture formulation
of the RHLP model can therefore handle this problem.

Modeling the classes of curves with the MixRHLP model

Suppose we have a labeled training set of n curves (Y, c) = ((y1, c1), . . . , (yn, cn)) where
the class label ci of the ith curve is in {1, . . . , G}, G being the number of classes. In
this section we assume that each class of curves g (g = 1, . . . , G) has a complex shape
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so that it is composed of Rg homogeneous sub-classes. Each sub-class r (r = 1, . . . , Rg)
of class g is governed by Kg polynomial regimes. The mixture of regression models
with hidden logistic processes (MixRHLP), is used to accurately model each class g.
Therefore, the distribution of a curve yi issued from class g is defined, as in Equation
(4.35), by:

p(yi|ci = g, t;Ψg) =

Rg∑

r=1

αgr

m∏

j=1

Kg∑

k=1

πk(tj ;wgr)N (yij ;β
T
grktj, σ

2
grk). (4.69)

where αgr = p(hi = r|ci = g) is the prior probability of the sub-cluster r of class
g and Ψg = (αg1, . . . , αgRg ,θg1, . . . ,θgRg ) is the parameter vector of class g, θgr =
(wgr,βgr1, . . . ,βgrK , σ2

gr1, . . . , σ
2
grK) being the parameter vector of each sub-class r of

class g.

The classification rule derived from this approach can be seen as a Functional Mix-
ture Discriminant Analysis (FMDA) classification rule particularly adapted to curves
with changes in regimes, as in Gui and Li (2003) (c.f., section 2.8.2). The approach
described here takes into account both the class dispersion, as it uses a mixture of
specific regression models to represent each complex shaped class of curves, and the
regimes involved in each sub-class of curves through the RHLP model used for each
sub-class. The classification rule based on the MixRHLP model is given in the next
section.

Curve classification rule

Based on the mixture modeling approach described above, the following MAP classifi-
cation rule for curves is derived. First we learn the classes’ parameters by applying the
EM algorithm implemented by pseudo code 5 to each class of curves. This learning step
provides the maximum likelihood estimates (Ψ̂1, . . . , Ψ̂G) of the classes’ parameters. A
new curve yi is then assigned to the class ĉi maximizing the posterior probabilities:

ĉi = arg max
1≤g≤G

p(ci = g|yi, t; Ψ̂g), (i = 1, . . . , n) (4.70)

where

p(ci = g|yi, t; Ψ̂g) =
wgp(yi|ci = g, t; Ψ̂g)∑G

g′=1 wg′p(yi|ci = g′, t; Ψ̂g′)
(4.71)

is the posterior probability of class g (g = 1, . . . , G) and wg = p(ci = g) is its probability,
estimated by the proportion of the curves belonging to class g in the training set.

The optimal number of sub-classes Rg for each class g (g = 1, . . . , G) can be com-
puted by maximizing the BIC criterion defined in section 4.3.3.

Remark: Link with the polynomial regression mixture model

The polynomial regression mixture model (Gaffney, 2004) arises when the MixRHLP
model is defined with a single regime (K = 1) for each cluster of curves.
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4.4 Experiments on simulated curves

In this section, we study the performance of the methods developed in Chapters 3
and 4, which are the RHLP model for a single curve and for a set of curves, and the
MixRHLP model for an heterogeneous set of curves. The models are evaluated in terms
of curve modeling, segmentation, classification and clustering, in a series of experiments
conducted on synthetic curves.

Evaluation criteria

Three evaluation criteria are used in the simulations to judge performance of the RHLP
model for a single curve as well as for a set of curves.

The first criterion is the mean square error between the true simulated curve without
noise (the true “mean” curve) and the estimated curve. This criterion will be referred
to as approximation error and is used to assess the approaches with regard to curve
modeling. It is computed by the formula

1

m

m∑

j=1

(E[yij|tj ;θ]− ŷj)
2

where θ is the true parameter. Let us recall that each point ŷj of the estimated curve
is given by:

• ŷj =
∑K

k=1 πk(tj ; ŵ)β̂
T

k tj for the proposed regression model with hidden logistic
process (RHLP) model;

• ŷj =
∑K

k=1 ẑjkβ̂
T

k tj for the piecewise polynomial regression (PWPR) model;

• ŷj =
∑K

k=1 τjk(Ψ̂)β̂
T

k tj for the Hidden Markov Model Regression (HMMR).

The second criterion is the segmentation error rate between the simulated and the
estimated segmentation of a curve into K polynomial regimes. It is used to assess the
models with regard to their performance to accurately segment the curves according to
the true underlying regimes.

The third criterion is the curve misclassification error rate computed by a 5-fold
cross-validation procedure. The curve classification based on the RHLP model for a
single curve is performed by MDA in the space of descriptors. When the RHLP or the
MixRHLP is used for a set of curves, the curve classification is performed directly in
the curve space.

In addition, the average running time is given for each approach.

Initialization strategies and stopping rules

The proposed EM algorithm for the RHLP model and the EM (Baum-Welch) algorithm
for Hidden Markov Model Regression are initialized as follows:
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• To initialize βk and σ2
k for k = 1, . . . ,K, a random segmentation of the curve

into K segments is used. Then, we fit a polynomial to each segment k and then
we deduce the value of σ2

k. We use 10 runs of EM and the solution providing the
highest likelihood is chosen.

• The internal IRLS algorithm is initialized randomly with a random vector w only
for the first EM iteration (q = 0). From the second EM iteration, it is initialized
with w(q) obtained at the previous EM iteration.

• In the HMMR the initial probabilities are set to π = (1, 0, . . . , 0) and the initial
transition probabilities are set to Aℓk = 0.5 for ℓ ≤ k ≤ ℓ+ 1;

All the EM algorithms are stopped when the relative variation of the optimized log-
likelihood function between two iterations is below a predefined threshold, that is

|L
(q+1)−L(q)

L(q) | ≤ 10−6 or when the iteration number reaches 1000. The internal IRLS

loop is stopped when the relative variation of Qw, that is |Qw(w(l+1,q))−Qw(w(l,q))

Qw(w(l,q))
|, is

below 10−6 or when the iteration number reaches 50.

For the HMMR model used here, we assume that the underlying regimes are or-
dered in the time. In order to obtain contiguous segments, we impose the following con-
straints: p(zj = k|zj−1 = ℓ) = 0 if k < ℓ and p(zj = k|zj−1 = ℓ) = 0 if k > ℓ+ 1.
This corresponds to a particular model called left-right HMM (see section 2.5.3).

4.4.1 Evaluation in terms of curve modeling

In this section we evaluate, in terms of curve modeling and segmentation, the proposed
RHLP model for a single curve and for a set of curves by comparing it to the following
alternative models:

• the polynomial spline regression (PSR) model (c.f., section 2.6.2 and section
2.6.3);

• the piecewise polynomial regression (PWPR) model (c.f., section 2.6.4 and section
2.6.5);

• the Hidden Markov Model Regression (HMMR) (c.f., section 2.6.6). We note
that, here, the HMMR model only concerns the case of a single curve.

Effect of the smoothness level of transition

The experiment performed in this section aims at observing the effect of the smoothness
level of transitions on estimation quality.

In this case, each curve is composed of m = 100 points and is generated according
to the RHLP model with three constant polynomial regimes (K = 3, p = 0) and regime
transitions at 1 and 3 seconds. The used simulation parameters for this situation are
shown in Table 4.1.
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β1 = 0 w1 = [3341.33,−1706.96] σ1 = 2

β2 = 10 w2 = [2436.97,−810.07] σ2 = 2

β3 = 5 w3 = [0, 0] σ3 = 2

Table 4.1: Simulation parameters for experiment 1 corresponding to varying the

smoothness level of transitions.

The smoothness level of transitions is tuned by the parameter λk = wk1 seen
in section 3.2.1 and Figure 3.3 (a). We consider 10 decreasing values of |λk|, which
correspond to 10 increasing values of the smoothness level of regime changes (see Table
4.2). Figure 4.5 (a) shows the true curves without noise for the 10 smoothness levels

Smoothness

level of transitions 1 2 3 4 5 6 7 8 9 10

|λk|
|wk1|

1
|wk1|

2
|wk1|

5
|wk1|
10

|wk1|
20

|wk1|
40

|wk1|
50

|wk1|
80

|wk1|
100

|wk1|
125

Table 4.2: The different smoothness levels from abrupt transitions to smooth transitions

for the situations shown in Figure 4.5.

of transitions and Figure 4.5 (b) shows an example of simulated curves for a fixed
smoothness level.
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(a) (b)

Figure 4.5: Example of 50 curves where the mean curve is simulated according to the

proposed regression model with a curve size m = 100.

For each value of the smoothness level of transitions, the assessment criteria are
averaged over 20 different data sets. For the spline models, we use continuous piecewise
linear functions (linear splines) with 8 internal knots placed uniformly. The choice of
a linear (B) spline rather than other spline models, is due the fact that the considered
regimes are constant.
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Obtained results

Figure 4.6 shows the curve approximation error in relation to the smoothness level of
transitions, obtained with the four models. It can be seen that the proposed approach
provides more accurate curve modeling results compared to the alternative approaches.
In particular, one can clearly observe that the spline regression models are more adapted
for approximating smooth curves rather than for curves with abrupt regime changes.
One can observe that, the approximation error provided by the spline models is de-
creasing as the curves tend to be smooth, in particular for the three last smoothness
levels of transitions.

On the other hand, the PWPR and the HMMR approaches provide closely similar
results to those provided by the proposed RHLP model when the regime changes are
abrupt (levels 1, 2 and 3). However, compared to the alternative approaches, the RHLP
model provides significantly better results when the regime changes become smooth.
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Figure 4.6: Approximation error in relation to the smoothness level of transitions for

situation 1

Effect of the sample size n, the curve size m and the noise level σ

In this section, we conduct three series of experiments on simulated curves in order
to observe the effect of the sample size n, the curve size m and the noise level σ, on
estimation quality.

The first series of experiments consists of varying the sample size n from 10 to 100
by step of 10, the curve size being fixed to m = 100. For the second experiment, to
observe the effect of the curve size m on estimation quality, we vary the curve size m

(m = 100, 300, 500, 700, 1000, 1500), the sample size being fixed to n = 10. The third
experiment aims at observing the effect of the noise level σ on modeling accuracy. In
this experiment, the noise level σ is assumed to be common for all the segments and
varies from 0.5 to 5 by step of 0.5, the curve size in this case being set to m = 500.
We consider that all the curves are regularly sampled over 5 seconds. For each of the
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three series of experiments, three situations are considered to evaluate the proposed
approaches.

• In the first situation, the curves are simulated with the proposed RHLP model.
The simulated curves consisted of K polynomial regimes (K = 4) with a polyno-
mial degree p = 2 and transitions at t ∈ {1, 3, 4} seconds.

• The second situation consists of a two-component polynomial piecewise function
with a polynomial degree p = 2 and a transition at t = 2.5 second.

• For the third situation, each curve is generated from an arbitrary non-linear
function corrupted by a noise.

Table 4.3 shows the set of simulation parameters used for the three situations and
Figure 4.7 shows an example of simulated curve for each of the three situations.

True curve Parameters

Situation 1: β1 = [34,−60, 30] w1 = [547,−154]∑4
k=1 πk(t;w)βT

k t β2 = [−17, 29,−7] w2 = [526,−135]

β3 = [185,−104, 15] w3 = [464,−115]

β4 = [−804, 343,−35] w4 = [0, 0]

Situation 2: β2 = [−78, 47,−5]

β
T
1 t1[0;2.5](t) + β

T
2 t1]2.5;5](t) β1 = [33,−20, 4]

Situation 3:

20 sin(1.6πt) exp(−0.7t)

Table 4.3: Simulation parameters for the three situations

For the used spline models, the knots are placed uniformly in the range of t. We
use a quadratic spline model for situation 2 with 3 internal knots as the two polynomial
regimes are of degree 2. For the two other situations, we use cubic spline models with
9 internal knots. The number of knots for the two situations is chosen manually in
accordance to the nonlinearity of the function to be estimated.

Obtained results

In this section we report the modeling results obtained by the four approaches. For each
series of experiments, the approximation error represent an average over 20 different
data sets.

The curve modeling error in relation to the number of curves n, the curve size m

and the noise level σ, is shown in Figure 4.8. It can be seen that the errors decrease
when the curve size and the sample size increase. The modeling results provided by the
proposed RHLP model are more accurate compared to those obtained by the alterna-
tive approaches. For the results corresponding to the second situation (see Figure 4.8
(middle)), the piecewise model is competitive with the RHLP model. This is attributed
to the fact that the function in this case is simulated according to a piecewise continu-
ous function and therefore the two approaches tend to have closely similar performance.
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Situation 1 Situation 2 Situation 3
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Figure 4.7: Example of simulated curves for a curve size m = 300 with the noisy

curves (top) and the true mean curves (middle) fro each situation. The mean curves

and the corresponding polynomial components, and the transition points are shown

in the bottom plots. The curve in the left plot is simulated curve according to the

RHLP model. The middle plots show the piecewise polynomial noisy curve simulated

according to the PWPR model and the right plot shows the nonlinear function (c.f.,

Table 4.3).

On the other hand, when the noise level increases, the proposed RHLP model is more
stable than the considered regression models, as it can seen in Figure 4.8 (right).

4.4.2 Evaluation in terms of running time

In this section we highlight the practical efficiency of the algorithm for the proposed
approach in terms of running time comparing the alternative algorithms.

The running time results reported here represent averages over 20 different data
sets for each situation, for each value of n and for each value of m. For each data set,
the CPU running time of the EM algorithm for the proposed RHLP model represents
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Figure 4.8: Approximation error rate in relation to the number of curves n for m = 500

and σ = 1.5 (left) , in relation to the curve size m for n = 10 curves and σ = 1.5

(middle), and in relation to the standard deviation σ for n = 10 and m = 500 (right).

From top to bottom, the plots show the results corresponding to situation 1, situation

2 and situation 3.

are averaged over 10 runs of the EM algorithm.

The compared models are the proposed RHLP model and the piecewise polynomial
regression model. The spline regression models are not considered in the comparisons
as they are estimated in a closed form and their computational time are close to zero.
The HMMR model which is not adapted for a set of curves, was only used for the case
of a single curve. The CPU running times of the used EM (Baum-Welch) algorithm
for the HMMR model are quasi identical to those of the EM algorithm for the RHLP
model, but are not reported here.

Figure 4.9 shows the average running time in seconds for the PWPR approach,
which uses dynamic programming, and for the proposed approach which uses the EM
algorithm. One can clearly observe that the piecewise approach tends to need an
expensive computational load as the curve size and the number of curves increase. It
can be also seen that the EM algorithm RHLP model is significantly faster than the
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dynamic programming procedure used for piecewise regression.
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Figure 4.9: Average CPU time in relation to the curve size n for m = 500 (left) and in

relation to the curve size m for n = 10 (right) obtained for situation 1 (top), situation

2 (middle) and situation 3 (bottom).

4.4.3 Evaluation in terms of curve segmentation

Simulation protocol

In addition to the two situations (situation 1 and 2) considered in the previous section
(see Table 4.3), we consider another situation corresponding to a three-component
piecewise constant function with abrupt regime changes. Figure 4.10 shows an example
of a simulated curve corresponding to this situation.
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Figure 4.10: Situation 4: example of a simulated curve according a piecewise constant

function with yt = 18× 1[0;1](t) + 5× 1]1;3](t) + 15× 1]3;5](t) + ǫt, ǫt ∼ N (0, 22).

Obtained results

Here we report the curve segmentation results obtained by the proposed approach
(RHLP), the Markovian approach (HMMR) and the piecewise polynomial approach
(PWPR) for situation 1, 2 and 4. The spline approaches which are not dedicated to
curve segmentation are not considered for comparisons.

Figure 4.11 shows the curve segmentation results in relation to the curve size m

and the noise level σ obtained by the three approaches. It can be seen that the seg-
mentation error decreases when the curve size m increases, except for the last situation
for which the segmentation error is constant, since the transitions are very pronounced
(c.f. Figure 4.10).

For the two first situations, the proposed approach provides more accurate segmen-
tation results than the two alternative approaches, as it can be observed in the top and
the middle plots of Figure 4.11. In addition, when the noise level increases, the RHLP
model remains more stable than to the PWPR and the HMMR models as it provides
the lower segmentation error (see the top right and the middle right plots of Figure
4.10).

On the other hand, the results are quasi identical for the piecewise constant curves
with abrupt regime changes corresponding to the last situation (see Figure 4.11 (bot-
tom). For this situation, one can observe that the three approaches have quasi identical
performance in curve segmentation as the regimes are very pronounced. In addition,
when the curve size increases, the segmentation error remains close to zero (see the
bottom-left plot in Figure 4.11). The performance of the piecewise regression model
can be better, compared to the two other approaches, for a high noise level (see the
bottom-right plot of Figure 4.11).
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Figure 4.11: Segmentation error rate in relation to the curve size m (left) for n = 10

curves and σ = 1.5, and in relation to the standard deviation σ for n = 10 and m = 500

(right) obtained for situation 2 (top) and situation 4 (bottom).

4.4.4 Evaluation in terms of curve classification

This part is devoted to the evaluation of the classification accuracy of the proposed
approach based on the RHLP model by using simulated curves. Comparisons are
performed with the alternative classification approaches based on polynomial regres-
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sion (PR), polynomial spline regression (PSR) and piecewise polynomial regression
(PWPR). Each approach consists of a model estimation followed by MAP in the space
of curves. The classification approach presented in Chapter 3, which consists of fea-
ture extraction for each curve by the RHLP model followed by MDA in the space of
descriptors, is also considered.

Protocol of simulations

We consider two situations of simulated curves. The first consists of a two-class problem
where the curves are generated according to two arbitrary nonlinear functions corrupted
by noise. Each curve is composed of m = 200 points and consists of three piecewise
functions such that:

• yt = −0.3 × 1[0;0.25](t) − 5e−3t sin(2.8πt) × 1]0.25;0.75](t) − 1]0.75;1](t) + ǫt for the first
class,

• yt = −0.1 × 1[0;0.25](t) − 5e−3t sin(3πt) × 1]0.25;0.75](t) − 0.9 × 1[0.75;1](t) + ǫt for the
second class,

with ǫt ∼ N (0, 0.42). A sample of 100 curves is considered. Figure 4.12 shows an
example of simulated curves for this situation.

0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

t

y

Figure 4.12: A two-class example of curves simulated according to two nonlinear func-

tions corrupted by noise. The plot shows 10 curves from each class with the true mean

functions presented in bold lines. Each curve is composed of m = 200 points and

consists of three piecewise functions.

In the second situation, the proposed RHLP model is evaluated in terms of curve
classification by considering the waveform curves of Breiman (Breiman et al., 1984).
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Waveform curves of Breiman

The waveform data introduced by Breiman et al. (1984) and studied in Hastie and
Tibshirani (1996); Rossi and Conan-Guez (2005a) and elsewhere consist of a three-
class problem where each curve is generated as follows:

• y1(t) = uh1(t) + (1− u)h2(t) + ǫt for the class 1;

• y2(t) = uh2(t) + (1− u)h3(t) + ǫt for the class 2;

• y3(t) = uh1(t) + (1− u)h3(t) + ǫt for the class 3.

where u is a uniform random variable on (0, 1),

• h1(t) = max(6− |t− 11|, 0);

• h2(t) = h1(t− 4);

• h3(t) = h1(t+ 4).

and ǫt is a zero-mean Gaussian noise with unit standard deviation. The temporal
interval considered for each curve is [0; 20] with a constant period of sampling of 1
second. 500 simulated curves were drawn for each class.

Obtained results

Table 4.4 shows the average misclassification error rates and the corresponding stan-
dard deviations (in parentheses) obtained with the five approaches for the first data
set. The RHLP modeling approach for a set of curves followed by the MAP classifica-
tion rule provides the smallest classification error compared to the alternatives while
the PWPR approach provides closely similar classification results. In practice, one
observes that, for the PR model, the misclassification error rate tends to increase as
the polynomial degree increases. This behavior is also concerned with the cubic spline
when the PSR model includes a high number of knots. This behavior can be attributed
to the phenomenon of over-fitting.

Table 4.5 shows the average classification error rates and the corresponding standard
deviations (in parentheses) obtained with the five approaches for the waveform curves.
We can see that, in terms of accuracy, the RHLP-MAP approach outperforms the other
four methods. The difference is largest on the first data set, in particular compared
to the PR and the PSR models. This is due to the fact that the class shapes for the
previous data set (situation 1) present are more complex for such models, compared to
the waveform curves. In addition, the error rates for the waveform data set are smaller
than those obtained for situation 1 because the classes are more difficult to separate
(see Figure 4.12).

Figure 4.13 and Figure 4.14 show, for the two situations, the curves estimated
respectively by the four models: PR, PSR, PWPR and RHLP. We can see that, as
the class-shapes are not much complex in terms of nonlinearity, all the model provide
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4.4 Experiments on simulated curves

Approach Misclassification error rates (%)

PR-MAP (p = 20) 14±(8.94)

PR-MAP (p = 10) 9±(9.61)

PR-MAP (p = 6) 8.24±(7.58)

PSR-MAP (15 knots) 9±(9.61)

PSR-MAP (9 knots) 8±(7.58)

PSR-MAP (5 knots) 8±(7.58)

PWPR-MAP 7.75 ±(5.71)

RHLP-MDA 8 ±(3.54)

RHLP-MAP 7 ±(3.86)

Table 4.4: Classification results for the first situation of simulated curves. The PSR

model consists of a cubic spline. The RHLP and the PWPR approaches are performed

with K = 5 and p = 2.

Modeling approach Misclassification error rates (%)

PR-MAP 2.53 ± (0.41)

PSR-MAP 2.16 ± (0.20)

PWPR-MAP 2.4 ± (0.64)

RHLP-MDA 1.83 ±(0.91)

RHLP-MAP 1.67 ±(0.84)

Table 4.5: Classification results for the waveform curves obtained with the different

approaches. The polynomial regression model is performed with p = 6 and a cubic

spline is used with 2 internal knots. The piecewise and the RHLP models are performed

with K = 2 and p = 3.

similar approximation results. While, the curves estimated by the piecewise regression
approach present discontinuities since they computed from a hard segmentation of the
curves. The curves approximation provided with the proposed regression model is
continuous due to the use of the logistic function adapted to both smooth and abrupt
regime changes.
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Figure 4.13: Some examples of curves corresponding to situation 1 with 10 curves per

class. From top to bottom, the bold line show the estimated mean curve for each set

of curves obtained with polynomial regression (PR) for p = 15, cubic spline regression

(PSR) with 9 internal knots, piecewise polynomial regression (PWPR) with K = 4 and

p = 2 and the proposed RHLP model with K = 4 and p = 2.

125



4.4 Experiments on simulated curves

0 5 10 15 20
−4

−2

0

2

4

6

8

y

t

 Class 1

0 5 10 15 20
−4

−2

0

2

4

6

8

y
t

 Class 2

0 5 10 15 20
−4

−2

0

2

4

6

8

y

t

 Class 3

0 5 10 15 20
−4

−2

0

2

4

6

8

y

t

 Class 1

0 5 10 15 20
−4

−2

0

2

4

6

8

y

t

 Class 2

0 5 10 15 20
−4

−2

0

2

4

6

8

y

t

 Class 3

0 5 10 15 20
−4

−2

0

2

4

6

8

t

y

Class 1

0 5 10 15 20
−4

−2

0

2

4

6

8

t

y

Class 2

0 5 10 15 20
−4

−2

0

2

4

6

8

t

y

Class 3

0 5 10 15 20
−4

−2

0

2

4

6

8

t

y

Class 1

0 5 10 15 20
−4

−2

0

2

4

6

8

t

y

Class 2

0 5 10 15 20
−4

−2

0

2

4

6

8

t

y

Class 3

Figure 4.14: Some examples from waveform curves with 50 curves per class. From

top to bottom, the bold line show the estimated mean curve for each set of curves

obtained with polynomial regression (PR) for p = 6, cubic spline regression (PSR)

with 2 internal knots, piecewise polynomial regression (PWPR) with K = 2 and p = 3

and the proposed RHLP model with K = 2 and p = 3.
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4.4 Experiments on simulated curves

4.4.5 Evaluation of the MixRHLP model in terms of curve clustering

In this section, we assess the MixRHLP model in terms for curve clustering by con-
sidering simulated curves. The first simulated example aims at illustrating the ability
of the MixRHLP model for clustering curves presenting regime changes with different
smoothness levels and at different temporal locations.

The simulated data consisted of curves issued from three classes which include both
abrupt and smooth regime changes. The second cluster is simulated as a piecewise
function and the two other clusters are simulated according to the RHLP model. Figure
4.15 shows the simulated curves.
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Figure 4.15: A three-class data set of simulated curves with n = 15, m = 300 and

σ = 1.

In the second experiment we compare the MixRHLP model with the following
alternative methods:

• the polynomial regression mixture PRM (c.f., section 2.7.1);

• the polynomial spline regression mixture PSRM (c.f., section 2.7.1);

• the polynomial piecewise regression mixture (c.f., section 2.7.3) which we abbre-
viate as PWPRM ;

• the mixture of HMMs (c.f., section 2.7.4) which we abbreviate as MixHMM.

The evaluation criteria are the curve classification error rate and the mean squared
error between the true mean curves and the estimated curves. It is computed as:

1

mR

R∑

r=1

m∑

j=1

(yrj − ŷrj )
2

where yrj is the jth point of the mean curve of cluster r.
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4.4 Experiments on simulated curves

In the second situation, we consider two clusters of curves issued from nonlinear
functions observed on [0,5] seconds. Each point of the first mean curve is computed
as y1j = sin(πtj)e

0.1tj + sin(2πtj), and the one from the second mean curve is given by

y2j = sin(πtj)e
0.1tj +1.6. sin(2πtj). The curves are simulated with n = 20 and m = 100.

The noise level is varying from 0.1 to 0.5 by step of 0.1 in order to assess the models
with regards to the clusters overlap.

Figure 4.16 shows a simulated unlabeled curves and the curves labeled according to
the true simulated classes.
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Figure 4.16: Simulated curves from two clusters (left) and the clusters labeled according

to the true partition and the corresponding true mean functions (right) for situation 2.

Clustering results

Figure 4.17 shows the curves partition obtained with the CEM algorithm.
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Figure 4.17: Obtained partition with the CEM algorithm for the curves shown in Figure

4.15.

Figure 4.18 clearly shows that applying the MixRHLP for clustering a set of curves
presenting regime changes provides accurate results, with regard to the identified clus-
ters, as well as for detecting the underlying regimes with each cluster. In particular, it
can be seen from the logistic proportions shown in (Figure 4.18 (bottom)), that the lo-
gistic process governing each cluster of curves, is adapted for capturing both the regime
transition quality and the transition locations.
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Figure 4.18: Clustering results obtained by applying the MixRHLP model with (K =

3, p = 0) to the set of curves presented in Figure 4.15.

For the second experiment, the polynomial regression is performed with a polyno-
mial degree p = 6. The spline regression model uses continuous polynomials of degree
3 (cubic spline) and is performed with 8 internal knots.

In this case, the classification error rates equal zero for all the approaches. Figure
4.19 shows the mean squared in relation to the noise level obtained with the different
clustering approaches for this situation. One can observe that the polynomial regression
mixture (PRM) and the PSRM model provide less accurate results than the three other
approaches. The MixRHLP model which is particularly adapted for modeling smooth
curves, provides the best results for this situation, compared to the PWPRM and
MixHMM model.
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Figure 4.19: Mean Squared Error in relation to the noise level for the five curve clus-

tering approaches.

The curves partitions and the corresponding mean functions obtained with each
model, are shown in figures 4.20, 4.21, 4.22 and 4.23. It can be seen that, while
the estimated clusters are quasi-identical for all the approaches, the estimated cluster
models however clearly differ according to the used clustering method. The results
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4.4 Experiments on simulated curves

obtained with the PSRM model are reported in Figure 4.20. In particular, it can
be seen that the MixHMM model does not account well for the smoothness of the
true mean curves. We note that the mean curves obtained the MixHMM model are
computed as the weighted mean of the curves where the weights are both the posterior
cluster probabilities and the posterior segment probabilities, that is, each point of the
estimated mean curve for cluster r is given by:

ŷrj =
1∑n

i=1 γ̂ir

n∑

i=1

γ̂ir

K∑

k=1

τ̂ijrkyij .

Figure 4.22 shows the clustering results, including the piecewise mean functions ob-
tained with the MixPWPR model. Finally, Figure 4.23 presents the outputs from the
MixRHLP model. One can clearly observe that the estimated cluster mean curves are
very close to the original mean curves.
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Figure 4.20: Clustering results obtained with the cubic PSRM model for the curves

shown in Figure 4.16, with 8 internal uniform knots. The plot (a) shows the curves

labeled according to the estimation partition and the corresponding estimated mean

curve for each cluster (in bold lines). In (b) we present the true mean functions and

those estimated by the PSRM model. The plots (c) and (d) show each of the two

estimated clusters and the corresponding mean curves.
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Figure 4.21: Clustering results obtained with the MixHMM model for the curves shown

in Figure 4.16, with K = 6 and p = 3. The plot (a) shows the curves labeled according

to the estimation partition and the corresponding estimated mean curve for each cluster

(in bold lines). In (b) we present the true mean functions and those estimated by the

MixHMM model. The plots (c) and (d) show each of the two estimated clusters and

the corresponding mean curves.

4.5 Summary

In this chapter, we first introduced a new approach for modeling a set of curves. It
consists of the RHLPmodel for a set of curves. The model is particularly appropriate for
curves with various changes in regime. This flexibility is achieved due to the underlying
logistic process. We then showed how curve classification can be performed with this
model through functional linear discriminant analysis.

We further integrated the RHLP model into a mixture framework to address the
problem of complex shaped sets of curves. The resulting MixRHLP model can be used
for curve classification in the case of complex shaped classes using functional mixture
discriminant analysis and for curve clustering.

For both the RHLP and the MixRHLP models, curve classification (or clustering) is
directly performed in the space of curves, rather than in the space of curve descriptors,
as in the previous chapter.

The experimental results demonstrated the benefit of the proposed approaches to
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Figure 4.22: Clustering results obtained with the MixPWPR model for the curves

shown in Figure 4.16, with K = 6 and p = 3. The plot (a) shows the curves labeled

according to the estimation partition and the corresponding estimated piecewise mean

curve for each cluster (in bold lines). In (b) we present the true mean functions and

those estimated by the MixHMM model. The plots (c) and (d) show each of the two

estimated clusters and the corresponding piecewise mean curves.

addressing the problem of curve modeling, classification and clustering as compared
to existing alternative methods, including the piecewise polynomial regression, the
polynomial spline regression and the Hidden Markov Model regression.

At this stage, the curves are assumed to be independent. In the next chapter, we
relax this hypothesis and build models for curve sequences.
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Figure 4.23: Clustering results obtained with the MixRHLP model for the curves shown

in Figure 4.16, with K = 6 and p = 3. The plot (a) shows the curves labeled according

to the estimation partition and the corresponding estimated mean curve for each cluster

(in bold lines). In (b) we present the true mean functions and those estimated by the

MixRHLP model. The plots (c) and (d) show each of the two estimated clusters, the

mean curves and the corresponding logistic probabilities.
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Chapter 5

Dynamical approaches for curve

sequence modeling
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5.1 Introduction

5.1 Introduction

The previous chapters were concerned with modeling and classifying independent curves.
However, in many application domains, including the railway infrastructure diagnosis,
the data are generally acquired sequentially. Figure 5.1 shows a sequence of curves
acquired during successive switch operations.
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Figure 5.1: Examples of curves acquired during successive switch operations.

These sequential data can be used to learn the dynamic behavior of a system, such as
is the case in condition monitoring contexts (Smyth, 1994). Indeed, because the system
might be affected by operating conditions over time, a change in the operating process
can be observed and detected from successive condition measurements acquired during
the working process of that system. To detect non-normal events occurring during the
operating process of the studied system, accurate modeling techniques are therefore
needed. In this monitoring context, several probabilistic modeling approaches have
been proposed, including the approach based on HMMs (Smyth, 1994) or the approach
that combines an HMM and a Neural Network (Smyth, 1993).

In this chapter, we present probabilistic modeling approaches for dynamical mod-
eling of curve sequences.

5.2 A two-steps strategy for curve sequence modeling

The approach we propose to model a curve sequence is two-fold. First, we perform
feature extraction from each curve by applying the RHLP model developed in Chapter
3 (Chamroukhi et al., 2009a,c). This involves summarizing each curve in a multidi-
mensional feature vector. Therefore, the curve sequence is converted to a sequence of
multidimensional feature vectors that are denoted hereafter as (y1, . . . ,yn), where yt
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5.3 Switching autoregressive model with a hidden logistic process

(t = 1, . . . , n) is the d-dimensional1 feature vector extracted from the curve observed
at the time step t (t = 1, . . . , n).

Then, based on the formed sequence of multidimensional data, one can adopt prob-
abilistic models that are generally concerned with multidimensional data sequences,
such as HMMs.

The models developed in this chapter rely on a specific multivariate autoregressive
model governed by a hidden discrete process that automatically controls the switching
from one state to another in K states over time. Two types of processes are considered.
The first approach assumes that the underlying process governing the observation se-
quence is a hidden logistic process, as introduced in Chapter 2. However, the logistic
model described in the present chapter depends on a history of the observed variable
itself rather than the time step. The resulting model is called a switching autoregressive
model with a hidden logistic process, which we abbreviate as ARHLP. A hidden Markov
process (i.e., hidden Markov chain) is used in the second approach; the corresponding
model is a switching autoregressive HMM (ARHMM).

The learning task is performed in both a batch mode, where the observation se-
quence is stored in advance, and an online mode, where the data arrive one at a time.
The final objective is to evaluate the operating state of the system given a new ac-
quired observation (i.e., curve) based on the learned model and to be able to make
class prediction.

This chapter is organized as follows. Section 5.3 presents the ARHLP model and
its unsupervised learning technique in both an offline and an online scheme. In section
5.4, after recalling the standard ARHMM proposed by Celeux et al. (2004), we present
the AR-NH-HMM based on a non-stationary modeling of the transition probabilities
and describes the corresponding parameter estimation technique via the EM (Baum
Welch) algorithm. Finally, the proposed approaches are evaluated in section 5.5 using
an experimental study on simulated data.

5.3 Switching autoregressive model with a hidden logistic

process

This section presents the proposed dynamical autoregressive model with a hidden lo-
gistic process (ARHLP). The ARHLP model is an extension of the model presented in
Harrison et al. (2003), which consists of a standard multivariate autoregressive model
for learning from multivariate time series, by including the latent logistic process that
allows for switching between various multivariate autoregressive models. The model can
be associated with the method of Wong and Li (2001) which is based on a switching
autoregressive logistic model. In Wong and Li (2001), the authors developed a similar
model including a hidden logistic process where the hidden discrete variable takes only
two configurations (binary unsupervised classification). Other similar AR models can

1Note that here the dimension of the extracted feature vector yt is νθ as seen in the previous

chapters, however d will be used hereafter to simplify the notations.
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5.3 Switching autoregressive model with a hidden logistic process

be found in Carvalho and Tanner (2006, 2007) which are based on switching autore-
gressive logistic model. However for these approaches, the learning task is performed
in a batch mode. The proposed ARHLP model includes a multinomial logistic process,
for which the learning procedure is performed in a batch mode, as well as in an online
mode. A similar online learning mode can be found in Ng et al. (2006).

5.3.1 The model

The observation sequence (y1, . . . ,yn) is assumed to be generated by the following
multivariate autoregressive model of order p, governed by a hidden logistic process:

yt =

p∑

a=1

Ba
zt
yt−a + et, et ∼ N (0,Σzt) (t = p+ 1, . . . , n), (5.1)

where, for t = 1, . . . , p, the initial conditions for the model are defined as:

• zt ∼M(1, π1, . . . , πK) such that πk ∈ [0, 1] ∀k and
∑K

k=1 πk = 1,

• yt|zt ∼ N (·;µzt ,Σzt).

The variable zt from the underlying process z = (z1, . . . , zn) is a latent discrete random
variable which takes its values in the finite set Z = {1, . . . ,K}. The variable zt repre-
sents the unobserved class label of the sub-autoregressive model generating yt, B

a
zt is

the d × d matrix of autoregression parameters associated with yt−a, Σzt is the d × d

covariance matrix for the sub-autoregressive model zt, and the variables ǫt are indepen-
dent random variables in R

d distributed according to a standard multivariate Gaussian
distribution representing an additive noise. The model (5.1) can be reformulated in a
vectorial form as

yt = BT
zt
rt + et (t = p+ 1, . . . , n), (5.2)

where rt = (yT
t−1, . . . ,y

T
t−p)

T is the (p × d) × 1 dimensional vector of the p previous

observations and Bzt = (B1
zt
, . . . ,Bp

zt)
T is the (p× d)× d dimensional matrix of the K

sub-autoregressive model parameters.

In this specific autoregressive model, the variable zt controls the switching from a
sub-autoregressive model to another among K sub-autoregressive models at each time
step t. Thus, unlike the autoregressive model developed by Harrison et al. (2003), which
assumes uniform AR model parameters over time (the parameters (B,Σ) are the same
for the whole sequence of data), the formulation of the proposed model is based on a
set of dynamical parameters, which is able to capture the dynamical (non-stationary)
behavior of the process generating the data. This dynamical aspect is represented
by the switching within various sub-models over time through an underlying hidden
process. In this section, we assume that the underlying hidden switching process is
logistic, that is the hidden variable zt is governed by a multinomial logistic distribution
in which the covariate variables consist of some short history of observed data during
time.
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5.3 Switching autoregressive model with a hidden logistic process

The next section defines the probability distribution of the process z = (z1, . . . , zn)
that allows for the switching from one sub-autoregressive model to another among K

autoregressive models, in the same manner as in Chapter 3.

The hidden logistic process

Let us recall that the hidden logistic process proposed in Chapter 3 for a curve depends
on set of parameters and the instant at which data point of a curve is observed. For the
ARHLP model we develop here, the multinomial logistic distribution depends on a set
of parameters and some short history of the observed data themselves. Thus, the hidden
logistic process in this case supposes that the variables zt, given the set of p previous
observations (yt−1, . . . ,yt−p), are generated independently according to the multino-
mial distribution M(1, π1(rt;w), . . . , πK(rt;w)) (we recall that rt = (yT

t−1, . . . ,y
T
t−p)

T ),
where the conditional probability of each class (state) k (k = 1, . . . ,K) is given by:

πk(rt;w) = p(zt = k|rt;w) =
exp (wT

k rt)∑K
ℓ=1 exp (w

T
ℓ rt)

, (5.3)

where wk ∈ R
p×d is the parameter vector associated with the kth logistic component

and w = (w1, . . . ,wK). Thus, given the vector rt, the distribution of a particular
configuration of the hidden process z can be written as

p(z|rp+1, . . . , rn;w) =

p∏

t=1

K∏

k=1

π
ztk
k

n∏

t=p+1

K∏

k=1

p(zt = k|rt;w)ztk

∝
n∏

t=p+1

K∏

k=1

(
exp (wT

k rt)∑K
ℓ=1 exp (w

T
ℓ rt)

)ztk

. (5.4)

The data generation scheme with the ARHLP model

From Equation (5.2) we can see that given the vector rt comprising the p previous
observations, and the sub-autoregressive model k generating yt, the distribution of yt

is a multivariate Gaussian distribution with mean BT
k rt and covariance matrix Σk:

p(yt|zt = k, rt;Ψk) = N (yt;B
T
k rt,Σk) (5.5)

where Ψk = (Bk,Σk). The generative scheme of an observation sequence from a
fixed parameter Ψ = (w,Ψ1, . . . ,ΨK) is therefore as follows. Given some chosen ini-
tial variables zt (t = 1, . . . , p) and observations yt (t = 1, . . . , p), for example one
can chose the initial state zt (t = 1, . . . , p) according to the multinomial distribution
M(1, π1, . . . , πK). Similarly, yt (t = 1, . . . , p) can be generated according to the multi-
variate Gaussian distribution N (·;µzt ,Σzt) where µt is the initial mean vector. Thus,
the generative scheme is given by the following 2 steps:
For t = p+ 1, . . . , n,

• generate the hidden variable zt according to the multinomial distribution
M(1, π1(rt;w), . . . , πK(rt;w)),
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5.3 Switching autoregressive model with a hidden logistic process

• generate the observation yt according to the multivariate Gaussian distribution
N (·;BT

ztrt,Σzt).

where rt = (yT
t−1, . . . ,y

T
t−p)

T . Figure 5.2 gives a graphical representation for this model
for the particular case where p = 1 (an ARHLP model of order 1).

Figure 5.2: Graphical model structure for the multivariate autoregressive model with

a hidden logistic process (ARHLP) for p = 1 (ARHLP model of order 1).

The next section is concerned with the parameter estimation for the ARHLP model
in a maximum likelihood framework using the EM algorithm.

5.3.2 The batch EM algorithm for parameter estimation

It can be shown that, given the memory rt of yt, the variable yt is distributed according
to the following multivariate Gaussian mixture density:

p(yt|rt;Ψ) =
K∑

k=1

p(zt = k|rt;w)p(yt|zt = k, rt;Ψk)

=

K∑

k=1

πk(rt;w)N (yt;B
T
k rt,Σk), (5.6)

where Ψ = (w,B1, . . . ,BK ,Σ1, . . . ,ΣK) is the unknown parameter vector to be es-
timated by the maximum likelihood method. According to this model, the observed
data yt (t = 1, . . . , n) are independent given the previous observations rt. Assum-
ing the specific initial condition for the initial observations (y1, . . . ,yp) and the initial
states (z1, . . . , zp), the log-likelihood of Ψ for the observed data Y, given the history
of observations (rp+1, . . . , rn) is therefore written as

L(Ψ;Y) = log

p∏

t=1

p(yt)

n∏

t=p+1

p(yt|rt;Ψ) (5.7)
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from which it can be seen that up to the additive term
∑p

t=1 log p(yt)
1, the observed-

data log-likelihood of Ψ is given by

L(Ψ;Y) ∝
n∑

t=p+1

log

K∑

k=1

πk(rt;w)N (yt;B
T
k rt,Σk). (5.8)

The maximization of this log-likelihood is iteratively performed by the EM algorithm
(Dempster et al., 1977; McLachlan and Krishnan, 1997). The complete-data log-
likelihood for this model is written as

Lc(Ψ;Y, z) = log p(Y, z|rp+1, . . . , rn;Ψ)

= log p(Y|z, rp+1, . . . , rn;Ψ)p(z|rp+1, . . . , rn;Ψ). (5.9)

For a particular configuration of the hidden process z, the conditional distribution of
the observed sequence given the variables (rp+1, . . . , rn), can be written as

p(Y|z, rp+1, . . . , rn;Ψ)=

p∏

t=1

K∏

k=1

N (yt;µk,Σk)
ztk

n∏

t=p+1

K∏

k=1

N (yt;B
T
k rt,Σk)

ztk . (5.10)

Thus, by using (5.4) we therefore obtain the following expression of the complete-data
log-likelihood:

Lc(Ψ;Y, z) =

p∑

t=1

K∑

k=1

ztk log πkN (yt;µk,Σk) +

n∑

t=p+1

K∑

k=1

ztk log πk(rt;w) +

+

n∑

t=p+1

K∑

k=1

ztk logN (yt;B
T
k rt,Σk). (5.11)

In order to make the parallel between the batch EM algorithm, and the online EM
algorithm which will be formulated later, we express the parameters’ updating formulas
as functions of the sufficient statistics.

Let us denote by Lwc (w;Y, z) and LΨk
c (Ψk;Y, z) the terms in (5.11) that depend

on the parameters w and Ψk respectively, so that we have2:

Lc(Ψ;Y, z) = Lwc (w;Y, z) +

K∑

k=1

LΨk
c (Ψk;Y, z). (5.12)

Hence, from (A.8) we have the following expression of LΨk
c (Ψk;Y, z):

LΨk
c (Ψk;Y, z) =

−1

2
trace

[ n∑

t=p+1

ztkyty
T
t Σ

−1
k − 2

n∑

t=p+1

ztkytr
T
t BkΣ

−1
k +

n∑

t=p+1

ztkrtr
T
t BkΣ

−1
k BT

k

]

−
1

2

n∑

t=p+1

ztk log |Σk| −
d

2

n∑

t=p+1

ztk log 2π. (5.13)

1Note that omitting this additive term does not affect the parameter estimation since we have an

autoregressive recursion only for t = p+ 1, . . . , n.
2Notice that in what follows, we will omit the first constant term in (5.11) as it is not included in

the learning process.
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5.3 Switching autoregressive model with a hidden logistic process

From (5.13) we can see that the complete-data log-likelihood for the parameters Ψk =
(Bk,Σk) depends on the data only through the following sufficient statistics:

T k =

n∑

t=p+1

ztk,

T rr,k =
n∑

t=p+1

ztkrtr
T
t ,

T yr,k =

n∑

t=p+1

ztkrty
T
t ,

T yy,k =
n∑

t=p+1

ztkyty
T
t , (5.14)

where T rr,k and T yr,k are sufficient statistics for Bk, and T k, T yr,k and T yy,k are
sufficient statistics for Σk with k ∈ {1, . . . ,K}. The updating formulas for Ψk will
then be reformulated based on these sufficient statistics. In addition, the optimization
of the function

Lwc (w;Y, z) =

n∑

t=p+1

K∑

k=1

ztk log πk(rt;w) (5.15)

with respect to w is a multinomial logistic regression problem, so that if the hidden
indicator variables ztk were observed, the estimation of w would be performed using
the IRLS algorithm as follows:

w(l+1) = w(l) −
[∂2Lwc (w;Y, z)

∂w∂wT

]−1

w=w(l)

∂Lwc (w;Y, z)

∂w

∣∣∣
w=w(l)

· (5.16)

Thus, let us define the following statistics

T (l)
rr,w = −

∂2Lwc (w;Y, z)

∂w∂wT

∣∣∣
w=w(l)

, and T (l)
rw =

∂Lwc (w;Y, z)

∂w

∣∣∣
w=w(l)

(5.17)

which correspond to the Hessian and the gradient of Lwc (w;Y, z) respectively, and are
calculated in a similar way as in (A.29) and (A.25) as follows:

T (l)
rr,w =

n∑

t=p+1

(
Π(rt;w

(l))− π(rt;w
(l))πT (rt;w

(l))
)
⊗ rtr

T
t ,

T (l)
rw =

n∑

t=p+1

(
zt − π(rt;w

(l))
)
⊗ rt (5.18)

where π(rt;w) = (π1(rt;w), . . . , πK−1(rt;w))T is the vector of the K− 1 logistic prob-
abilities at the time step t, Π(rt;w) = diag(π(rt;w)) is a (K − 1)× (K − 1) diagonal
matrix, zt = (zt1, . . . , zt,K−1)

T is the vector of class indicator variables and ⊗ denotes
the Kronecker matrix product. Thus the update formula for w (5.16) takes the form:

w(l+1) = w(l) +
[
T (l)

rr,w

]−1
T (l)

rw· (5.19)
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While the data are incomplete because the variables z are hidden, the EM algorithm
provides an elegant framework to deal with this problem of missing information. The
maximization of the observed-data log-likelihood is therefore iteratively performed by
alternating between the expectation step in which we compute the conditional expecta-

tion of the statistics T
(l)
rr,w and T

(l)
rw, and the M-step in which the model parameters are

updated based on the expected sufficient statistics. The next section gives the details
of the batch EM algorithm when the observation sequence is stored before the learning
proceeds.

The batch EM algorithm for the ARHLP model

The EM algorithm for the ARHLP model starts with an initial parameter Ψ(0) and
alternates between the two following steps until convergence:

E-step: This step consists of computing the expectation of the complete-data log-
likelihood Lc(Ψ;Y, z) conditionally on the observed sequence Y and the vectors con-
taining the previous observations (rp+1, . . . , rn) given the current estimation Ψ(q) of
the parameter Ψ. This expected complete-data log-likelihood is given by:

Q(Ψ,Ψ(q)) = E

[
Lc(Ψ;Y, z)|Y, rp+1, . . . , rn;Ψ

(q)
]

=
n∑

t=p+1

K∑

k=1

E[ztk|Y, rp+1, . . . , rn;Ψ
(q))] log

[
πk(rt;w)N (yt;B

T
k rt,Σk

)]

=

n∑

t=p+1

K∑

k=1

τ
(q)
tk log πk(rt;w) +

n∑

t=p+1

K∑

k=1

τ
(q)
tk N (yt;B

T
k rt,Σk

)]
, (5.20)

where

τ
(q)
tk = E[ztk|Y, rp+1, . . . , rn;Ψ

(q))]

= p(zt = k|yt, rt;Ψ
(q))

=
πk(rt;w

(q))N (yt;B
T (q)
k rt,Σ

(q)
k )

∑K
ℓ=1 πℓ(rt;w

(q))N (yt;B
T (q)
ℓ rt,Σ

(q)
ℓ )

(5.21)

is the posterior probability that yt originates from the kth sub-autoregressive model.
Note that in (5.21) we used the conditional independence assumption of the model
which implies that the current state depends only on the previous observations rt
and, conditionally on the current state, the current observation depends only on the
previous p observations rt (t > p). Therefore, this step consists of computing the

posterior probabilities τ
(q)
tk .

M-step: In this step, the value of the parameter Ψ is updated by computing the
parameter Ψ(q+1) which maximizes the function Q(Ψ,Ψ(q)) with respect to Ψ:

Ψ(q+1) = argmax
Ψ∈Ω

Q(Ψ,Ψ(q)), (5.22)
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Ω being the parameter space.
From Equation (5.20), the Q-function can be decomposed as

Q(Ψ,Ψ(q)) = Qw(w,Ψ(q)) +
K∑

k=1

QΨk
(Ψk,Ψ

(q)) (5.23)

where

Qw(w,Ψ(q)) =

n∑

t=p+1

K∑

k=1

τ
(q)
tk log πk(rt;w) (5.24)

and

QΨk
(Ψk,Ψ

(q)) =
n∑

t=p+1

τ
(q)
tk logN (yt;B

T
k rt,Σk) (5.25)

for k = 1, . . . ,K. The maximization of Q(Ψ,Ψ(q)) w.r.t Ψ can therefore be performed
by separately maximizing Qw(w,Ψ(q)) w.r.t w and QΨk

(Ψk,Ψ
(q)) w.r.t Ψk for k =

1, . . . ,K.

The maximization of QΨk
with respect to Bk consists of analytically solving a K

weighted least squares problem. Consider the terms in Equation (5.25) which depend
on Bk. Taking the derivative of the resulting function (c.f, Appenidx A.9) w.r.t Bk

and setting it to zero yields:

B
(q+1)
k =

[ n∑

t=p+1

τ
(q)
tk rtr

T
t

]−1
n∑

t=p+1

τ
(q)
tk rty

T
t (5.26)

which corresponds to the solution of a weighted least squares problem and can be
written in a matrix form as

B
(q+1)
k = (XTW

(q)
k X)−1XTW

(q)
k Y (5.27)

where X = (rp+1, . . . , rn)
T is the (n − p) × (p × d) matrix containing the p previous

observations at each time step t (t = p + 1, . . . , n) and W
(q)
k is the (n − p) × (n − p)

diagonal matrix whose diagonal elements are the posterior probabilities of the kth sub-

autoregressive model (τ
(q)
p+1,k, . . . , τ

(q)
nk ).

Similarly, to maximize QΨk
with respect to Σk, let us collect the terms in (5.25)

that are functions of Σk (see Appendix A.10). Taking the derivative of the resulting
function and setting it to zero yields:

Σ
(q+1)
k =

∑n
t=p+1 τ

(q)
tk yty

T
t −B

(q+1)T
k

∑n
t=p+1 τ

(q)
tk rty

T
t

∑n
t=p+1 τ

(q)
tk

· (5.28)

The calculation details for (5.26) and (5.28) are given in Appendix A.9 and Appendix
A.10. Note that the update formula of Σk is the same as in the case of the estimation
of the covariance matrix in a multivariate Gaussian mixture model:

Σ
(q+1)
k =

1
∑K

k=1 τ
(q)
tk

n∑

t=p+1

τ
(q)
tk (yt −B

T (q+1)
k rt)

T (yt −B
T (q+1)
k rt), (5.29)
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which can be written in a matrix form as

Σ
(q+1)
k =

1
∑K

k=1 τ
(q)
tk

(Y −XB
(q+1)
k )TW(q)(Y −XB

(q+1)
k )· (5.30)

However, Equation (5.28) is used because it shows clearly the sufficient statistics T yy,k,
T yr,k and T k in the update formula of Σk.

From these update formulas, it can be seen that the parameter updates are based
on the current conditional expected sufficient statistics defined by:

S
(q)
k = E[T k|Y, rp+1, . . . , rn;Ψ

(q)] =

n∑

t=p+1

τ
(q)
tk ,

S
(q)
rr,k = E[T rr,k|Y, rp+1, . . . , rn;Ψ

(q)] =

n∑

t=p+1

τ
(q)
tk rtr

T
t ,

S
(q)
yr,k = E[T yr,k|Y, rp+1, . . . , rn;Ψ

(q)] =

n∑

t=p+1

τ
(q)
tk rty

T
t ,

S
(q)
yy,k = E[T yy,k|Y, rp+1, . . . , rn;Ψ

(q)] =

n∑

t=p+1

τ
(q)
tk yty

T
t (5.31)

such that we have

B
(q+1)
k =

[
S

(q)
rr,k

]−1
S

(q)
yr,k (5.32)

and

Σ
(q+1)
k =

S
(q)
yy,k −B

T (q+1)
k S

(q)
yr,k

S
(q)
k

· (5.33)

Finally, the maximization of the function Qw(w,Ψ(q)) given by Equation (5.24) with
respect to w is a multinomial weighted logistic regression problem which can be it-
eratively solved by the IRLS algorithm. The IRLS algorithm provides the parameter
update w(q+1). In this case, a single update at iteration l of the IRLS algorithm is
given by:

w(l+1) = w(l) −
[∂2Qw(w,Ψ(q))

∂w∂wT

]−1

w=w(l)

∂Qw(w,Ψ(q))

∂w

∣∣∣
w=w(l)

· (5.34)

The Hessian and the gradient of Qw(w,Ψ(q)) evaluated at w = w(l) are computed
similarly as in equations (A.29) and (A.25), and are given in a matrix form by:

∂2Qw(w,Ψ(q))

∂w∂wT

∣∣∣
w=w(l)

= −
n∑

t=p+1

(
Π(rt;w

(l))− π(rt;w
(l))πT (rt;w

(l))
)
⊗ rtr

T
t (5.35)

and
∂Qw(w,Ψ(q))

∂w

∣∣∣
w=w(l)

=
n∑

t=p+1

(
τ
(q)
t − π(rt;w

(l))
)
⊗ rt (5.36)
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where τ
(q)
t = (τ

(q)
t1 , . . . , τ

(q)
t,K−1)

T . Thus, by considering the following expected statistics:

S(q,l)
rr,w = E[T (l)

rr,w|Y,Ψ(q)] =
n∑

t=p+1

(
Π(w(l))− π(rt;w

(l))πT (rt;w
(l))
)
⊗ rtr

T
t ,

S(q,l)
rw = E[T (l)

rw|Y,Ψ(q)] =

n∑

t=p+1

(
τ
(q)
t − π(rt;w

(l))
)
⊗ rt, (5.37)

we can see that the iterative update formula of w (5.34) takes the form:

w(l+1) = w(l) +
[
S(q,l)

rr,w

]−1
S(q,l)

rw · (5.38)

This batch EM algorithm for the ARHLP model is summarized by the pseudo code 7.

Algorithm 7 Pseudo code of the batch EM algorithm for the ARHLP model.

Inputs: training set of n feature vectors (y1, . . . ,yn), the number of operating states

K and the order p of the autoregressive mode.

1: Initialize: Ψ(0) = (w(0),Ψ
(0)
1 , . . . ,Ψ

(0)
K ) with Ψ

(0)
k = (B

(0)
k ,Σ

(0)
K ) for k = 1, . . . ,K.

2: fix a threshold ǫ > 0

3: set q ← 0 (EM iteration)

4: while increment in log-likelihood > ǫ do

5: E-Step:

6: for k = 1, . . . ,K do

7: compute τ
(q)
tk for t = p+ 1, . . . , n using Equation (5.21)

8: end for

9: M-Step:

10: for k = 1, . . . ,K do

11: compute B
(q+1)
k using Equation (5.26)

12: compute Σ
(q+1)
k using Equation (5.28)

13: IRLS:

14: Initialize: set w(l) = w(q)

15: set a threshold δ > 0

16: l← 0 (IRLS iteration)

17: while increment in Qw(w,Ψ(q)) > δ do

18: compute w(l+1) using Equation (5.34)

19: l← l + 1

20: end while

21: w(q+1) ← w(l)

22: q ← q + 1

23: end for

24: end while

25: Ψ̂ = Ψ(q)

26: τ̂tk = τ
(q)
tk for (t = p+ 1, . . . , n) and k = 1, . . . ,K

Outputs: Ψ̂ = (ŵ, Ψ̂1, . . . , Ψ̂K) ; τ̂tk for (t = p+ 1, . . . , n) and k = 1, . . . ,K
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In the next two paragraphs we will show how the ARHLP model can be used for
state estimation and prediction.

A posteriori state estimation

Suppose we have estimated the parameters of the different states (classes) from a train-
ing observation sequence observed up to time t (t > p). The state of a new observation
yt+1 (in this case yt+1 is the feature vector extracted from the curve acquired at the
time step t + 1) can be identified by assigning yt+1 to the state ẑt+1 using the MAP
rule:

ẑt+1 = arg max
1≤k≤K

p(zt+1 = k|y1, . . . ,yt+1; Ψ̂
(t)
), (5.39)

where

p(zt+1 = k|y1, . . . ,yt+1; Ψ̂
(t)
) = p(zt+1 = k|yt+1, rt+1; Ψ̂

(t)
)

=
πk(rt+1; ŵ

(t))N (yt+1;B
T (t)
k rt+1, Σ̂

(t)
k )

∑K
ℓ=1 πℓ(rt+1; ŵ(t))N (yt+1;B

T (t)
ℓ rt+1, Σ̂

(t)
ℓ )

(5.40)

is the posterior probability of the state (class) k for the new observation yt+1 given the
previous observations rt+1 = (yt, . . . ,yt−p+1) and the estimated models parameters up

to time t, that is Ψ̂
(t)

= (ŵ(t), Ψ̂
(t)
1 , . . . , Ψ̂

(t)
K ) with Ψ̂

(t)
k = (B̂

(t)
k , Σ̂

(t)
k ).

State prediction

The proposed ARHLP model can also be used to for state prediction for the future
observation yt+1 (t ≥ p), given the observed history up to time t. This consists of
maximizing with respect to k the prediction probability

p(zt+1 = k|y1, . . . ,yt; Ψ̂
(t)
) = p(zt+1 = k|yt, . . . ,yt−p+1; Ψ̂

(t)
)

= p(zt+1 = k|rt+1; Ψ̂
(t)
) (5.41)

which is none other than the probability of the logistic process given in Equation (5.3).

Observation prediction

On the other hand, the model can also be used to predict the future observation. The
prediction of the future observed variable yt+1 is given by the conditional expectation
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over the distribution of yt+1, given the estimated model parameters Ψ̂
(t)
:

ŷt+1 = E[yt+1|y1, . . . ,yt; Ψ̂
(t)
]

=

∫

Rd

yt+1 p(yt+1|y1, . . . ,yt; Ψ̂
(t)
)dyt+1

=

∫

Rd

yt+1 p(yt+1|rt+1; Ψ̂
(t)
)dyt+1

=
K∑

k=1

πk(rt+1; ŵ
(t))

∫

Rd

yt+1N
(
yt+1; B̂

T (t)
k rt+1, Σ̂

(t)
k

)
dyt+1

=

K∑

k=1

πk(rt+1; ŵ
(t))B̂

T (t)
k rt+1 (5.42)

where rt+1 = (yt, . . . ,yt−p+1)
T .

The prediction can also be performed up to time t + u (u ≥ 1). In this case, we
would have the predicted value

ŷt+u =

K∑

k=1

πk(r̂t+u; ŵ)B̂T
k r̂t+u

where r̂t+u = (ŷt+u−1, . . . , ŷt+u−p)
T . Then the state zt+u would be predicted for ŷt+u

by applying the MAP rule (5.39) for the corresponding predicted observation r̂t+u, that
is:

ẑt+u = arg max
1≤k≤K

p(zt+u = k|ŷt+u, r̂t+u; Ψ̂
(t)
). (5.43)

5.3.3 Online formulation of the EM algorithm

In the previous section we presented the parameter estimation by the EM algorithm in
the batch mode where the data are stored in advance. However, this is not usually the
case. For example in a condition monitoring framework, the data could be acquired
in real time so that one would have to decide about the operating state of the system
in an online mode. This section is dedicated to the online learning of the ARHLP
model where the parameters will be estimated recursively via a dedicated online EM
algorithm.

Basing on Equations (5.32), (5.33) and (5.38), which represent the model parameters
updates in a batch mode using the expected sufficient statistics (5.31) and (5.37), an
online approach will be derived in this section. This online scheme, as seen in section
2.2.4 (Cappé and Moulines, 2009), consists of combining the old expected sufficient
statistics and those estimated from the current observation, based on a step-size λt as
follows:

S(t)
. = (1− λt)S

(t−1)
. + λtE[T .|yt,Ψ

(t−1)] (5.44)

where the step-size λt satisfies
∑∞

t=1 λt = ∞ and
∑∞

t=1 λ
2
t < ∞. According to (5.44),

when λt is large, we tend to forget the past results and considers the estimation from
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5.3 Switching autoregressive model with a hidden logistic process

the current observation. When λt is small, this implies that the past observations have
a larger effect on the model parameters update. A possible choice of this value can be
λt = t−a with 0.5 < a ≤ 1 (Cappé, 2009; Cappé and Moulines, 2009).

Thus, according to the incremental rule (5.44), the sufficient statistics given in (5.31)
used for updating the parameters (Bk,Σk), (k = 1, . . . ,K) are updated recursively as
follows:

S
(t)
k = (1− λt)S

(t−1)
k + λtτ

(t−1)
tk ,

S
(t)
rr,k = (1− λt)S

(t−1)
rr,k + λtτ

(t−1)
tk rtr

T
t ,

S
(t)
yr,k = (1− λt)S

(t−1)
yr,k + λtτ

(t−1)
tk rty

T
t ,

S
(t)
yy,k = (1− λt)S

(t−1)
yy,k + λtτ

(t−1)
tk yty

T
t , (5.45)

where the superscript t is used instead of the iteration q since in the online mode the
iteration is denoted by the time step t.

As shown in Appendix A.11, the updating rule for AR parametersBk (k = 1, . . . ,K)
yields in the following recursive formula:

B
(t+1)
k = B

(t)
k +

[
S

(t)
rr,k

]−1
λt τ

(t)
tk rt(y

T
t − rTt B

(t)
k ). (5.46)

The covariance matrix is recursively updated in a similar way as

Σ
(t+1)
k =

S
(t)
yy,k −B

T (t+1)
k S

(t)
yr,k

S
(t)
k

. (5.47)

Similarly, the parameter w of the logistic process is recursively updated based on a
recursive update of the corresponding statistics given in (5.37), in the following way:





Initialization:

S(t,1)
rr,w = (1− λt)S

(t−1)
rr,w + λt

(
Πt(rt;w

(t−1))− π(rt;w
(t−1))πT (rt;w

(t−1))
)
⊗ rtr

T
t ,

S
(t,1)
wy,k = (1 − λt)S

(t−1)
wy,k + λt

(
τ
(t−1)
t − π(rt;w

(t−1))
)
⊗ rt · (5.48a)

Iterate: w(t,l+1) = w(t,l) +
[
S(t,l)

rr,w

]−1

S
(t,l)
wy,k until convergence (5.48b)

Set w(t+1) = w(t,lmax). (5.48c)

where l denotes the iteration number and lmax denote the required number of iterations
by the IRLS procedure (5.48b). At each time step, the IRLS procedure (5.48b) uses a
single data point to update the parameter of the logistic model.

In the following section, the hidden sequence is modeled by a Markov process. The
autoregressive relation is still assumed for the observation sequence, similarly as for
the ARHLP model presented in the previous section. Therefore, the arising models are
autoregressive HMMs (ARHMs). We first recall the ARHMM and then present the
autoregressive non-homogeneous HMM approach.
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5.4 Switching autoregressive non-homogeneous HMM

5.4.1 The general framework of the switching autoregressive HMM

This section briefly recalls the switching multivariate autoregressive Hidden Markov
Model (Celeux et al., 2004; Frühwirth-Schnatter, 2006; Juang and Rabiner, 1985; Ra-
biner, 1989).

The observation sequence (y1, . . . ,yn) is assumed to be generated by the following
multivariate autoregressive model governed by a hidden Markov chain:

yt = Bztyt−1 + et, et ∼ N (0,Σzt) ∀t = 2, . . . , T, (5.49)

where zt (t = 1, . . . , n) is a hidden discrete-valued random variable in the finite set
{1, . . . ,K} representing the state of the system at time t, the d × d matrices Bzt and
Σzt are respectively the matrix of autoregression parameters and the covariance matrix
for the state zt, and the et’s are d dimensional independent random variables distributed
according to a standard multivariate Gaussian distribution.

In this model, the sequence of the hidden states z = (z1, . . . , zn) is assumed to be
a K-states homogeneous Markov chain of first-order (Celeux et al., 2004; Frühwirth-
Schnatter, 2006) parametrized by the initial state distribution π = (π1, . . . , πK) where
πk = p(z1 = k) is the probability of the state k (k = 1, . . . ,K) and A the matrix of
transition probabilities where Aℓk = p(zt = k|zt−1 = ℓ) is the probability of transition
from the state ℓ at time t−1 to the state k at time t with the constraint

∑K
k=1Aℓk = 1

∀ℓ = 1, . . . ,K. Figure 5.3 gives a graphical representation for an ARHMM model
of order 1. The parameter estimation for the ARHMM is performed by maximum

Figure 5.3: Graphical model structure for a multivariate autoregressive Hidden Markov

Model of order 1 (p = 1).

likelihood via the EM (Baum-Welch) algorithm (see for example (Celeux et al., 2004;
Frühwirth-Schnatter, 2006)).

5.4.2 Non-homogeneous Markov chain

The approach recalled in the previous section concerns an homogeneous Markov chain.
In this section we relax the stationarity assumption of the chain by considering a non-
homogeneous Markov chain. More specifically, the time varying transition probabilities
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5.4 Switching autoregressive non-homogeneous HMM

are modeled by a logistic distribution which depends on the previous observed variable
yt−1 and a set of parameters W. Thus, the transition probability from state ℓ to state
k at each time t is given by:

Aℓk(yt−1;W) = p(zt = k|zt−1 = ℓ,yt−1;W)

=
exp (wℓ

k

T
yt−1)

∑K
k′=1 exp (w

ℓ
k′
T
yt−1)

, (5.50)

wherewℓ
k is a d dimensional coefficients vector associated with the transition from state

ℓ to state k, wℓ = (wℓ
1, . . . ,w

ℓ
K) is the (d ×K) matrix of parameters associated with

the ℓth row of the state transition matrix A which characterizes all the transitions from
state ℓ and W = (w1, . . . ,wK) is the (d × K) × K matrix of parameters associated
with all the transitions. Note that since

∑K
k=1Aℓk(yt−1;W) = 1 for all ℓ = 1, . . . ,K,

wℓ
K is then set to the null vector to avoid identification problems.

Thus, the distribution of the latent sequence z = (z1, . . . , zn), given the set of
previous observations (y1, . . . ,yn−1) can be written as follows:

p(z|y1, . . . ,yn−1;π,W) = p(z1;π)
n∏

t=2

p(zt|zt−1,yt−1;W)

=

K∏

k=1

p(z1 = k;π)
z1k

n∏

t=2

K∏

k=1

K∏

ℓ=1

p(zt = k|zt−1 = ℓ,yt−1;W)
zt−1,ℓztk

=

K∏

k=1

πz1k
k

n∏

t=2

K∏

k=1

K∏

ℓ=1

(
exp (wℓ

k

T
yt−1)

∑K

h=1 exp (w
ℓ
h

T
yt−1)

)zt−1,ℓztk

. (5.51)

The resulting model is therefore a non-homogeneous ARHMM (AR-NH-HMM)
which will be described in the next section.

5.4.3 Switching autoregressive non-homogeneous HMM

The model is defined by (5.49) for which the hidden state sequence is assumed to be
a non-homogeneous stationary Markov chain, as defined in section 5.4.2, rather than a
stationary Markov chain as for the standard ARHMM (Celeux et al., 2004; Douc et al.,
2004; Frühwirth-Schnatter, 2006). The non-homogeneous HMM model has been ini-
tially proposed by Diebold et al. (1994) for a two-state HMM with continuous emission
probabilities. Another non-homogeneous model is concerned with discrete variables
(Sin and Kim, 1995). In this section we consider a multi-state autoregressive non-
homogeneous HMM (AR-NH-HMM). This approach is linked to the Markov mixture
of experts proposed by Meila and Jordan (1996) which is concerned with an univariate
the batch mode learning The M-step includes a Gradient ascent procedure. In the
model presented here, the parameter estimation using EM is given for the batch model
as well as for the online mode. The M-step uses an IRLS procedure to estimate the
parameters of the hidden process.
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The data generation scheme with the AR-NH-HMM model

The data generation scheme with the AR-NH-HMM model, given a set of model pa-
rameters Ψ = (π,W,Ψ1, . . . ,ΨK), is performed in a similar way as for the ARHLP
model (c.f. section 5.3.1, except for the generation of the hidden sequence z. In this
case, the variable zt for t = 1, . . . , n is generated as follows:

• Generate z1 according to the multinomial distributionM(1, π1, . . . , πK),

• Generate the hidden variable zt (t = 2, . . . , n) according to the multinomial distri-
butionM(1,aℓ(yt−1;wℓ)) where aℓ(yt−1;wℓ) =

(
Aℓ1(yt−1;wℓ), . . . ,AℓK(yt−1;wℓ)

)

represents the K transition logistic probabilities from the state zt−1 = ℓ to the
state zt = k (k = 1, . . . ,K) at the time step t. In fact, these probabilities are those
in the ℓth row of the time varying transition matrix. Therefore the corresponding
parameter vector for the logistic function is wℓ.

The model is illustrated by the graphical representation shown in Figure 5.4.

Figure 5.4: Graphical model structure for the multivariate autoregressive non-

homogeneous HMM (AR-NH-HMM).

The next section is concerned with the unsupervised learning of the AR-NH-HMM
model in a maximum likelihood framework using the EM algorithm.

5.4.4 The batch EM algorithm for parameter estimation

The unknown model parameter vector Ψ = (π,W,Ψ1, . . . ,ΨK) is estimated by the
maximum likelihood method. The log-likelihood of Ψ for the observed sequence can
be written as

L(Ψ;Y) = log p(Y;Ψ) = log
∑

z

p(Y, z;Ψ)

= log
∑

z

p(z|y1, . . . ,yn−1;W)p(Y|z,y1, . . . ,yn−1;Ψ). (5.52)

This log-likelihood can not be maximized in a closed-form. The EM algorithm (Baum
et al., 1970; Dempster et al., 1977) will be used to perform the maximization.

In this framework, the complete-data log-likelihood is given as follows. By using
the conditional independence assumptions for the model, that are:
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5.4 Switching autoregressive non-homogeneous HMM

(a) the observation yt is conditionally independent of the other observations given the
previous observation yt−1 and the current state zt,

(b) the state zt is conditionally independent of the other states given the previous one
and the previous observation yt−1,

given an observation sequence Y = (y1, . . . ,yn) and a particular configuration of the
latent process z = (z1, . . . , zn) we therefore have:

p(Y|z,y1, . . . ,yn−1;Ψ) = p(y1|z1;Ψz1)
n∏

t=2

p(yt|zt,yt−1;Ψzt)

∝
n∏

t=2

K∏

k=1

p(yt|zt = k,yt−1;Ψk)
ztk . (5.53)

Then, by using the conditional distribution of the state sequence (c.f., Equation (5.51)),
the likelihood of Ψ for the complete data (Y, z) can therefore be written as

p(Y, z;Ψ) = p(z1;π)

n∏

t=2

p(zt|zt−1,yt−1;W)

n∏

t=2

p(yt|zt,yt−1;Ψzt)

=

K∏

k=1

πz1k
k

n∏

t=2

K∏

k=1

K∏

ℓ=1

Aℓk(yt−1;W)zt−1,ℓztk

n∏

t=2

K∏

k=1

N (yt;Bkyt−1,Σk)
ztk (5.54)

and the complete-data log-likelihood is then obtained by taking the logarithm of (5.54),
that is:

Lc(Ψ;Y, z) =

K∑

k=1

z1k log πk +

K∑

k=1

K∑

ℓ=1

n∑

t=2

zt−1,ℓztk logAℓk(yt−1;W)

+
K∑

k=1

n∑

t=2

ztk logN (yt;Bkyt−1,Σk). (5.55)

Here we will consider the sufficient statistics of the model parameters in order to
show the parallel between the batch approach and the online approach which will be
presented later (c.f., section 5.4.5). From the first term of Equation (5.55), it can be
seen that T 1,k = z1k is the sufficient statistic for πk. Similarly as in Equation (5.31), it
can be deduced from the last term of Equation (5.55) that

T k =

n∑

t=2

ztk, T rr,k =

n∑

t=2

ztkyt−1y
T
t−1, T yr,k =

n∑

t=2

ztkyt−1y
T
t , T yy,k =

n∑

t=2

ztkyty
T
t ,

are the sufficient statistics for Bk and Σk.

The optimization of the complete-data log-likelihood (5.55) with respect to the
parameters W governing the time-varying transition matrix is a multinomial logistic
regression problem which can be solved using the IRLS algorithm as

w
(l+1)
ℓ = w

(l)
ℓ +

[
T

(l)
rr,wℓ

]−1
T

(l)
r,wℓ· (5.56)
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for ℓ = 1, . . . ,K. In this updating formula, the statistics T
(l)
rr,wℓ and T

(l)
r,wℓ for the

parameters W of the hidden process given the complete-data, are derived from (A.12)
and are given by:

T
(l)
rr,wℓ =

∂2Lc(Ψ;Y, z)

∂wℓ∂wT
ℓ

∣∣∣
−1

wℓ=w
(l)
ℓ

= −
n∑

t=2

zt−1,ℓ

(
A∗

tℓ(yt−1;wℓ)− atℓ(yt−1;w
(l)
ℓ )aTtℓ(yt−1;w

(l)
ℓ )
)
⊗ yt−1y

T
t−1(5.57)

and

T
(l)
r,wℓ =

∂Lc(Ψ;Y, z)

∂wℓ

∣∣∣
wℓ=w

(l)
ℓ

=

n∑

t=2

zt−1,ℓ

(
ztk − atℓ(yt−1;w

(l)
ℓ )
)
⊗ yt−1 (5.58)

where atℓ(yt−1;wℓ) =
(
Aℓ1(yt−1;wℓ), . . . ,Aℓ,K−1(yt−1;wℓ)

)T
in the vector of theK−1

logistic probabilities at the time step t associated with the ℓth row of the time varying
transition matrix, A∗

tℓ(yt−1;wℓ) = diag(atℓ(yt−1;wℓ)), and ztk = (zt1, . . . , zt,K−1)
T

is the K − 1 dimensional vector of the binary indicator variables that correspond to
the transition from the state ℓ to the state k (k = 1, . . . ,K − 1). These transition
probabilities correspond to the ℓth row of the transition matrix at each time step t.

The next section presents the parameter estimation in a batch (offline) mode from
the incomplete-data using the EM algorithm.

The batch EM algorithm for the AR-NH-HMM

In the offline mode, the model parameters are estimated using a batch EM algorithm.
The EM algorithm starts with an initial parameter Ψ(0) and alternates between the E-
and M-steps until convergence.

E-step: The E-step computes the conditional expected complete-data log-likelihood

Q(Ψ,Ψ(q)) = E

[
Lc(Ψ;Y, z)|Y;Ψ(q)

]

=

K∑

k=1

γ
(q)
1k log πk +

K∑

k=1

K∑

ℓ=1

n∑

t=2

ξ
(q)
tℓk logAℓk(yt−1;W)

+

K∑

k=1

n∑

t=2

γ
(q)
tk logN (yt;Bkyt−1,Σk) , (5.59)

where

• γ
(q)
tk = E[ztk|Y;Ψ(q)] = p(zt = k|Y;Ψ(q)) is the posterior probability of the state

k (k = 1, . . . ,K) at time t (t = 2, . . . , T ) computed with the current parameter
estimation Ψ(q) given the whole observation sequence;
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• ξ
(q)
tℓk = E[zt−1,ℓztk|Y;Ψ(q)] = p(zt = k, zt−1 = ℓ|Y;Ψ(q)) is the joint posterior
probability of the state k at time t and the state ℓ at time t− 1 for t = 2, . . . , T
and ℓ, k = 1, . . . ,K computed with the current parameter estimation Ψ(q) given
the whole observation sequence.

As shown in the expression of Q, this step requires the computation of the expected

sufficient statistics through the probabilities γ
(q)
tk and ξ

(q)
tℓk. These probabilities are

computed using the forward-backward procedure (Baum et al., 1970; Rabiner, 1989)
from the probabilities αtk and βtk and are given by:

γtk =
αtkβtk∑K
ℓ=1 αtℓβtℓ

, (5.60)

and

ξtℓk =
αt−1,ℓAℓk(yt−1;W)p(yt|zt = k;Ψ)βt,k∑K

ℓ′=1

∑K
k′=1 αt−1,ℓ′Aℓ′k′(yt−1;W)p(yt|zt = k′;Ψ)βtk′

, (5.61)

where the probabilities αtk and βtk are defined as

αtk = p(y1, . . . ,yt, zt = k;Ψ) , (5.62)

which is the joint probability of observed sequence up to time t and the state k, and

βtk = p(yt+1, . . . ,yn|zt = k;Ψ) , (5.63)

is the probability of observing the rest of the sequence (yt+1, . . . ,yn) knowing that the
system starts from state k at time t. The probabilities αtk and βtk are computed recur-
sively by the well-known Baum-Welch algorithm (Baum et al., 1970) (c.f., Appendix
A.4) as follows. For ℓ, k = 1, . . . ,K:

• α1k = πkp(y1|z1 = k;Ψk) for t = 1,

• αtk =
[∑K

ℓ=1 αt−1,ℓAℓk(yt−1;W)
]
p(yt|zt = k,yt−1;Ψk) for t = 2, . . . , n,

and the backward probabilities are computed in a similar as

• βnk = 1,

• βtℓ =
∑K

k=1 βt+1,kAℓk(yt;W)p(yt+1|zt+1 = k,yt;Ψk) for t = n− 1, . . . , 1.

Thus, notice that the log-likelihood (5.52) can be computed from (A.4) by L(Ψ;Y) =
log
∑K

k=1 αnk.

M-step: In this step, the value of the parameter Ψ is updated by computing the
parameter Ψ(q+1) which maximizes the Q-function with respect to Ψ. In this case, the
Q-function can be decomposed as

Q(Ψ,Ψ(q)) = Qπ(π,Ψ
(q)) +Qw(W,Ψ(q)) +

K∑

k=1

QΨk
(Ψk,Ψ

(q)), (5.64)
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where

Qπ(π,Ψ
(q)) =

K∑

k=1

γ
(q)
t1 log πk , (5.65)

Qw(W,Ψ(q)) =

K∑

ℓ=1

K∑

k=1

n∑

t=2

ξ
(q)
tℓk logAℓk(yt−1;W) , (5.66)

and

QΨk
(Ψk,Ψ

(q)) =

n∑

t=2

γ
(q)
tk logN (yt;Bkyt−1,Σk). (5.67)

The maximization of Q(Ψ,Ψ(q)) with respect to Ψ is performed by separate maximiza-
tions of Qπ, Qw and QΨk

. The function Qπ is maximized w.r.t the non-negative initial

state probabilities (π1, . . . , πK) subject to the constraint
∑K

k=1 πk = 1 and provides the
following update formula:

π
(q+1)
k = γ

(q)
1k (k = 1, . . . ,K). (5.68)

The maximizations of QΨk
with respect to Bk and Σk are performed in the same way

as in the case of the maximizations of (5.25). The provided update formulas are then
similar to (5.26) and (5.28) and are given by:

B
(q+1)
k =

[ n∑

t=2

γ
(q)
tk yt−1y

T
t−1

]−1
n∑

t=2

γ
(q)
tk yt−1y

T
t (5.69)

and

Σ
(q+1)
k =

∑n
t=2 γ

(q)
tk yty

T
t −B

(q+1)
k

∑n
t=2 γ

(q)
tk yty

T
t−1∑n

t=2 γ
(q)
tk

· (5.70)

These updating formulas can be rewritten in function of the expected sufficient statistics
as

B
(q+1)
k =

[
S

(q)
rr,k

]−1
S

(q)
yr,k (5.71)

and

Σ
(q+1)
k =

S
(q)
yy,k −B

T (q+1)
k S

(q)
yr,k

S
(q)
k

(5.72)
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where the expected sufficient statistics for the model parameters are given by:

S
(q)
k = E[T k|Y,Ψ(q)] =

n∑

t=2

τ
(q)
tk ,

S
(q)
rr,k = E[T rr,k|Y,Ψ(q)] =

n∑

t=2

τ
(q)
tk rtr

T
t ,

S
(q)
yr,k = E[T yr,k|Y,Ψ(q)] =

n∑

t=2

τ
(q)
tk rty

T
t ,

S
(q)
yy,k = E[T yy,k|Y,Ψ(q)] =

n∑

t=2

τ
(q)
tk yty

T
t . (5.73)

The maximization of Qw(W,Ψ(q)) is performed by maximizing Qw(wℓ,Ψ
(q)) with

respect to wℓ for ℓ = 1, . . . ,K where

Qw(wℓ,Ψ
(q)) =

K∑

k=1

n∑

t=2

ξ
(q)
tℓk logAℓk(yt−1;wℓ)

=

K∑

k=1

n∑

t=2

ξ
(q)
tℓk log

exp (wℓ
k

T
yt−1)

∑K
k=1 exp (w

ℓ
k

T
yt−1)

· (5.74)

This corresponds to solving K multinomial weighted logistic regression problems where

the weights are the joint state posterior probabilities ξ
(q)
tℓk. It is iteratively performed

by the IRLS algorithm which provides the parameter update w
(q+1)
ℓ (ℓ = 1, . . . ,K). In

this case, each iteration of the IRLS algorithm is run as follows:

wℓ
(l+1) = wℓ

(l) −
[∂2Qw(wℓ,Ψ

(q))

∂wℓ∂wℓ
T

]−1

wℓ=w
(l)
ℓ

∂Qw(wℓ,Ψ
(q))

∂wℓ

∣∣∣
wℓ=w

(l)
ℓ

. (5.75)

The calculation details of the Hessian matrix and the gradient of Qw(wℓ,Ψ
(q)) evalu-

ated at wℓ = w
(l)
ℓ are given in Appendix A.13. Each of the K− 1 block matrices of the

Hessian is a d× d matrix and is given by:

∂2Qw(wℓ,Ψ
(q))

∂wℓ
k∂w

ℓ
h

T

∣∣∣
wℓ=wℓ

(l)
= −

n∑

t=p+1

τ
(q)
t−1,ℓAℓk(yt−1;w

(l)
ℓ )
(
δkh −Aℓh(yt−1;w

(l)
h )
)
yt−1y

T
t−1.(5.76)

The gradient vector ∂Qw(w,Ψ(q))
∂w

is composed of K − 1 gradient component vectors

∂Qw(wℓ,Ψ
(q))

∂wℓ

=
(∂Qw(wℓ,Ψ

(q))

∂wℓ
1

, . . . ,
∂Qw(wℓ,Ψ

(q))

∂wℓ
K−1

)T
, (5.77)

where each gradient component vector k (k = 1, . . . ,K − 1) is in R
d and is given by:

∂Qw(wℓ,Ψ
(q))

∂wℓ
k

∣∣∣
wℓ=w

(l)
ℓ

=
n∑

t=2

(
ξ
(q)
tℓk − τ

(q)
t−1,ℓAℓk(yt−1;w

(l)
ℓ )
)
yt−1. (5.78)
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The Hessian and the gradient of Qw(wℓ,Ψ
(q)) evaluated at wℓ = w

(l)
ℓ can also be

expressed in a matrix form as in equations (5.35) and (5.36) respectively as follows:

∂2Qw(wℓ,Ψ
(q))

∂wℓ∂wT
ℓ

∣∣∣
wℓ=w

(l)
ℓ

=−
n∑

t=2

τ
(q)
t−1,ℓ

(
A∗

tℓ(yt−1;w
(l)
ℓ )− atℓ(yt−1;w

(l)
ℓ )aTtℓ(yt−1;w

(l)
ℓ )
)
⊗yt−1y

T
t−1

(5.79)

and

∂Qw(wℓ,Ψ
(q))

∂wℓ

∣∣∣
wℓ=w

(l)
ℓ

=

n∑

t=2

(
ξ
(q)
tℓ − τ

(q)
t−1,ℓatℓ(yt−1;w

(l)
ℓ )
)
⊗ yt−1 (5.80)

where ξ
(q)
tℓ = (ξ

(q)
tℓ1 , . . . , ξ

(q)
tℓ,K−1)

T is a K − 1 dimensional vector, each of the K − 1
elements represents the joint posterior probabilities at time t of state ℓ and state k

(k = 1, . . . ,K − 1), atℓ(yt−1;wℓ) =
(
Aℓ1(yt−1;wℓ), . . . ,Aℓ,K−1(yt−1;wℓ)

)T
are the

K − 1 logistic probabilities at the time step t associated with the ℓth row of the time
varying transition matrix and A∗

tℓ(yt−1;wℓ) = diag(atℓ(yt−1;wℓ)).

By considering the following expected statistics

S
(q,l)
rr,wℓ =

n∑

t=2

τ
(q)
t−1,ℓ

(
A∗

tℓ(yt−1;w
(l)
ℓ )− atℓ(yt−1;w

(l)
ℓ )aTtℓ(yt−1;w

(l)
ℓ )
)
⊗ yt−1y

T
t−1

S
(q,l)
r,wℓ =

n∑

t=2

(
ξ
(q)
tℓ − τ

(q)
t−1,ℓatℓ(yt−1;w

(l)
ℓ )
)
⊗ yt−1 (5.81)

we can then see that the M-step update formula of wℓ (5.34) takes the following form:

w
(l+1)
ℓ = w

(l)
ℓ +

[
S

(q,l)
rr,wℓ

]−1
S

(q,l)
r,wℓ· (5.82)

The pseudo code 8 summarizes the batch EM algorithm for the AR-NH-HMM
model.
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Algorithm 8 Pseudo code of the batch EM (Baum-Welch) algorithm for the proposed

AR-NH-HMM model.
Inputs: An observation sequence (y1, . . . ,yn) and the number of states

K.

1: Initialize: Ψ(0) = (π(0),W(0),Ψ
(0)
1 , . . . ,Ψ

(0)
K ) with Ψ

(0)
k = (B

(0)
k ,Σ

(0)
K ).

2: fix a threshold ǫ > 0

3: set q ← 0 (EM iteration)

4: while increment in log-likelihood > ǫ do

5: E-Step (Forward-Backward procedure):

6: for k = 1, . . . ,K do

7: compute τ
(q)
tk for t = 2, . . . , n using Equation (5.60)

8: for ℓ = 1, . . . ,K do

9: compute ξ
(q)
tℓk for t = 2, . . . , n using Equation (5.61)

10: end for

11: end for

12: M-Step:

13: compute π
(q+1)
k using Equation (5.68)

14: for k = 1, . . . ,K do

15: compute B
(q+1)
k using Equation (5.69)

16: compute Σ
(q+1)
k using Equation (5.70)

17: IRLS:

18: Initialize: set W(l) = W(q)

19: set a threshold δ > 0

20: for ℓ = 1, . . . ,K do

21: l← 0 (IRLS iteration)

22: while increment in Qw(wℓ,Ψ
(q)) > δ do

23: compute w
(l+1)
ℓ using Equation (5.75)

24: l← l + 1

25: end while

26: end for

27: W(q+1) ←W(l)

28: q ← q + 1

29: end for

30: end while

31: Ψ̂ = Ψ(q)

Outputs: Ψ̂ = (π̂,Ŵ, Ψ̂1, . . . , Ψ̂K)

State estimation

The use of the proposed AR-NH-HMM to make decision can be performed as follows.
For example, suppose we are monitoring a dynamical system basing on acquired ob-
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5.4 Switching autoregressive non-homogeneous HMM

servations up to time t (t > 1) basing on the AR-NH-HMM model. The monitoring
task can then be performed in two steps. The model parameters are first estimated
in an unsupervised context from the given training observation sequence. Then, the

state probability p(zt+1 = k|y1, . . . ,yt+1; Ψ̂
(t)
), which can be seen as a posterior state

probability given the parameters Ψ̂
(t)

estimated from the observation sequence up to
time t, can be computed in a recursive manner as follows:

p(zt+1 = k|y1, . . . ,yt+1; Ψ̂
(t)
) =

p(zt+1 = k,y1, . . . ,yt+1; Ψ̂
(t)
)

p(y1, . . . ,yt+1; Ψ̂
(t)
)

=
αt+1,k(Ψ̂

(t)
)

∑K

h=1 αt+1,h(Ψ̂
(t)
)

=
[
∑K

ℓ=1 αtℓ(Ψ̂
(t)
)Aℓk(yt;Ŵ

(t))]p(yt+1|zt+1 = k; Ψ̂
(t)
))

∑K

h=1[
∑K

ℓ=1 αtℓ(Ψ̂
(t)
)Aℓh(yt;Ŵ(t))]p(yt+1|zt+1 = h; Ψ̂

(t)
)

(5.83)

where αtk(Ψ̂
(t)
) are the forward probabilities computed up to time t. The decision

about the state of a new acquired observation yt+1 can then be made by computing
the optimal state sequence through the Viterbi algorithm Viterbi (1967) (see Appendix
A.6).

State prediction

The model can also be used to make state prediction for the future observation yt+1

(t ≥ p) given the observations up to time t. This consists of computing the prediction

(or prior) probability p(zt+1 = k|y1, . . . ,yt; Ψ̂
(t)
) which is computed as follows:

p(zt+1 = k|y1, . . . ,yt; Ψ̂
(t)
) =

p(zt+1 = k,y1, . . . ,yt; Ψ̂
(t)
)

p(y1, . . . ,yt; Ψ̂
(t)
)

=

∑K

ℓ=1 p(zt+1 = k, zt = ℓ,y1, . . . ,yt; Ψ̂
(t)
)

∑K

h=1 p(zt = h,y1, . . . ,yt; Ψ̂
(t)
)

=

∑K

ℓ=1 p(zt+1 = k|zt = ℓ,yt;Ŵ
(t))p(zt = ℓ,y1, . . . ,yt; Ψ̂

(t)
)

∑K

h=1 αth(Ψ̂
(t)
)

=

∑K

ℓ=1 Aℓk(yt;Ŵ
(t))αtℓ(Ψ̂

(t)
)

∑K

h=1 αth(Ψ̂
(t)
)

(5.84)

where in the third step we used the fact that conditionally on zt, zt+1 depends only
on the previous observation yt. This show that prediction is equivalent to propagating
the forward probabilities without incorporating the missing observations yt+1.
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Observation prediction

On the other hand, in a context of time series prediction, one can also use the prob-
abilities given by (5.84) (which can be seen as the prior state probabilities) to make
prediction on the future observation yt+1, that is:

ŷt+1 =
K∑

k=1

p(zt+1 = k|y1, . . . ,yt; Ψ̂
(t)
)B̂

(t)T
k yt. (5.85)

In the next section we will formulate an online algorithm in which the parameters
are recursively updated as the learning proceeds.

5.4.5 Online version of the EM algorithm

This section regards to the online framework in which the data arrive one at a time. We
therefore formulate an online learning of the switching autoregressive non-homogeneous
Hidden Markov Model (AR-NH-HMM). The online EM algorithms (Samé et al., 2007;
Sato and Ishii, 2000; Titterington, 1984) provide an adapted framework to train proba-
bilistic latent data models. In particular, for HMMs, for which earlier online approaches
have been introduced by Baldi and Chauvin (1994), one can distinguish the recent
contributions for continuous HMMs (Cappé, 2009) or discrete HMMs (Mongillo and
Deneve, 2008). In this online mode, the model parameters can be recursively updated
by updating the expected sufficient statistics of the model parameters (Cappé, 2009;
Cappé and Moulines, 2009; Ng et al., 2006) at the E-step, while keeping the M-step free
(c.f., section 2.2.4). In this section we adopt this strategy of the online EM algorithm
to train the AR-NH-HMM. Let us recall that, as seen in section 2.2.4 (Cappé, 2009;
Cappé and Moulines, 2009), the recursive update strategy for the expected sufficient
statistics consists of combining the old expected sufficient statistics and those estimated
from the current observation by using a decreasing step-size λt as follows:

S(t)
. = (1− λt)S

(t−1)
. + λtE[T .|yt,Ψ

(t−1)]. (5.86)

Thus, the updating formulas for the expected sufficient statistics for the AR-NH-HMM
model are derived as follows:

S
(t)
k = (1− λt)S

(t−1)
k + λtγ

(t−1)
tk

S
(t)
ℓk = (1− λt)S

(t−1)
ℓk + λtξ

(t−1)
tℓk

S
(t)
yy,k = (1− λt)S

(t−1)
yy,k + λtγ

(t−1)
tk yty

T
t

S
(t)
yr,k = (1− λt)S

(t−1)
yr,k + λtγ

(t−1)
tk yt−1y

T
t

S
(t)
rr,k = (1− λt)S

(t−1)
rr,k + λtγ

(t−1)
tk yt−1y

T
t−1. (5.87)

Based on these updated expected sufficient statistics, the online updating rules for the
AR model parameters Bk and Σk (k = 1, . . . ,K) are given by:

B
(t+1)
k =

[
S

(t)
rr,k

]−1
S

(t)
yr,k

Σ
(t+1)
k =

S
(t)
yy,k

−B
(t+1)
k

S
(t)
yr,k

S
(t)
k

(5.88)
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and the initial state distribution is updated as

π
(t+1)
k = S

(1)
k (k = 1, . . . ,K). (5.89)

The parameters W associated with the time varying transition probabilities are
updated based on the statistics Srr,wℓ and Sr,wℓ as follows:
For ℓ = 1, . . . ,K:





Initialization:

S
(t,1)
rr,wℓ = (1− λt)S

(t−1)
rr,wℓ

+λtτ
(t−1)
t−1,ℓ

(
A∗

tℓ(yt−1;w
(t−1)
ℓ )− atℓ(yt−1;w

(t−1)
ℓ )aTtℓ(yt−1;w

(t−1)
ℓ )

)
⊗ yt−1y

T
t−1

S
(t,1)
r,wℓ = (1− λt)S

(t−1)
r,wℓ + λt

(
ξ
(t−1)
tℓ − τ

(t−1)
t−1,ℓ atℓ(yt−1;w

(t−1)
ℓ )

)
⊗ yt−1, (5.90a)

Iterate: w
(t,l+1)
ℓ = w

(t,l)
ℓ +

[
S

(t,l)
rr,wℓ

]−1

S
(t,l)
r,wℓ until convergence, (5.90b)

Set w
(t+1)
ℓ = w

(t,lmax)
ℓ , (5.90c)

where l denotes the IRLS iteration number, and lmax denote the number of iterations
at convergence of the IRLS procedure (5.90b).

5.5 Experimental study

This section describes the results obtained with the ARHLP and the ARHMM for
experiments conducted on a multidimensional synthetic data set. We perform compar-
isons with the standard HMM and ARHMM models. The questions these experiments
aim at addressing are the ability to reconstruct the true underlying dynamic process.

5.5.1 Initialization and stopping rule

The EM algorithms for the ARHLP and the ARHMM are initialized as follows:

• the internal IRLS algorithm is initialized with random parameters W only for
the first EM iteration (q = 0). For the rest of EM iterations, the IRLS algorithm
is initialized with w(q) obtained at the previous EM iteration.

• to initialize Bk, we segment randomly the multivariate sequence into K regimes
and on each regime k we fit an autoregressive model. We then estimate an initial
value of the covariance matrix Σk for each model.

Several EM tries are performed and the solution providing the highest log-likelihood
is chosen. For the first EM try we initialize Bk randomly and we set Σk = Id (k =
1, . . . ,K).

The batch EM algorithms are stopped when the relative variation of the opti-
mized log-likelihood functions between two iterations is below a predefined threshold

(|L
(q+1)−L(q)

L(q) | ≤ 10−6 for EM and Baum-Welch, and |Qw(w(q+1))−Qw(w(q))

Qw(w(q))
| ≤ 10−6 for
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the IRLS) or when the iteration number reached a maximal number (1000 for both EM
and Baum-Welch and 50 for IRLS). For the online mode, the learning is performed for
each data item from the observation sequence until all the observations are processed.

5.5.2 Simulated multidimensional sequence

We considered a simulated observation sequence in R
2 which consists with of K =

2 autoregressive models of order p = 1 over n = 500 time steps. The parameters
(w,B1, . . . ,BK ,Σ1, . . . ,ΣK) used for simulations are:

B1 =

(
0.95 0.3
0 0.95

)
, B2 =

(
0.9 0
−0.5 0.9

)
w1 = [35, 7]T ,Σ1 = Σ2 = I2.

The data are simulated according to the ARHLP model. Figure 5.5 shows an exam-
ple of a simulated observation sequence and the corresponding time-varying logistic
probabilities.
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Figure 5.5: The logistic proportions for the simulations.

Figure 5.6 shows the simulated observation sequence and the corresponding plot in
R
2 where the data are labeled according to the true sequence.
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Figure 5.6: Example of simulated 2-dimentional observation sequence represented in

function of the time (left) and in the plan (right).
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5.5.3 Obtained results

Figure 5.7 shows the logistic probabilities and the posterior probabilities over time,
obtained with the ARHLP model. The right plot of this figure shows the sequence
labeled according to the estimated MAP sequence.
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Figure 5.7: Results obtained with the ARHLP model.

Figure 5.8 shows the probabilities associated with the ARHMM model and the
corresponding estimated labeled sequence. Let us recall that the prediction, filtering
and smoothed provabilities are computed respectively according to Equation (5.84),
(5.83) and (5.60).
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Figure 5.8: Results obtained with the AR-hom-HMM.

Finally, Figure 5.9 shows the results obtained with the AR-NH-HMM model. It can
be seen that, while the data are generated according to the ARHLP model, the results
obtained with the AR-NH-HMM, as it generalizes the ARHLP model, provides quasi
similar results. On the other hand, it can be seen that, the AR-NH-HMM provide more
accurate results compared to the homogeneous HMM. In particular, the difference can
be observed on the prediction, filtering and smoothing probabilities.
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Figure 5.9: Results obtained with the AR-NH-HMM.

5.5.4 Simulated curve sequence

In this section we report results obtained with the proposed approaches on a curve
sequence.

The curve sequence is composed of n = 100 curves simulated in a sequential manner
as follows. We considered two states characterized by parameter vectors θ1 and θ2.
Each of the two states is composed of 30 curves. The rest of the curves are simulated
in a sequential manner from state 1 to state 2 as follows:

θt = θ1 + λt(θ2 − θ1)

where {λt} is an increasing sequence of positive real numbers, regularly spaced, from
0.3 to 0.7. Each curve is composed of m = 100 points and is generated according to
the RHLP model with three constant polynomial regimes (K = 3, p = 0). The used
simulation parameters are given in Table 5.1. Figure 5.10 shows the simulated curves
with the mean curves corresponding to the first and the final state.

β1 β2 β3 w1 w2 w3 σ1 σ2 σ3

θ1 0 2.5 0 [49.1664,-1.5982] [27.6774,-0.4567] [0,0] 0.5 0.5 0.5

θ2 0.1 5.4 0.1 [49.3626, -1.1978] [27.7916, -0.4227] [0,0] 0.55 0.55 0.55

Table 5.1: Simulation parameters for the curve sequence.
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Figure 5.10: Simulated curve sequence: from state 1 to state 2.

5.5.5 Obtained results

Figures 5.11 and 5.13 show the probabilities associated with the ARHMM and AR-NH-
HMMmodels (that is the prediction, filtering and smoothing probabilities). Figure 5.12
shows the logistic probabilities and the posterior probabilities over time, obtained with
the ARHLP model.
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Figure 5.11: Results obtained with the AR-hom-HMM.

The obtained results clearly show that both the ARHLP and the AR-NH-HMM
models are more in accordance with the true simulated states of the curves. At the
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Figure 5.12: Results obtained with the ARHLP model.
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Figure 5.13: Results obtained with the AR-NH-HMM.

same time, it can be clearly observed that, the AR-NH-HMM provide more accurate
results compared to the ARHLP model.

5.6 Summary

In this chapter, we developed two approaches for modeling a curve sequence using a
two-stage strategy. The first stage consists in extracting features from the curves. We
then studied two different approaches to the problem. The first is an autoregressive
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model governed by a hidden logistic process, and the second is an autoregressive model
governed by a non-homogeneous HMM. We introduced two EM algorithms to train
these dynamical probabilistic models.

In the formulations of the EM algorithms, the expected sufficient statistics are
highlighted in order to derive online learning procedures.

An experimental study was conducted on multidimensional data, which are as-
sumed to be extracted from curves. A second experimental study was performed on
simulated curve sequences. The obtained results show the effectiveness of the proposed
approaches.

In the next chapter, we apply the approaches developed in the previous chapters to
monitoring railway switches.

168



Chapter 6

Application to the diagnosis of

the railway switch mechanism
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6.1 Introduction

The remote monitoring of the railway infrastructure components is of great interest for
railway companies, including the French railway company (SNCF) and the managers of
its infrastructure (RFF in France). A key problem consists of accurately detecting the
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6.2 The switch mechanism

presence of defects to alert the concerned maintenance service provider before faults
occur. In this application context, pattern recognition approaches have been introduced
in the LTN-INRETS Laboratory and have shown their good performances (Côme, 2009;
Debiolles, 2007; Oukhellou, 1997). Precisely regarding switch mechanism diagnosis,
another interesting approach has been proposed based on a continuous state-space
model that consists of a Kalman filtering (Pedregal et al., 2004). However, in our
study, the switch operating states are assumed to be finite.

In this chapter, we apply the methodologies developed in 3, 4 and 5 to the problem
of railway switches diagnosis based on measured switch operation curves. First, we
describe the railway monitoring system, the switch mechanism and the data. Then, we
highlight the methodology used to perform the diagnosis task. The results provided by
the different approaches are then introduced in both static and dynamical frameworks.
Notice that hereafter, the terms “state” and “class” both indicate the switch operating
state.

6.2 The switch mechanism

6.2.1 Definition of the switch mechanism

The switch mechanism is the railway infrastructure component that enables (high
speed) trains to be guided from one track to another at a railway junction. Its proper
functioning is required for the full availability of the transportation system. It is a vital
organ whose operating state directly impacts the overall safety of the railway system;
its monitoring is a key point of the actions of the maintenance teams. Figure 6.1 illus-
trates the composition of a switch mechanism. There are two movable switch points,
which by their tilting, allow for guiding trains on the direct track or the deviated track.
The tilting of the switch is generally operated through a linkage system controlled by
an electrical motor.

Several failure modes (not exclusive) are observable: electrical problems on motors,
mechanical problems on moving parts, civil engineering problems on the installation of
the switch, etc.

6.3 The railway monitoring system

The railway monitoring system has three main parts:

• a sensors part for data acquisition by local sensors. The measured physical quan-
tities may reflect the operating states of the railway infrastructure components
including the switch mechanism.

The measurement acquisition can be done by sensors on-board the track or
portable memory oscilloscope. Obviously, in the latter case, the presence of a
maintenance agent on the site is required. Preferably, the data acquisition could
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Figure 6.1: Switch mechanism.

be done by a remote monitoring system. Information are therefore available re-
motely inside the regulation office to make decision remotely and in real-time.

• a network part to enable for transmitting the measured data through an Ethernet-
TCP/IP network protocol.

• a third component for the control/command, that is the management of alarms,
response to incidents, etc.

Figure 6.2 shows the railway remote monitoring system used by SNCF with its three
main layers.

6.3.1 The switch operation

A switch operation consists of five successive mechanical movements of the various
components associated with the switch points. These movements are reflected on the
shape of the curve through different operating phases:

• starting phase,

• points unlocking,

• points translation,

• points locking,

• friction phase.
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Figure 6.2: The railway remote monitoring system layout.

Starting phase

This phase corresponds to the period between the activation of the motor and the
starting of the switch operation itself. The duration of this phase and the power
consumption depend on the length and the type of the cable that connects the motor
and the movable points.

Points unlocking

At the end of the initial phase, the motor moves the unlocking organ in order to
prepare the mechanical translation. In this phase, the motor unlocks the switch points
and makes them open up a position allowing for the translation.

In the first half of this phase, the engine brake to prevent stalling. In the second,
After that, the motor unlocks the points and makes them open up a position allowing
for the translation.

The consumed power in this phase corresponds to the effort required by the motor
for the rotation of the clamp lock system (the VCC system). An over-consumption of
power at this stage of the operation may, according to its shape, corresponds to a lack
of lubrication, a clamping problem,...

Points translation

This phase corresponds to the translation of the points. Their new positions allow for a
change of direction of the trains along the tracks. Different kinds of failures can occur
during this phase as the lack of lubrication, a misfit trade-off of the linkage in the case
of multiple attack (the effort from the actuator to the points is transmitted through
several mechanical fasterners), the presence of obstacle (stone, frost and ice,...)
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6.3 The railway monitoring system

Points locking

The points locking phase corresponds to the effort needed for locking the points. As in
the unlocking phase, over-effort in the locking phase may reflect a lack of lubrication,
a clamping problem,...

Friction phase

The end of the switch operation is indicated by the friction phase. In this phase, an
additional effort is applied to ensure the locking and a limiting device (a mechani-
cal friction system) is used to protect the motor of the switch mechanism and limits
the consumed power. Changes in the power curve can occur if the limiting device is
inoperative.

6.3.2 The data acquired during a switch operation

For our diagnosis problem, the exploited data are the curves of the electrical power
consumed during the switch operations (see Figure 6.3). Each curve is composed of
564 points with a sampling frequency of 100 Hz (100 points per second).
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Figure 6.3: A curve showing the electrical power consumed during a switch operation.

The different phases involved in a switch operation can be illustrated in Figure 6.4.

The total duration of the switch operation is uniform for all curves, whereas the
durations of each phase are unknown and may vary according to the operating state of
the switch mechanism.

The described movements involved during a switch operation are represented in Figure
6.5.
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Figure 6.4: The curve of the electrical consumed power during a switch operation with

the 5 electromechanical phases.

Figure 6.5: Physical motions involved in a switch operation.

6.3.3 The used database

A database of n = 120 real switch operation curves with three known states (classes)
was used. Given by a railway expert, the considered classes of curves correspond to the
different operating states of the switch mechanism:

• g = 1: no defect class;

• g = 2: minor defect class;

• g = 3: critical defect class.

The cardinal numbers of the three classes are n1 = 35, n2 = 40 and n3 = 45 respectively.
Figure 6.6 shows a curve example from each operating state.
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Figure 6.6: Example of curve corresponding to a normal switch operation without

defect (a), a curve with a minor defect (b) and a curve with critical defect (c).

6.4 Adopted statistical pattern recognition methodology

In this section we briefly describe the global pattern recognition approach used in the
diagnosis task, which results in a classification problem. It is composed of the following
stages:

Data acquisition: This step is known as the sensors part in which the rough data
(e.g, signals, images ...) are acquired (e.g., measured) through dedicated sensors.

Preprocessing: Preprocessings of the rough data are generally required: For example
denoising, standardization, normalization and a feature extraction. Note that “feature
extraction” is referred to the data representation task and not yet to “feature selection”.

Feature selection: This step is concerned with the optimization of the represen-
tation space by applying for example, linear or nonlinear dimensionality reduction
techniques. For the linear case, one can think about Principal Component Analysis
(PCA) or Independent component analysis (ICA) for the unsupervised context. For
the non-linear case, one can cite Kernel Principal Component Analysis (Kernel PCA),
Multidimensional Scaling (MDS), Kohonen Maps (SOMs) or its generative version that
is Generative Topographic Mapping (GTM), etc. These methods are applied on unla-
beled data, so they are dedicated to unsupervised context. For supervised context we
can cite linear methods like factor analysis (FA), Sequential Forward Selection (SFS),
Partial Least Square Regression (PLS) or non linear methods as Curvilinear Compo-
nent Analysis (CCA), relevance feature vector machine (RFVM), or potential support
vector machine (P-SVM).

Classifier design: Given a training set of selected features (observations), the classi-
fication stage is concerned with the designing of a decision rule with respect to a chosen
optimality criterion. The main questions concerning the classifier design stage are: the
type of the approach (generative, discriminative,..), linear/non-linear separation, and
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the type of the criterion. In our study, we focus on generative classifiers in a maximum
likelihood estimation framework.

Classifier evaluation: Finally, once the classifier is designed, the performance of the
classifier has to be assessed, for example by computing the classification error rate on
new data examples, in order to evaluate its generalization capabilities.

Figure 6.7 summarizes the various stages followed for the design of a pattern recog-
nition system. Notice that these stages are not independent. On the contrary, they

Data acquisition

Preprocessing

Feature extraction

Dimensionality reduction

Feature selection

Dimensionality reduction

Classifier design

Classifier evaluation
 

- Sensors

-> Rough data 

- Denoising

- Data standardization

- Feature extraction

-> Features

- Feature selection

- Optimize the reprezentation space:

linear/nonlinear projection

-> "Optimal features"

- Chose the learning approach

- Learn the classes' parameters (if generative)

learn the decision boundaries (eg, discriminative)

- Model selection

-> Decision rule

Classes or operating states

Measurements

- "Score (e.g, classification error rate)"

Figure 6.7: The basic stages involved in the design of a pattern recognition system.

are highly interrelated and, depending on the results, one may go back to redesign ear-
lier stages in order to improve the overall performance. Furthermore, there are some
methods that combine stages, for example, in our case, the approach seen in Chapter
3 involves a statistical learning at two stage. The first is concerned with learning the
RHLP model for each curve, and the second of learning a mixture model (MDA) to
perform curve classification. Some stages can also be removed, for example, as seen in
Chapter 4, the classifier is directly built without feature extraction nor feature selection.
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6.5 Classification of the switch operation curves

This section is dedicated to the classification of the curves issued from the switch
operations. The three sets of curves corresponding to the three operating states of the
switch are shown in Figure 6.8.
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Figure 6.8: Sets of curves of electrical power consumed during various switch operations:

35 curves without defect (a), 40 curves with a minor defect (b) and 45 curves with

critical defect (c).

The curves at this stage are assumed to be independent. We consider the RHLP
model for a single curve (see Chapter 3) and for a set of curves (see Chapter 4).

6.5.1 Experimental setup

For the switch operation curves, the number of regression components is chosen in
accordance with the number of electromechanical phases of a switch operation (K = 5)
(see Figure 6.4 and Figure 6.5). The degree of the polynomial regression p was set to
3 which is appropriate for the different regime involved in the curves.

The two proposed approaches (RHLP-MDA and RHLP-MAP) are compared to the
other alternative approaches.

Curve classification by RHLP-MDA

The first approach we use for curve classification is based of the pecific regression
model with hidden logistic process (RHLP) presented in Chapter 3 (Chamroukhi et al.,
2009c). Since a large amount of data composes each curve (each curve has 564 points),
the dimension of the deduced representation space is too large for a classical pattern
recognition task (eg, LDA, QDA, MDA, etc) in which the classification is performed
in the feature space. Consequently, a feature extraction task is required to deliver a
reduced input space that resumes information efficiently and allows for avoiding the
curse of dimensionality problem (Bishop, 1995). This is achieved by applying the
RHLP model to each switch operation curve. The model parameters for each curve are
estimated by maximum likelihood via the EM algorithm implemented in algorithm 3.
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6.5 Classification of the switch operation curves

The alternative methods considered for comparisons are the polynomial spline re-
gression model (PSR) (Deboor, 1978), the HMM Regression model (HMMR) (Fridman,
1993) and the piecewise polynomial regression model (PWPR) (Bellman, 1961; Hébrail
et al., 2010; McGee and Carleton, 1970; Stone, 1961). For each curve we apply the
corresponding modeling approach, and the estimated model parameters are then used
as the feature vector for that curve.

After the feature extraction step, the supervised learning of the different operating
states (no defect, minor defect and critical defect) is then performed from a labeled col-
lection of curves using Mixture Discriminant Analysis (MDA) (Hastie and Tibshirani,
1996). Based on the learned operating states’ parameters, a new curve is then classified
in the feature space by using the MAP rule. This two-fold classification approach was
presented in section 3.4.1.

Curve classification by RHLP-MAP

In the second approach, we use the RHLP model for a set of curves to represent each
class of curves of the switch mechanism through a single mean curve.

Each class of curves is summarized by finding “a mean” curve using the RHLP
model for a set of curves presented in Chapter 4 (Chamroukhi et al., 2010). According
to this approach, the parameters of each class of curves are directly learned in the space
of curves by using algorithm 4. Based on the estimated class parameters, the curve
classification is then directly performed in the space of curves by the MAP decision
principle. Therefore, the feature extraction step is no longer required in this approach.
The modeling and the classification tasks being directly performed in the space of
curves.

The considered models for comparisons are the PWPR model (Bellman, 1961;
Hébrail et al., 2010; McGee and Carleton, 1970; Stone, 1961) and the PSR model
(Deboor, 1978; James and Hastie, 2001) for a set of curves. The HMMR model is not
adapted for the case of a set of curves. Let us recall that under this Markov model-
ing, as seen in 2.6.6, the mean curve is computed from the observations through the
posterior (smooth) probabilities. Therefore, an overall mean curve can not directly be
produced in the case of a set of curves as the posterior probabilities differ from one
curve to another. For all models, the last stage regarding the curve classification is
performed by Functional Linear Discriminant Analysis (FLDA) approach as in (James
and Hastie, 2001) (c.f., section 4.2.6).

6.5.2 Classification results

The classification results obtained with the two approaches are given in Table 6.1.

It can be seen that the performance of the PSR approach is significantly outper-
formed by the other approaches. This can be attributed to the fact that the curves
shape, as they present various regime changes, are more complex to be modeled by
splines. The classification results with the proposed RHLP approach followed by MDA,
confirm that using the proposed RHLP approach for curve modeling, rather than spline

178



6.5 Classification of the switch operation curves

Modeling approach Misclassification error rate (%)

PSR-MDA 13 ±(4.5)

PWPR-MDA 12 ±(1.7)

HMMR-MDA 9 ±(2.25)

RHLP-MDA 4 ±(1.33)

PSR-MAP 7.3 ± (4.36)

PWPR-MAP 1.82 ± (5.74)

RHLP-MAP 1.67 ± (2.28)

Table 6.1: Classification results for the switch operation curves.

regression, HMM regression or piecewise regression, is quite promising for the two-
strategy curve classification. It can also be observed that, in this case, the HMMR
approach is the more competitive with the RHLP approach. The results also indicate
that the PWPR approach is significantly outperformed by the RHLP approach methods
for the first two-stage strategy (MDA approaches) but is not significantly outperformed
for the second approach (MAP approaches).

The conclusion that can be drawn from this experiment is that the RHLP approach
is the most successful for the two strategies. Beyond the misclassification error, the
modeling results presented below, clearly show the advantage of using the proposed
RHLP model.

The modeling results obtained with the PWPR model for the curve examples pre-
sented in Figure 6.6 are shown on Figure 6.9. Figure 6.12 shows the modeling results
obtained with the proposed RHLP model for the same curves presented in Figure 6.6.
Figure 6.12 (top) shows the original curves (in gray) and the estimated polynomial
regression components (in dashed and continuous lines). The polynomial components
are represented in dashed and continuous lines. The part for which the kth polynomial
model is active is represented in continuous line. Figure 6.12 (middle) shows the vari-
ation of the logistic probabilities πk(t) for the five polynomial components over time.
Finally, the original curves and the estimated curves provided by the RHLP model are
shown in Figure 6.12 (bottom).

It can be seen that the logistic process probabilities are closed to 1 when the kth
regression model seems to be the best fit for the original curve. The different phases
of the operation are identified through the logistic probabilities and are revealed to
be accurate with respect to the actual phases of the switch operation. It can also be
observed that the RHLP model provides an accurate model for each curve. Notice
that the estimated curve is computed according to Equation (3.22). Compared to the
PWPR approach, it can be observed that, when the transitions are very pronounced, as
in the starting phase, the transition phases and the phases of the last switch operation
(c.f., Figure 6.6(c)), the results are quasi-similar. However, for the other transitions,
the RHLP model provides more accurate modeling results and ensure the continuity of
the estimated curve.

For the second strategy, which is equivalent to use a model for a set of curves
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Figure 6.9: Results obtained with the piecewise regression model (PWPR) for a curve

without defect (left), a curve with minor defect (middle) and a curve with critical

defect (right) with the original curves and the estimated piecewise curves (top), and

the corresponding segmentation (bottom).

followed by a MAP decision rule, Figure 6.11 shows the modeling results obtained with
piecewise regression (PWPR) approach.

Figure 6.12 shows the switch operation curve, the estimated polynomial component
of RHLP for each regime, the corresponding probabilities of the logistic process and the
estimated mean curve for each class of curve. We see that the proposed method ensure,
unlike the piecewise regression approach, the continuity of the estimated curves. In
addition, it can be observed that, for the transitions corresponding to the first and the
last phase, the changes are abrupt for the three classes. The estimated probabilities
are therefore very close to 1, and the transitions are accurately estimated by the two
approaches. On the other hand, when the regime are less pronounced, in particular
for the middle phases of the first class, the flexibility of the logistic process allows
for providing an adapted model estimation through smooth logistic probabilities. The
estimated phases have also been found realistic regarding the true phases involved in
the real switch operations.

Until now we were interested in the static case in which the used models are learned
from independent curves. For the dynamical case, we will be interested in modeling
the dynamical aspect of the switch mechanism degradation from a curve sequence by
using the switching AR models presented in Chapter 5.
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Figure 6.10: Results obtained with the proposed approach (RHLP) for a curve with-

out defect (left), a curve with minor defect (middle) and a curve with critical defect

(right) with the original curves and the estimated polynomial regression components

of RHLP (top), the corresponding probabilities of the logistic process over time πk(t)

(k = 1, . . . , 5) (middle) and the original curves and the estimated curves (bottom).

6.6 Dynamical monitoring of the switch mechanism

6.6.1 Experimental setup

The dynamical modeling approach is performed by means of the two-step strategy
detailed in section 5.2. Let us recall that this approach consists of a feature extraction
from the sequence of switch operation curves, followed by a dynamical modeling of the
sequence of extracted features by using switching autoregressive models. The feature
extraction from each switch operation curve is performed by fitting the RHLP model to
each curve. Based on the extracted features, the evolution of the switch operating state
over time is modeled using the proposed multivariate specific autoregressive models. We
have tested the multivariate autoregressive model governed by a hidden logistic process
(ARHLP) and the multivariate autoregressive non-homogeneous Hidden Markov Model
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Figure 6.11: The three classes of switch operation curves and the corresponding esti-

mated curve (top) and the segmentation (bottom) obtained with the piecewise polyno-

mial regression model.

(AR-NHMM). For each model, the hidden process automatically controls the switching
from one autoregressive model to another (among K models) over time. We assume
that each autoregressive model is associated with an operating state of the system. The
true sequence of the operating states is shown in Figure 6.13.

In the following section we give the dynamical modeling results obtained with the
ARHLP and the AR-NHMM models.

6.6.2 Obtained results

In this section we report the modeling results obtained by the batch version of the
ARHLP and the AR-NHMM approaches for the dynamical estimation of the switch
operating states.

Figure 6.14 shows the logistic probabilities (prediction probabilities) obtained with
the ARHLP model, and Figure 6.15 shows the estimated MAP sequence.

The estimated sequence is obtained by maximizing, at each time step, the posterior
class probability. Let us recall that the prediction probabilities and the posterior prob-
abilities are computed according to Equation (5.41) and Equation (5.39), respectively.
The class prediction error rate in this case is equal to 10.92% and the error rate between
the true sequence and the estimated MAP sequence is equal to 9.24 %.

Figure 6.16 shows the prediction probabilities obtained with the Autoregressive
non-homogeneous HMM and the estimated state sequence is shown in Figure 6.17. In
this case of the AR-NH-HMM model, the prediction error rate is equal to 9.24 % and
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Figure 6.12: Results obtained with the proposed RHLP model for the class of curves

without defect (left), with minor defect (middle) and with critical defect (right), with

the original curves and the estimated polynomial regression components (top), the

corresponding probabilities of the logistic process over time πk(t) (k = 1, . . . , 5) (middle)

and the original curves and the estimated curves (bottom).
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Figure 6.13: True state sequence of switch operation curves (120 curves).

the error rate between the true sequence and the estimated sequence is equal is equal
to 8.40 %.
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Figure 6.14: Prediction probabilities over time for the switch operating states obtained

with the ARHLP model (p = 1) from the curve sequence.
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Figure 6.15: State sequence obtained with the ARHLP model from the switch operation

curves.

Figure 6.18 illustrates the fact that the transition matrix A = (Aij) is a function
of time. In this matrix plot, the subplot (i, j) represnts the temporal evolution of Aij .
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Figure 6.16: Prediction probabilities over time for the switch operating states obtained

with the AR-NH-HMM model from the curve sequence.
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Figure 6.17: State sequence obtained with the AR-NH-HMM model from the switch

operation curves.

6.7 Summary

This chapter focused on modeling and classifying switch operation curves in order to
diagnose real cases of railway switches. We applied the methodologies developed in
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Figure 6.18: Time-varying transition probabilities for the AR-NH-HMM model esti-

mated from the switch operation curve sequence.

previous chapters to implement the diagnosis task.

First, we were interested in the static (or stationary) case, where the aim is to make
decisions about the operating state independently of the evolution of the system over
time. The two-step RHLP-MDA approach (see Chapter 3) and the direct RHLP-MAP
classification approach (see Chapter 4) show very good performance for identifying the
actual operating states based on a labeled training set of switch operation curves.

Second, we focused on the non-stationary case by modeling the dynamical degra-
dation of the system from a curve sequence. The approaches consist of specific au-
toregressive (AR) models governed by hidden processes. The proposed approaches (see
Chapter 5) show that they can capture dynamical behavior as well as make predictions
and decisions over time. An experimental study was performed to assess the different
approaches.
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Chapter 7

Conclusions and future directions

Conclusions

In this thesis, we introduced novel methodologies for curve modeling, classification,
clustering and tracking. The developed approaches are particularly suited to curves
presenting smooth and/or abrupt regime changes.

In Chapter 2, we first presented a new probabilistic approach for curve modeling
that is based on a dynamical regression model by incorporating a hidden logistic pro-
cess (RHLP). The proposed model provides an accurate representation of the curve
with respect to the involved dynamical regimes and is very useful from a curve di-
mensionality reduction perspective. We then presented a two-fold approach for curve
clustering and classification using the RHLP model. It relies on external models: in
this case, mixture model-based clustering in the unsupervised context and MDA in
the supervised context. In this approach, classification is performed in the space of
curve descriptors. Experiments on simulated data showed the effectiveness of the pro-
posed approach in terms of curve modeling and classification as compared with other
alternative approaches, including the piecewise regression and the HMM regression.

In Chapter 4, we extended this probabilistic RHLP modeling approach to model
a set of homogeneous curves. We then proposed a mixture approach that integrates
the RHLP model to represent a set of heterogeneous curves, that is, the MixRHLP
model, which is naturally tailored to address the problem of complex shaped classes
of curves. The classification using the RHLP and the MixRHLP models is directly
performed in the space of curves and can be associated with the Functional Data
Analysis framework. Experiments conducted on simulated sets of curves demonstrated
the relevance of the proposed approaches in terms of curve modeling and classification
as compared to other alternatives, including spline regression and piecewise regression.
In addition, the experiments with simulated data showed that the direct classification
approach seems superior to the two-fold approach.

Beyond curve modeling and classification problems, the developed RHLP approach
automatically identifies the underlying regimes, and so it should be generally useful
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for the problem of (online) change-point detection as well as for signal denoising and
segmentation.

In Chapter 5, we further presented dynamical modeling approaches for learning
from a curve sequence using a two-step strategy. The first stage consists in feature
extraction from the curves and the second one involves specific probabilistic models to
model the formed sequence of multidimensional data. The formulation of the proposed
switching autoregressive model is, on the one hand, appropriate for modeling a time-
varying state; on the other hand, it is suitable for addressing the problem of missing
information. We also presented corresponding learning techniques in a batch mode
and in an online mode. The models were tested on multidimensional data, which are
assumed to be extracted from curves. A second experimental study performed on
simulated curve sequence showed the performances of the proposed approaches.

Finally, the real-world application that deals with the problem of railway switch
diagnosis in both static and dynamic frameworks demonstrates the practical use of the
ideas introduced in this thesis.

Future directions

A current work evaluates the online learning approaches for modeling curve sequences.

Future works may develop an extension of the RHLP model in order to derive a
direct approach that enables dynamical modeling from curve sequences.

Although inspired by the diagnosis task for which the whole curve is available, the
RHLP model for curves may be applied to the particular problem of online change-
point detection. This problem could be solved straightforwardly with an online EM by
relying on the EM formulations presented in Chapter 5. Additionally, and perhaps more
interesting, RHLP models in their current formulations should be very promising for
the segmentation and classification of the array Comparative Genomic Hybridization
(CGH) profiles (see for example (Bleakley and Vert, 2009)).

In addition, a semi-supervised learning context for the RHLP model for curve mod-
eling/segmentation is also straightforward.

Inspired by the diagnosis application, the second step in the two-fold strategy pre-
sented in Chapter 5, focused on the discrete state assumption. It can however be
extended to a continuous state model (e.g., a Kalman Filtering approach). A problem
to be addressed in this case is the optimization of the state space dimension.

A Bayesian framework could also be adopted through assuming a prior distribution
on the RHLP model parameters. However, for the application, I think that a MAP
estimation framework providing a distribution for the “mean curve” rather than a fixed
curve, may not be of interest for railway managers team, in the sense that they are more
familiar with a “deterministic” representation the proper functioning state, through a
mean curve model.

While my interests in this research lied in developing machine learning approaches
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inspired by the diagnosis application domain, I look forward to work in other areas of
statistical learning and computer science where I would be able to contribute, especially
the areas of artificial intelligence (robotics) and bioinformatics.
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Appendix A

Appendix A

A.1 EM algorithm: updating the proportions of a mix-

ture model using Lagrange multipliers

Consider the problem of finding the maximum of the function

Qπ(π1, . . . , πK ,Ψ(q)) =

n∑

i=1

K∑

k=1

τ
(q)
ik log πk

given by Equation (2.12), with respect to the mixing proportions (π1, . . . , πK) subject to
the constraint

∑K
k=1 πk = 1. To perform this constrained maximization, we introduce

the Lagrange multiplier λ such that the resulting Lagrangian function is given by:

L(π1, . . . , πK) =

n∑

i=1

K∑

k=1

τ
(q)
ik log πk + λ(1 −

K∑

k=1

πk). (A.1)

Taking the derivatives of the Lagrangian with respect to πk for k = 1, . . . ,K we obtain:

∂L(π1, . . . , πK)

∂πk
=

∑n
i=1 τ

(q)
ik

πk
− λ, ∀k ∈ {1, . . . ,K}. (A.2)

Then, setting these derivatives to zero yields:

∑n
i=1 τ

(q)
ik

πk
= λ, ∀k ∈ {1, . . . ,K}. (A.3)

By multiplying each hand side of (A.3) by πk (k = 1, . . . ,K) and summing over k we
get

K∑

k=1

πk ×
∑n

i=1 τ
(q)
ik

πk
=

K∑

k=1

λ× πk (A.4)
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which implies that λ = n. Finally, from (A.3) we get the updating formula for the
mixing proportions πk’s, that is

π
(q+1)
k =

∑n
i=1 τ

(q)
ik

λ
=

∑n
i=1 τ

(q)
ik

n
, ∀k ∈ {1, . . . ,K}. (A.5)

A.2 Calculation of the derivative of the multi-class logistic

function

The partial derivative of the logistic function

πk(xi;w) =
exp(wT

k xi)∑K
h=1 exp(w

T
hxi)

; (k = 1, . . . ,K) (A.6)

with respect to wℓ (ℓ = 1, . . . ,K) is given by

∂πk(xi;w)

∂wℓ

=
∂

exp(wT
k
xi)

∑K
h=1 exp(w

T
h
xi)

∂wℓ

=

∂ exp(wT
k
xi)

∂wℓ

∑K
h=1 exp(w

T
hxi)− exp(wT

k xi)
∂
∑K

h=1 exp(w
T
h
xi)

∂wℓ

(
∑K

h=1 exp(w
T
hxi))2

=
δkℓxi exp(w

T
k xi)

∑K
h=1 exp(w

T
hxi)− exp(wT

k xi)xi exp(w
T
ℓ xi)

(
∑K

h=1 exp(w
T
hxi))2

= δkℓ
exp(wT

k xi)∑K
h=1 exp(w

T
hxi)

xi −
exp(wT

k xi) exp(w
T
ℓ xi)

(
∑K

h=1 exp(w
T
hxi))2

xi

= δkℓπk(xi;w)xi − πk(xi;w)πℓ(xi;w)xi

= πk(xi;w) (δkℓ − πℓ(xi;w))xi (A.7)

where δkℓ is the Kronecker delta such that δkℓ = 1 if k = ℓ et δkℓ = 0 otherwise, and in

the third step we used the fact that
∂(wT

k
xi)

∂wk
= xi. Finally we have

∂πk(xi;w)

∂wℓ

= πk(xi;w) (δkℓ − πℓ(xi;w))xi (A.8)

and similarly we get

∂πk(xi;w)

∂wT
ℓ

= πk(xi;w) (δkℓ − πℓ(xi;w))xT
i . (A.9)
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A.3 Gradient and Hessian for the multi-class logistic re-

gression model

The function optimized for the multi-class logistic model model is given by Equation
(2.53). To calculate the gradient of this function, since from (A.2) we have

∂πg(xi;w)

∂wh

= πg(xi;w) (δgh − πh(xi;w))xi. (A.10)

for g, h = 1, . . . , G− 1 where δgh is the Kronecker delta such that δgh = 1 if g = h and

δgh = 0 otherwise, the component gradient vector ∂L(w)
∂wh

(h = 1, . . . , G− 1) is therefore
given by:

∂L(w)

∂wh

=
n∑

i=1

G∑

g=1

yig
∂ log πg(xi;w)

∂wh

=

n∑

i=1

G∑

g=1

yig
1

πg(xi;w)

∂πg(xi;w)

∂wh

=

n∑

i=1

G∑

g=1

yig
1

πg(xi;w)
πg(xi;w) (δgh − πh(xi;w))xi

=
n∑

i=1

G∑

g=1

yig (δgh − πh(xi;w))xi

=

n∑

i=1

G∑

g=1

(yigδgh − yigπh(xi;w))xi

=
n∑

i=1




G∑

g=1

yigδgh − πh(xi;w)
G∑

g=1

yig


xi

=

n∑

i=1

(
yih − πh(xi;w)

)
xi (A.11)

where before the last step we have used the fact that
∑G

g=1 yig = 1.

The Hessian matrix is composed of (G − 1) × (G − 1) block matrices where each

193



A.4 Forward-Backward algorithm for an HMM

block matrix is of dimension (d+ 1)× (d+ 1) and is given by:

∂2L(w)

∂wh∂w
T
k

=
∂
∂L(w)
∂wh

∂wT
k

=
∂
∑n

i=1 (yih − πh(xi;w))xi

∂wT
k

= −
n∑

i=1

xi
∂πh(xi;w)

∂wT
k

= −
n∑

i=1

xiπh(xi;w) (δhk − πk(xi;w))xT
i

= −
n∑

i=1

πh(xi;w) (δhk − πk(xi;w))xix
T
i (A.12)

A.4 Forward-Backward algorithm for an HMM

Given a training set of sequential data Y = (y1, . . . ,yn) The Forward-Backward algo-
rithm (Baum et al., 1970; Rabiner, 1989) is the recursive procedure used to compute
the expected conditional distribution for an HMM parametrized by Ψ = (π,A,θ) at
the E-step of the EM (Baum-Welch) algorithm. Here we consider an HMM with contin-
uous emission probabilities, and more particularly with Gaussian emission probabilities
parametrized by θ. The Forward-Backward probabilities which can be denoted by αtk

and βtk respectively, are defined as follows:

αtk = p(y1, . . . ,yt, zt = k;Ψ), (A.13)

which represents the probability of observing the partial sequence (y1, . . . ,yt) and
ending with the state k at the time step t, and

βtk = p(yt+1, . . . ,y1|zt = k;Ψ) (A.14)

is the probability of observing the rest of the sequence (yt+1, . . . ,y1) knowing that the
system starts from the stat k at the time step t. Note that the log-likelihood of the
model parameters can be computed from the forward probabilities by

log p(Y;Ψ) = log
K∑

k=1

αnk.

The recursive calculation of these probabilities is performed as follows (Baum et al.,
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A.4 Forward-Backward algorithm for an HMM

1970; Rabiner, 1989). We have

αtk = p(y1, . . . ,yt, zt = k;Ψ)

= p(y1, . . . ,yt|zt = k;Ψ)p(zt = k;Ψ)

= p(y1, . . . ,yt−1|zt = k;Ψ)p(yt|zt = k;Ψ)p(zt = k;Ψ)

= p(y1, . . . ,yt−1, zt = k;Ψ)p(yt|zt = k;Ψ)

=

K∑

ℓ=1

p(y1, . . . ,yt−1, zt−1 = ℓ, zt = k;Ψ)p(yt|zt = k;Ψ)

=

K∑

ℓ=1

p(y1, . . . ,yt−1|zt−1 = ℓ, zt = k;Ψ)p(zt = k, zt−1 = ℓ;Ψ)p(yt|zt = k;Ψ)

=
K∑

ℓ=1

p(y1, . . . ,yt−1|zt−1 = ℓ;Ψ)p(zt = k|zt−1 = ℓ;Ψ)p(zt−1 = ℓ;Ψ)

×p(yt|zt = k;Ψ)

=
K∑

ℓ=1

p(y1, . . . ,yt−1, zt−1 = ℓ;Ψ)p(zt = k|zt−1 = ℓ;Ψ)p(yt|zt = k;Ψ)

=
[ K∑

ℓ=1

α(t−1)ℓAℓk

]
p(yt|zt = k;Ψ) (A.15)

and

βtℓ = p(yt+1, . . . ,yn|zt = ℓ;Ψ)

=

K∑

k=1

p(yt+1, . . . ,yn, zt+1 = k|zt = ℓ;Ψ)

=

K∑

k=1

p(yt+1, . . . ,yn|zt+1 = k, zt = ℓ;Ψ)p(zt+1 = k|zt = ℓ;Ψ)

=
K∑

k=1

p(yt+2, . . . ,yn|zt+1 = k, zt = ℓ;Ψ)p(zt+1 = k|zt = ℓ;Ψ)p(yt+1|zt+1 = k;Ψ)

=

K∑

k=1

p(yt+2, . . . ,yn|zt+1 = k;Ψ)p(zt+1 = k|zt = ℓ;Ψ)p(yt+1|zt+1 = k;Ψ)

=

K∑

k=1

β(t+1)kAℓkp(yt+1|zt+1 = k;Ψ). (A.16)

Therefore, the computation of these quantities is performed by the Forward Backward
procedure. For all ℓ, k = 1, . . . ,K:

Forward procedure

• α1k = p(y1, z1 = 1;Ψ) = p(z1 = 1)p(y1|z1 = 1;θ) = πkp(y1|z1 = k;θ) for t = 1,
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• αtk = [
∑K

ℓ=1 α(t−1)ℓAℓk]p(yt|zt = k;Ψ) ∀ t = 2, . . . , n.

Backward procedure

• βnk = 1 for t = n,

• βtℓ =
∑K

k=1 β(t+1)kAℓkp(yt+1|zt+1 = k;Ψ) ∀ t = n− 1, . . . , 1.

A.5 Posterior probabilities for an HMM

The posterior probability of the state k at time t given the whole sequence of obser-
vations Y and a model parameters Ψ is computed from the Forward-Backward and is
given by

τtk = p(zt = k|Y;Ψ)

=
p(Y, zt = k;Ψ)

p(Y;Ψ)

=
p(Y|zt = k;Ψ)p(zt = k;Ψ)

∑K
l=1 p(Y|zt = l;Ψ)p(zt = l;Ψ)

=
p(y1, . . . ,yt|zt = k;Ψ)p(yt+1, . . . ,yn|zt = k;Ψ)p(zt = k;Ψ)

∑K
l=1 p(y1, . . . ,yt|zt = l;Ψ)p(yt+1, . . . ,yn|zt = l;Ψ)p(zt = l;Ψ)

=
p(y1, . . . ,yt, zt = k;Ψ)p(yt+1, . . . ,yn|zt = k;Ψ)

∑K
l=1 p(y1, . . . ,yt, zt = l;Ψ)p(yt+1, . . . ,yn|zt = l;Ψ)

=
αtkβtk∑K
l=1 αtlβtl

· (A.17)

The joint posterior probabilities of the state k at time t and the state ℓ at time t − 1

given the whole sequence of observations are given by

ξtℓk = p(zt = k, zt−1 = ℓ|Y;Ψ)

=
p(zt = k, zt−1 = ℓ,Y;Ψ)

p(Y;Ψ)

=
p(zt = k, zt−1 = ℓ,Y;Ψ)

∑K

ℓ=1

∑K

k=1 p(zt = k, zt−1 = ℓ,Y;Ψ)

=
p(Y|zt = k, zt−1 = ℓ;Ψ)p(zt = k, zt−1 = ℓ;Ψ)

∑K

ℓ=1

∑K

k=1 p(Y|zt = k, zt−1 = ℓ;Ψ)p(zt = k, zt−1 = ℓ;Ψ)

=
α(t−1)ℓp(yt|zt = k;Ψ)βtkAℓk

∑K

ℓ=1

∑K

k=1 α(t−1)ℓp(yt|zt = k;Ψ)βtkAℓk

· (A.18)
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A.6 Viterbi algorithm

The Viterbi algorithm (Viterbi, 1967) provides an efficient dynamic programming ap-
proach to computing the most likely state sequence (ẑ1, . . . , ẑn) that have generated an
observation sequence (y1, . . . ,yn), given a set of HMM parameters:

ẑ = arg max
z1,...,zn

p(y1, . . . ,yn, z1, . . . , zn;Ψ)

= arg max
z1,...,zn

p(z1)p(y1|z1)
n∏

t=2

p(zt|zt−1)p(yt|zt)

= arg min
z1,...,zn

[
− log π − log p(y1|z1) +

n∑

t=2

− log p(zt|zt−1)− log p(yt|zt)
]
. (A.19)

The Viterbi algorithm works on the dynamic programming principle that the minimum
cost path to zt = k is equivalent to the minimum cost path to node zt−1 plus the cost
of a transition from zt−1 to zt = k (and the cost incurred by observation yt given
zt = k). The MAP state sequence is then determined by starting at node zt and
reconstructing the optimal path backwards based on the stored calculations. Viterbi
decoding reduces the computation cost to O(K2n) operations instead of the brute force
O(Kn) operations. The Viterbi algorithm steps are outlined in Algorithm 9.

Algorithm 9 Pseudo code of the Viterbi algorithm for an HMM.

Inputs: Observation sequence (y1, . . . ,yn) and HMM parametersΨ

1: Initialization: initialize minimum path sum to state z1 = k for k = 1, . . . ,K:

S1(z1 = k) = − log πk − log p(y1|z1 = k)

2: Recursion: for t = 2, . . . , n and for k = 1, . . . ,K, calculate the minimum path sum

to state zt = k:

St(zt = k) = − log p(yt|zt = k) + min
zt−1

[
St−1(zt−1)− log p(zt = k|zt−1)

]

and let
z∗t−1(zt) = argmin

zt−1

[
St−1(zt−1)− log p(zt = k|zt−1)

]

3: Termination: compute minzn Sn(zn) and set ẑn = argminzn Sn(zn)

4: State sequence backtracking: iteratively set, for t = n− 1, . . . , 1

ẑt = z∗t (ẑt+1)

Outputs: The most likely state sequence (ẑ1, . . . , ẑn).
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A.7 Concavity proof for the criterion optimized by the

IRLS algorithm for the RHLP model

In this section we prove the concavity of the criterion Qw(w,θ(q)) optimized by the
IRLS algorithm (3.20). For this purpose we start by giving the first and the second
derivatives of this function.

Since there are K − 1 parameter vectors (w1, . . . ,wK−1) to be estimated, the gra-

dient vector ∂Qw(w,θ(q))
∂w

consists of K − 1 gradient component vectors ∂Qw(w,θ(q))
∂wk

cor-
responding to the parameter wk for k = 1, . . . ,K − 1 and is written as

∂Qw(w,θ(q))

∂w
=

(∂Qw(w,θ(q))

∂w1
, . . . ,

∂Qw(w,θ(q))

∂wK−1

)T
. (A.20)

The gradient of Qw(w,θ(q)) with respect to each of the K − 1 parameter vectors wk is
computed as follows:

∂Qw(w,θ(q))

∂wk

=
m∑

j=1

K∑

ℓ=1

τ
(q)
jℓ

∂ log πℓ(tj ;w)

∂wk

=

m∑

j=1

K∑

ℓ=1

τ
(q)
jℓ

1

πℓ(tj ;w)

∂πℓ(tj ;w)

∂wk

=

m∑

j=1

K∑

ℓ=1

τ
(q)
jℓ

1

πℓ(tj ;w)
πℓ(tj ;w) (δkℓ − πk(tj ;w)) vj

=
m∑

j=1

(
K∑

ℓ=1

τ
(q)
jℓ δkℓ − πk(tj;w)

K∑

ℓ=1

τ
(q)
jℓ

)
vj (A.21)

where δkℓ is the Kronecker symbol (δkℓ = 1 if k = ℓ, 0 otherwise). By using the fact

that the posterior probabilities sum to one, that is
∑K

ℓ=1 τ
(q)
jℓ = 1, we then obtain:

∂Qw(w,θ(q))

∂wk

=
m∑

j=1

(
τ
(q)
jk − πk(tj ;w)

)
vj (A.22)

which is a vector of dimension (u+1). From Equation (A.20), the global gradient vector,

that is to say the vector comprising the K − 1 gradient component vectors ∂Qw(w,θ(q))
∂wk

(k = 1, . . . ,K − 1) where each component gradient vector is given by (A.22), is given
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A.7 Concavity proof for the criterion optimized by the IRLS algorithm for
the RHLP model

by the following (K − 1)× (u+ 1) dimensional vector:

∂Qw(w, θ(q))

∂w
=

m∑

j=1




(
τ
(q)
j1 − π1(tj ;w)

)
vj

...
(
τ
(q)
j,K−1 − πK−1(tj ;w)

)
vj




=

m∑

j=1




τ
(q)
j1 − π1(tj ;w)

...

τ
(q)
j,K−1 − πK−1(tj ;w)



⊗ vj

=

m∑

j=1

(
τ
(q)
j − π(tj ;w)

)
⊗ vj (A.23)

where ⊗ is the Kronecker product (c.f., Appendix B.3),

τ
(q)
j = (τ

(q)
j1 , . . . , τ

(q)
j,K−1)

T

and
π(tj ;w) =

(
π1(tj ;w), . . . , πK−1(tj ;w)

)T
.

Thus, by evaluating the gradient at w = w(l) we obtain:

∂Qw(w,θ(q))

∂wk

∣∣∣
w=w(l)

=

m∑

j=1

(
τ
(q)
jk − πk(tj ;w

(l))
)
vj (A.24)

and

∂Qw(w, θ(q))

∂w

∣∣∣
w=w(l)

=
m∑

j=1

(
τ
(q)
j − π(tj ;w

(l))
)
⊗ vj . (A.25)

The Hessian matrix ∂2Qw(w,θ(q))
∂w∂wT consists of (K−1)×(K−1) block matrices ∂2Qw(w,θ(q))

∂wk∂w
T
ℓ

for k, ℓ = 1, . . . ,K − 1 (Chamroukhi et al., 2009a; Chen et al., 1999), where each block
matrix is given by:

∂2Qw(w,θ(q))

∂wk∂w
T
ℓ

=
∂
∑m

j=1

(
τ
(q)
jk − πk(tj;w)

)
vj

∂wT
ℓ

= −
m∑

j=1

vj
∂πk(tj ;w)

∂wT
ℓ

= −
m∑

j=1

πk(tj ;w)
(
δkℓ − πℓ(tj ;w)

)
vjv

T
j (A.26)

which is a matrix of dimension (u+1)×(u+1). Thus, by considering all the component
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A.7 Concavity proof for the criterion optimized by the IRLS algorithm for
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matrices for ℓ, k = 1, . . . ,K − 1 in (A.26), the Hessian is therefore given by1:

∂2Qw(w, θ(q))

∂w∂wT
= −

m∑

j=1




π1(1 − π1)vjv
T
j −π1π2vjv

T
j . . . −π1πK−1vjv

T
j

−π2π1vjv
T
j π2(1− π2)vjv

T
j . . . −π2πK−1vjv

T
j

...
...

. . .
...

−πK−1π1vjv
T
j −π1π2vjv

T
j . . . πK−1(1 − πK−1)vjv

T
j




= −
m∑

j=1




π1(1 − π1) −π1π2 . . . −π1πK−1

−π2π1 π2(1− π2) . . . −π2πK−1

...
...

. . .
...

−πK−1π1 −π1π2 . . . πK−1(1 − πK−1)




⊗ vjv
T
j

= −
m∑

j=1

(
Π(tj ;w)− π(tj ;w)π(tj ;w)

T )⊗ vjvTj (A.27)

where Π(tj ;w) = diag(π1(tj;w), . . . , πK−1(tj ;w)). Finally, by evaluating the Hessian
at w = w(l), we obtain:

∂2Qw(w,θ(q))

∂wk∂w
T
ℓ

∣∣∣
w=w(l)

= −
m∑

j=1

πk(tj ;w
(l))
(
δkℓ − πℓ(tj;w

(l))
)
vjv

T
j (A.28)

and

∂2Qw(w,θ(q))

∂w∂wT

∣∣∣
w=w(l)

= −
m∑

j=1

(
Π(w(l))− π(tj ;w

(l))π(tj ;w
(l))

T
)
⊗ vjv

T
j . (A.29)

Once we have expressed in this way the Hessian matrix, we show that the criterion
Qw(w,θ(q)) to be maximized by the IRLS algorithm is concave. This can be verified
as follows. Let us consider the matrix

Mj = −
(
Π(tj ;w)− π(tj ;w)π(tj;w)T

)
.

The Hessian matrix (A.29) takes therefore the following form

∂2Qw(w,θ(q))

∂w∂wT

∣∣∣
w=w(l)

=
m∑

j=1

Mj ⊗ vjv
T
j . (A.30)

The matrix Mj is symmetric since ∀k, ℓ = 1, . . . ,K − 1 we have

Mj
kℓ =





−πk(tj;w
(l))
(
1− πk(w

(l))
)

if k = ℓ

πk(tj ;w
(l))πℓ(tj ;w

(l)) if k 6= ℓ

(A.31)

1Here in the expression of the Hessian matrix πk stands for πk(tj ;w) (k = 1, . . . ,K − 1).
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A.8 The sufficient statistics in the case of the Multivariate Autoregressive
Model with Hidden logistic process

which implies Mj
kℓ = Mj

ℓk for k, ℓ = 1, . . . ,K − 1). Additionally, by using the fact that
the logistic probabilities for each polynomial component sum to 1, that is∑

ℓ=1 πℓ(tj ;w
(l)) = 1 we also have

∑

ℓ 6=k

|Mj
kℓ| =

∑

ℓ 6=k

πk(tj;w
(l))πℓ(tj;w

(l)) = πk(tj ;w
(l))
∑

ℓ 6=k

πℓ(tj ;w
(l))

= πk(tj ;w
(l))(1− πk(tj ;w

(l)))

≤ |Mj
kk|

which implies that the matrix Mj
kk is diagonally dominant. Since the diagonal entries

of Mj are negative Mj
kk ≤ 0 (note that πk(tj ;w

(l)) ≥ 0), Mj is therefore negative
semidefinite. Therefore the Hessian is also negative semidefinite, since for any j, the
matrix vjv

T
j is positive semidefinite and the Kronecker product of a negative semidef-

inite matrix and a positive semidefinite matrix is also a negative semidefinite matrix.
This shows that the criterion Qw(w,θ(q)) optimized by the IRLS algorithm is concave
(See Appendix B.1 for details on concave (respectively convex) functions).

A.8 The sufficient statistics in the case of the Multivariate

Autoregressive Model with Hidden logistic process

For k = 1, . . . ,K we have

LΨk
c (Ψk;Y) =

n∑

t=p+1

ztk logN (yt;B
T
k rt,Σk)

=
−1

2

n∑

t=p+1

z
(q)
tk

[
(yt −BT

k rt)
TΣ−1

k (yt −BT
k rt) + log |Σk|+ d log 2π

]
.(A.32)

Since for any arbitrary matrix A and a vector x we have:

xTAx = trace[xTAx] = trace[xxTA],

the distance Dk = (yt −BT
k rt)

TΣ−1
k (yt −BT

k rt) is therefore given by:

Dk = trace
[
(yt −BT

k rt)
TΣ−1

k (yt −BT
k rt)

]

= trace
[
(yt −BT

k rt)(yt −BT
k rt)

TΣ−1
k

]

= trace
[(
yty

T
t − ytr

T
t Bk −BT

k rty
T
t +BT

k rtr
T
t Bk

)
Σ−1

k

]

= trace
[
yty

T
t Σ

−1
k − ytr

T
t BkΣ

−1
k −BT

k rty
T
t Σ

−1
k +BT

k rtr
T
t BkΣ

−1
k

]
. (A.33)

Additionally, for the d× d matrix BT
k rty

T
t Σ

−1
k we have

trace[BT
k rty

T
t Σ

−1
k ] = trace[(BT

k rty
T
t Σ

−1
k )T ]

= trace[(Σ−1
k )Tytr

T
t Bk]

= trace[Σ−1
k ytr

T
t Bk]

= trace[ytr
T
t BkΣ

−1
k ] (A.34)
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A.9 EM algorithm: update formula for the Autoregressive model
parameters for the ARHLP model

where in the first step, we used the fact that the trace of a square matrix equals to
the trace of its transpose, in the third step we used the fact that Σ−1

k = (Σ−1
k )T since

Σ−1
k is the inverse of the positive-definite symmetric covariance matrix Σk which is also

symmetric, and in the last step we used the fact that since ytr
T
t Bk is a d×d matrix (the

same dimension of Σ−1
k ) then we also have: trace(Σ−1

k ytr
T
t Bk) = trace (ytr

T
t BkΣ

−1
k ).

According to the same property (trace(FG) = trace(GF )), we can also write:

trace(BT
k rtr

T
t︸ ︷︷ ︸

F

BkΣ
−1
k︸ ︷︷ ︸

G

) = trace(BkΣ
−1
k︸ ︷︷ ︸

G

BT
k rtr

T
t︸ ︷︷ ︸

F

)

= trace(rtr
T
t BkΣ

−1
k BT

k ) (A.35)

where in the second step we used the fact that trace(GF ) = trace((GF )T ) = trace(F TGT ).

Thus, by using the results (A.34) and (A.35), (A.33) is rewritten as

(yt −BT
k rt)

TΣ−1
k (yt −BT

k rt)= trace
[
yty

T
t Σ

−1
k − 2ytr

T
t BkΣ

−1
k + rtr

T
t BkΣ

−1
k BT

k

]
(A.36)

and we finally obtain:

LΨk
c (Ψk;Y) =

−1

2
trace

[ n∑

t=p+1

ztkyty
T
t Σ

−1
k − 2

n∑

t=p+1

ztkytr
T
t BkΣ

−1
k +

n∑

t=p+1

ztkrtr
T
t BkΣ

−1
k BT

k

]

−
1

2

n∑

t=p+1

ztk log |Σk| −
d

2

n∑

t=p+1

ztk log 2π. (A.37)

We see then that the complete-data log-likelihood function depends on the data only
through the following sufficient statistics:

T k =
n∑

t=p+1

ztk, T rr,k =
n∑

t=p+1

ztkrtr
T
t , T yr,k =

n∑

t=p+1

ztkrty
T
t , T yy,k =

n∑

t=2

ztkyty
T
t .

A.9 EM algorithm: update formula for the Autoregres-

sive model parameters for the ARHLP model

To maximize (5.25) with respect to the autoregressive model parameters Bk, by col-
lecting together the terms that depend on Bk, we can see that this maximization is
equivalent to minimizing the function

Q(Bk) = trace
[
− 2

n∑

t=p+1

τ
(q)
tk ytr

T
t BkΣ

−1
k +

n∑

t=p+1

τ
(q)
tk rtr

T
t BkΣ

−1
k BT

k

]
.
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A.10 EM algorithm: update formula for the covariance matrix Σk for the
ARHLP model

The derivative of the function Q(Bk) w.r.t to Bk is given by:

∂Q(Bk)

∂Bk

= −2
n∑

t=p+1

τ
(q)
tk

∂trace
(
ytr

T
t BkΣ

−1
k

)

∂Bk

+

n∑

t=p+1

τ
(q)
tk

∂trace
(
BT

k rtr
T
t BkΣ

−1
k

)

∂Bk

= −2
n∑

t=p+1

τ
(q)
tk (ytr

T
t )

T (Σ−1
k )T +

n∑

t=p+1

τ
(q)
tk

(
rtr

T
t BkΣ

−1
k + (rtr

T
t )

TBk(Σ
−1
k )T

)

= −2
n∑

t=p+1

τ
(q)
tk rty

T
t Σ

−1
k + 2

n∑

t=p+1

τ
(q)
tk rtr

T
t BkΣ

−1
k

= −2
( n∑

t=p+1

τ
(q)
tk rty

T
t −

n∑

t=p+1

τ
(q)
tk rtr

T
t Bk

)
Σ−1

k (A.38)

where in the first step we used (A.35) and in the second step we used the following
results of the derivatives of traces (see for example equations 93 and 106 in the matrix
book of Petersen and Pedersen (2008):

∂trace
(
FXG

)

∂X
= FTGT

and
∂trace

(
XTFXG

)

∂X
= FXG+ FTXGT

for F = rtr
T
t and G = Σ−1

k . In the second step we used the fact that (Σ−1
k )T = Σ−1

k .
Setting (A.38) to zero yields:

[ n∑

t=p+1

τ
(q)
tk rtr

T
t

]
Bk =

n∑

t=p+1

τ
(q)
tk rty

T
t

which yields to the following update formula (5.26):

B
(q+1)
k =

[ n∑

t=p+1

τ
(q)
tk rtr

T
t

]−1
n∑

t=p+1

τ
(q)
tk rty

T
t . (A.39)

A.10 EM algorithm: update formula for the covariance

matrix Σk for the ARHLP model

To maximize (5.25) with respect to the covariance matrix Σk, consider the terms in

(5.25) that are function of Σk. By using the fact that |Σk| =
1

|Σ−1
k

|
the function to be

maximized can written as:

Q(Σk)=
−1

2

n∑

t=p+1

τ
(q)
tk

[
trace(yty

T
t Σ

−1
k )−2trace(ytr

T
t BkΣ

−1
k )+trace(rtr

T
t BkΣ

−1
k BT

k )−log |Σ
−1
k |
]
.

(A.40)
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A.11 Recursive updating rule for the parameter Bk for the ARHLP with a
discount factor λt

If we omit the multiplicative constant in the expression ofQ(Σk), and take its derivative

w.r.t Σ−1
k we obtain:

∂Q(Σk)

∂Σ−1
k

=

n∑

t=p+1

τ
(q)
tk

[∂trace(yty
T
t Σ

−1
k )

∂Σ−1
k

− 2
∂trace(ytr

T
t BkΣ

−1
k )

∂Σ−1
k

+
∂trace(rtr

T
t BkΣ

−1
k BT

k )

∂Σ−1
k

−
∂ log |Σ−1

k |

∂Σ−1
k

]

=
n∑

t=p+1

τ
(q)
tk

[
yty

T
t − 2BT

k rty
T
t +BT

k rtr
T
t Bk −Σk

]
(A.41)

where for the two first terms we used the fact that ∂trace(FX)
∂X

= FT and for the third

term we used ∂trace(FXG)
∂X

= FTGT (see for example equations 92 and 93 in Petersen and

Pedersen (2008)). For the last term we used the property
∂ log |Σ−1

k
|

∂Σ−1
k

= ((Σ−1
k )−1)T =

ΣT
k = Σk.

Setting (A.41) to zero and replacing Bk by its update B
(q+1)
k provides the following

update formula:

Σ
(q+1)
k =

∑n
t=p+1 τ

(q)
tk yty

T
t − 2

∑n
t=p+1 τ

(q)
tk B

(q+1)T
k rty

T
t +

∑n
t=p+1 τ

(q)
tk B

(q+1)T
k rtr

T
t B

(q+1)
k∑n

t=p+1 τ
(q)
tk

=

∑n
t=p+1 τ

(q)
tk yty

T
t −B

(q+1)T
k

[
2
∑n

t=p+1 τ
(q)
tk rty

T
t −

∑n
t=p+1 τ

(q)
tk rtr

T
t B

(q+1)
k

]

∑n
t=p+1 τ

(q)
tk

=

∑n
t=p+1 τ

(q)
tk yty

T
t −B

(q+1)T
k

[
2
∑n

t=p+1 τ
(q)
tk rty

T
t −

∑n
t=p+1 τ

(q)
tk rty

T
t

]

∑n
t=p+1 τ

(q)
tk

=

∑n
t=p+1 τ

(q)
tk yty

T
t −B

(q+1)T
k

∑n
t=p+1 τ

(q)
tk rty

T
t

∑n
t=p+1 τ

(q)
tk

(A.42)

where in the third step we used (A.39).

A.11 Recursive updating rule for the parameter Bk for

the ARHLP with a discount factor λt

The update of Bk in basing on the conditional expected sufficient statistics is given by

B
(t+1)
k =

[
S

(t)
rr,k

]−1
S

(t)
yr,k

=
[
S

(t)
rr,k

]−1 (
(1− λt)S

(t−1)
yr,k + λtτ

(t−1)
tk rty

T
t

)
.
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A.12 Derivatives of the complete-data log-likelihood for the AR-NH-HMM
model w.r.t the parameters of the hidden process

By using the fact that at the time step t we have

B
(t)
k =

[
S

(t−1)
rr,k

]−1
S

(t−1)
yr,k

which implies that

S
(t−1)
yr,k = S

(t−1)
rr,k B

(t)
k ,

and, additionally from the incremental scheme (5.44) and the expression of S
(t)
rr,k given

in Equation (5.31) we deduce the following relation

S
(t−1)
rr,k =

1

1− λt

(S
(t)
rr,k − λtτ

(t−1)
tk rtr

T
t )

we therefore get

S
(t−1)
yr,k =

1

1− λt
(S

(t)
rr,k − λtτ

(t−1)
tk rtr

T
t )B

(t)
k .

Finally, the recursive formula is derived as:

B
(t+1)
k =

[
S

(t)
rr,k

]−1 (
(1− λt)S

(t−1)
yr,k + λtτ

(t−1)
tk rty

T
t

)

=
[
S

(t)
rr,k

]−1 (
(1− λt)×

1

1− λt
(S

(t)
rr,k − λtτ

(t−1)
tk rtr

T
t )B

(t)
k + λtτ

(t−1)
tk rty

T
t

)

=
[
S

(t)
rr,k

]−1
S

(t)
rr,kB

(t)
k +

[
S

(t)
rr,k

]−1
(λtτ

(t−1)
tk rty

T
t − λtτ

(t−1)
tk rtr

T
t B

(t)
k )

= B
(t)
k +

[
S

(t)
rr,k

]−1
λt τ

(t−1)
tk rt(y

T
t − rTt B

(t)
k ). (A.43)

A.12 Derivatives of the complete-data log-likelihood for

the AR-NH-HMM model w.r.t the parameters of

the hidden process

The derivatives of the function (5.55) we attempt to maximize w.r.t wℓ, using the IRLS
algorithm, for ℓ = 1, . . . ,K where wℓ = (wℓ

1, . . . ,w
ℓ
K) are given as follows. In (5.55) we

have Aℓk(yt−1;wℓ) =
exp (wℓ

k

T
yt−1)

∑K
k=1 exp (wℓ

k

T
yt−1)

. The first derivative of Lc(Ψ;Y, z) is therefore
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A.13 Derivatives of the Q-function w.r.t the parameters of the hidden
process for the AR-NH-HMM model

given by:

∂Lc(Ψ;Y, z)

∂wℓ
h

=
K∑

k=1

n∑

t=2

zt−1,ℓztk
∂ logAℓk(yt−1;wℓ)

∂wℓ
h

=

K∑

k=1

n∑

t=2

zt−1,ℓztk
1

Aℓk(yt−1;wℓ)

∂Aℓk(yt−1;wℓ)

∂wℓ
h

=

K∑

k=1

n∑

t=2

zt−1,ℓztk
1
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Aℓk(yt−1;wℓ) (δkh −Aℓh(yt−1;wℓ))yt−1

=
n∑

t=2

(
K∑

k=1

zt−1,ℓztkδkh −Aℓh(yt−1;wℓ)
K∑

k=1

ξ
(q)
tℓk

)
yt−1

=

n∑

t=2

(
zt−1,ℓzth −Aℓh(yt−1;wℓ)

K∑

k=1

zt−1,ℓztk

)
yt−1

=

n∑

t=2

(zt−1,ℓzth −Aℓh(yt−1;wℓ)zt−1,ℓ)yt−1 (A.44)

where in the third step we used the derivation result in (A.2) and in the last step we
used the fact that

∑K
k=1 zt−1,ℓztk = zt−1,ℓ

∑K
k=1 ztk = zt−1,ℓ.

The Hessian matrix is composed of (K − 1) × (K − 1) block matrices where each
block matrix is of dimension (d× d) and is given by:

∂2Lc(Ψ;Y, z)

∂wℓ
h∂w

ℓ
k

T
=

n∑

t=2

∂ (zt−1,ℓzth −Aℓh(yt−1;wℓ)zt−1,ℓ)yt−1

∂wℓ
k

T

= −
n∑

t=2

zt−1,ℓyt−1
∂Aℓh(yt−1;wℓ)

∂wT
k

= −
n∑

t=2

zt−1,ℓyt−1Aℓh(yt−1;wℓ) (δhk −Aℓk(yt−1;wℓ))y
T
t−1

= −
n∑

t=2

zt−1,ℓAℓh(yt−1;wℓ) (δhk −Aℓk(yt−1;wℓ))yt−1y
T
t−1. (A.45)

A.13 Derivatives of the Q-function w.r.t the parameters

of the hidden process for the AR-NH-HMM model

Here we give the derivatives of the function (5.74) given by

Qw(wℓ,Ψ
(q)) =

K∑

k=1

n∑

t=2

ξ
(q)
tℓk logAℓk(yt−1;wℓ) (A.46)
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we attempt to maximize w.r.t wℓ for ℓ = 1, . . . ,K using the IRLS algorithm where

wℓ = (wℓ
1, . . . ,w

ℓ
K) and Aℓk(yt−1;wℓ) =

exp (wℓ
k

T
yt−1)

∑K
k=1 exp (wℓ

k

T
yt−1)

. The first derivative of

Qw(wℓ,Ψ
(q)) is given by:

∂Qw(wℓ,Ψ
(q))

∂wℓ
h

=

K∑

k=1

n∑

t=2

ξ
(q)
tℓk

∂ logAℓk(yt−1;wℓ)

∂wℓ
h

=
K∑

k=1

n∑

t=2

ξ
(q)
tℓk

1

Aℓk(yt−1;wℓ)

∂Aℓk(yt−1;wℓ)

∂wℓ
h

=
K∑

k=1

n∑

t=2

ξ
(q)
tℓk

1

Aℓk(yt−1;wℓ)
Aℓk(yt−1;wℓ) (δkh −Aℓh(yt−1;wℓ))yt−1

=

n∑

t=2

(
K∑

k=1

ξ
(q)
tℓkδkh −Aℓh(yt−1;wℓ)

K∑

k=1

ξ
(q)
tℓk

)
yt−1

=

n∑

t=2

(
ξ
(q)
tℓh −Aℓh(yt−1;wℓ)

K∑

k=1

ξ
(q)
tℓk

)
yt−1

=
n∑

t=2

(
ξ
(q)
tℓh −Aℓh(yt−1;wℓ)τ

(q)
t−1,ℓ

)
yt−1 (A.47)

where in the third step we used the derivation result in (A.2) and in the last step we used
the fact that

∑K
k=1 ξtℓk =

∑K
k=1 p(zt = k, zt−1 = ℓ|Y,Ψ) = p(zt−1 = ℓ|Y,Ψ) = τt−1,ℓ.

The Hessian matrix is composed of (K − 1) × (K − 1) block matrices where each
block matrix is of dimension (d× d) and is given by:

∂2∂Qw(wℓ,Ψ
(q))

∂wℓ
h∂w

ℓ
k

T
=

n∑

t=2

∂
(
ξ
(q)
tℓh −Aℓh(yt−1;wℓ)τ

(q)
t−1,ℓ

)
yt−1

∂wℓ
k

T

= −
n∑

t=2

τ
(q)
t−1,ℓyt−1

∂Aℓh(yt−1;wℓ)

∂wT
k

= −
n∑

t=2

τ
(q)
t−1,ℓyt−1Aℓh(yt−1;wℓ) (δhk −Aℓk(yt−1;wℓ))y

T
t−1

= −
n∑

t=2

τ
(q)
t−1,ℓAℓh(yt−1;wℓ) (δhk −Aℓk(yt−1;wℓ))yt−1y

T
t−1.(A.48)
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Appendix B

B.1 Convex function

Let f be a real-valued function whose domain is X . f is a convex function if for any
two points x1 and x2 in its domain X and any λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≤ f(x1) + (1− λ)f(x2). (B.1)

If f is twice differentiable everywhere in X , f is a convex function if ∂2f
∂2x
≥ 0 for all

x ∈ X . In the case of f taking vector-valued inputs, this is generalized to the condition

that its Hessian ∂2f
∂x∂xT is positive semi-definite ( ∂2f

∂x∂xT ≥ 0).

B.2 Jensen’s inequality

Jensen’s inequality is stated as follows. Let f be a convex function whose domain is X ,
and let X be a random variable. Then:

E[f(X)] ≥ f(E[X])

Remark: Jensen’s inequality also holds for a concave function f , but with the direc-
tion of the inequality reversed

E[f(X)] ≤ f(E[X])

since the function f is concave if and only if −f is convex (i.e., the Hessian ∂2f
∂x∂xT is

negative semi-definite, written ∂2f

∂x∂xT ≤ 0).
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B.3 The Kronecker product

B.3 The Kronecker product

If A is a m×m matrix and B is a n× n matrix, then the Kronecker product of A and
B is the (m×m)× (n× n) matrix

A⊗B =




a11B . . . a1mB
...

. . .
...

am1B . . . ammB


 (B.2)

For the properties of the Kronecker product, see (Alan, 2005, Chapter 13).

B.4 Hadamard product

Let A and B be m × n matrices. The Hadamard product of A and B is defined by
(A ◦ B)ij = AijBij for all 1 ≤ i ≤ m, 1 ≤ j ≤ n. The Hadamard product is simply
entrywise multiplication.

B.5 Construction of B-splines basis functions

Given the sequence of knots ζ0 < ζ1 < . . . < ζK+1 (ζ0 and ζK+1 are the two bounds of
t), let us define the augmented knot sequence τ such that

• τ1 ≤ τ2 . . . ≤ τM ≤ ζ0;

• τM+k = ζk, k = 1, . . . ,K;

• ζK+1 ≤ τK+M+1 ≤ τK+M+2 . . . ≤ τK+2M .

The actual values of these additional knots beyond the boundary are arbitrary, and a
common choice is to make them all the same and equal to ζ0 and ζK+1 respectively.

Let us denote by Bj,M(t) the jth B-spline basis function of order M for the knot-
sequence

τ1 ≤ τ2 . . . ≤ τM ≤ ζ0 < ζ1 < . . . < ζK < ζK+1 ≤ τK+M+1 ≤ τK+M+2 . . . ≤ τK+2M .

These basis functions are defined recursively as follows:

• Bj,1(ti) = 1[τj ,τj+1], ∀j = 1, . . . ,K + 2M − 1;

• Bj,M(ti) =
ti−τj

τj+M−1−τj
Bj,M−1(ti) +

τj+M−ti
τj+M−τj+1

Bj+1,M−1(ti), ∀j = 1, . . . ,K +M.

For the B-spline regression model, the ith row ti of the n× (M +K) regression matrix
X is then constructed as follows:

ti = [B1,M (ti), B2,M (ti), . . . , BM+K,M(ti)].
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B.6 Construction of natural cubic splines basis functions

B.6 Construction of natural cubic splines basis functions

The natural cubic splines is a spline regression model with constraints that consist in
considering that the spline function is linear before the first internal knot (in [ζ0, ζ1])
and after the last internal knot (in [ζK , ζK+1])). These constraints imply null second
and third derivatives of the spline function in these regions. Formally one obtains
β1 = 0, β2 = 0,

∑K
k=1 βk+2 = 0,

∑K
k=1 ζkβk+2 = 0). The natural cubic spline function

is given by:

f(ti) =

K+2∑

j=1

βjhj(ti) (B.3)

where β = (β1, . . . , βK+2)
T is the vector of spline coefficients and the truncated power

basis hj(ti) are defined as follows:

• hj(ti) = t
j−1
i , j = 1, 2

• hk+2(ti) = dk(ti)− dK−1(ti), k = 1, . . . ,K − 2,

with dk(ti) =
(ti−ζk)

3
+−(ti−ζK)3+
ζK−ζk

. Thus, each row of the regression matrix X, in the case
of natural cubic splines is constructed as follows:

ti = [1, ti, dk(ti)− dK−1(ti)].
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F. Chamroukhi, A. Samé, G. Govaert, and P. Aknin. A regression model with a
hidden logistic process for signal parameterization. Proceedings of XVIIth European
Symposium on Artificial Neural Networks ESANN, pages 503–508, 2009b.
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• F. Chamroukhi, A. Samé and P. Aknin (23-25 June 2009) “A probabilistic ap-
proach for the classification of railway switch operating states”, The 6th Inter-
national Conference on Condition Monitoring and Machinery Failure Prevention
Technologies, Dublin, UK.
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Titre : Régression à processus latent pour la modélisation, la classification et le suivi
de courbes

Résumé : Cette thèse s’est focalisée sur l’analyse de courbes à changements de régime.
Nous proposons de nouvelles approches probabilistes génératives pour modéliser, classer
et suivre temporellement de telles courbes. Le premier volet de la thèse concerne la
modélisation et la classification (supervisée ou non) d’un ensemble de courbes
indépendantes. Les approches proposées dans ce cadre, qui peuvent être appliquées
aussi bien à une courbe qu’à un ensemble de courbes, reposent sur un modèle de
régression spécifique incorporant un processus caché s’adaptant aussi bien à des change-
ments de régimes brusques qu’à des changements lents. Le second volet de la thèse con-
cerne la modélisation dynamique d’une séquence de courbes à changements de régime.
Nous proposons pour cela des modèles autorégressifs intégrant eux même un processus
caché et dont l’apprentissage est réalisé à la fois en mode “hors ligne”, quand les courbes
sont stockées à l’avance, et en mode “en ligne”, quand les courbes arrivent au fur et à
mesure au cours du temps. Le volet applicatif de la thèse concerne le diagnostic et le
suivi d’état de fonctionnement du mécanisme d’aiguillage des rails qui est un organe
impactant considérablement la disponibilité du réseau ferroviaire. Sa surveillance est es-
sentielle pour mieux planifier les actions de maintenance. Les données disponibles pour
réaliser cette tâche sont les courbes de puissance électrique acquises lors des manœu-
vres d’aiguillage, qui ont notamment la particularité de présenter des changements de
régime. Les résultats obtenus sur des courbes simulées et des courbes acquises lors de
manœuvres d’aiguillage illustrent l’utilité pratique des approches introduites dans cette
thèse.

Mots-clés : Modélisation de courbes, régression, classification, modèle de mélange,
Modèle de Markov caché, modélisation dynamique, apprentissage en ligne, algorithmes
EM, diagnostic.
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