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Abstract. Mixtures-of-Experts models and their maximum likelihood
estimation (MLE) via the EM algorithm have been thoroughly studied
in the statistics and machine learning literature. They are subject of a
growing investigation in the context of modeling with high-dimensional
predictors with regularized MLE. We examine MoE with Gaussian gat-
ing network, for clustering and regression, and propose an `1-regularized
MLE to encourage sparse models and deal with the high-dimensional
setting. We develop an EM-Lasso algorithm to perform parameter esti-
mation and utilize a BIC-like criterion to select the model parameters,
including the sparsity tuning hyperparameters. Experiments conducted
on simulated data show the good performance of the proposed regular-
ized MLE compared to the standard MLE with the EM algorithm.
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1 Introduction

Mixture-of-experts (MoE), originally introduced in [12,13], form a class of condi-
tional mixture models [16] for modeling, clustering and prediction in the presence
of heterogeneous data. Their construction rely on conditional mixture models
[16] in which both the gating network, formed by the mixing proportions, and
the experts network formed by the mixture components, depend on the pre-
dictors or the inputs. The most popular choices for the gating network are the
softmax gating functions [12] or the Gaussian gating functions; the latter is a
particular case of the exponential family gating functions introduced in [24].

Different choices are now common for the expert network model, depending
on the type of the observed responses. For instance, a model for normal ob-
servations for regression and clustering was introduced in [5] or non-normally
distributed expert models like in [1] to deal with skewed data distributions [3],
to ensure robustness to outliers [2,19], or to accommodate both skewness and
robustness as in [4]. A detailed review on MoE models can be found in [17]
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Fitting MoE is generally performed by maximum-likelihood estimation (MLE)
via the EM algorithm or its variants [8,15]. In a high-dimensional setting, the
regularization of the MLE, to perform parameter estimation under a sparsity hy-
pothesis and hence to simultaneously perform feature selection, has been studied
in [14] and more recently in [7,11]. These approaches consider `1 and `2 penal-
ties for the log-likelihood function, and are constructed upon softmax gating
functions.

In this paper, we consider MoE with Gaussian gated functions, and propose
an `1-regularized MLE via and EM-Lasso algorithm. We study the performance
of the proposal on an experimental setup. The remainder of this paper is or-
ganized as follows. Section 2 describes the MoE modeling framework, and the
Gaussian-gated MoE and its MLE with the EM algorithm. Then, Section 3
presents the proposed regularized MLE and the EM-Lasso algorithm. Finally,
Section 4 is dedicated to numerical experiments.

2 Gaussian-Gated Mixture-of-Experts

2.1 MoE modeling framework

We consider mixtures-of-experts model to relate a high-dimensional predictor
X ∈ Rp to a response Y ∈ Rd, potentially multivariate d ≥ 1. We assume
that the pair (X,Y ) is generated from a heterogeneous population governed
by a hidden structure represented by a latent categorical variable Z ∈ [K] =
{1, . . . ,K}. Assume that we observe a random sample {(Xi,Yi)}i=1,...,n of n
independently and identically distributed (i.i.d) pairs (Xi,Yi) from (X,Y ), and
let D = ((x1,y1), . . . , (xn,yn)) be an observed data sample. Assume that the
pair (X,Y ) follows a MoE distribution, then the MoE model can be defined as

f(yi|xi;Ψ) =

K∑
k=1

gk(xi; w)f(yi|xi;θk) (1)

where gk(x; w) = P(Z = k|X = x; w) is the distribution of the hidden variable
Z given the predictor x with parameters w, which represents the gating network,
and the conditional component densities f(y|x;θk) = f(yi|X = x, Z = k;θ)
represent the experts network whose parameters are θk.

2.2 Gaussian-Gated Mixture-of-Experts

Let us define by φm(v;m,C) = (2π)−m/2|C|−1/2 exp
(
− 1

2 (v −m)>C−1(v −m)
)

the probability density function of a Gaussian random vector V of dimension
m with mean m and covariance matrix C. We consider mixture-of-experts for
clustering and regression of heterogeneous data. In this case, the mixture of
Gaussian-gated experts models, we abbreviate as MoGGE, for multivariate real
responses, is defined by (1) where the experts are (multivariate) Gaussian re-
gressions, given by

f(yi|xi;θk) = φd(yi; ak + BT
k xi,Σk) (2)
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and the gating network g(xi; w) is defined by Gaussian gating function of the
form:

gk(xi; w) =
P(Zi = k)f(xi|Zi = k;wk)∑K
`=1 P(Zi = `)f(xi|Zi = `;w`)

=
αkφp(xi;µk,Rk)∑K
`=1 α`φp(xi;µ`,R`)

(3)

with P(Zi = k) = αk, f(xi|Zi = k; w) = φp(xi;µk,Rk) (k = 1, . . . ,K). This
Gaussian gating network was introduced in [24] to sidestep the need for a non-
linear optimization routine in the inner loop of the EM algorithm in the case of
a softmax function for the gating network. The MoGGE model is thus param-
eterized by the parameter vector Ψ = (wT ,θT )T where w = (wT

1 , . . . ,w
T
K)T

is the parameter vector of the gating network and θ = (θT1 , . . . ,θ
T
K)T is the

parameter vector of experts network, with wk = (αk,µ
T
k , vech(Rk)T )T and

θk = (aTk ,B
T
k , vech(Σk)T )T for k = 1, . . . ,K. The approximation capabilities

of this model have been studied very recently in [18].

2.3 Maximum likelihood estimation via the EM algorithm

Mixtures-of-experts of the form (1) with softmax gating functions are in general
estimated by maximizing the (conditional) log-likelihood

∑n
i=1 log f(yi|xi;Ψ)

by using the EM algorithm , in which the M-step requires an internal iterative
numerical optimization procedure (eg. a Newton-Raphson algorithm) to update
the softmax parameters. We follow the approach of estimating MoGGE in [24],
which relies on maximizing the joint loglikelihood, and in the MLE, the M-Step
can then be solved in a closed form. Indeed, based on equations (1), (2), and
(3), we the MoGGE conditional density is given by:

f(yi|xi;Ψ) =

K∑
k=1

αkφp(xi;µk,Rk)∑K
`=1 α`φp(xi;µ`,R`)

φd(yi; ak + BT
k xi,Σk)· (4)

Then we can write the joint density as:

f(yi,xi;Ψ) = f(xi; w)f(yi|xi;θ) =

K∑
k=1

P(Zi = k)f(xi;wk)f(yi|xi;θk)

=

K∑
k=1

αkφp(xi;µk,Rk)φd(yi; ak + BT
k xi,Σk)· (5)

The joint log-likelihood to be maximized by EM is therefore given by:

L(Ψ) =

n∑
i=1

log f(yi,xi;Ψ) =

n∑
i=1

log

K∑
k=1

αkφp(xi;µk,Rk)φd(yi; ak+BT
k xi,Σk)·

(6)
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2.4 The EM algorithm for the MoGGE model

The complete-data log-likelihood upon which the EM principle is constructed is
then defined by

Lc(Ψ) =

n∑
i=1

K∑
k=1

Zik log
[
αkφp(xi;µk,Rk)φd(yi; ak + BT

k xi,Σk)
]

(7)

where Zik being an indicator binary-valued variable such that Zik = 1 if Zi = k
(i.e., if the ith pair (xi,yi) is generated from the kth expert and Zik = 0 other-
wise. The EM algorithm, after starting with an initial solution Ψ (0), alternates
between the E- and the M- Steps until convergence (when there is no longer a
significant change in the log-likelihood (6)).

E-step: Compute the expectation of the complete-data log-likelihood (7), given
the observed data D and the current parameter vector estimate Ψ (q):

Q(Ψ ;Ψ (q)) = E
[
Lc(Ψ)|D;Ψ (q)

]
=

n∑
i=1

K∑
k=1

τ
(q)
ik log

[
αkφp(xi;µk,Rk)φd(yi; ak + BT

k xi,Σk)
]
, (8)

where:

τ
(q)
ik = P(Zi = k|yi,xi;Ψ (q)) =

α
(q)
k φp(xi;µ

(q)
k ,R

(q)
k )φd(yi; a

(q)
k + B

(q)
k

T
xi,Σ

(q)
k )

f(xi,yi;Ψ (q))
,

(9)
is the posterior probability that the observed pair (xi,yi) is generated by the
kth expert. This step therefore only requires the computation of the posterior

component membership probabilities τ
(q)
ik (i = 1, . . . , n), for k = 1, . . . ,K.

M-step: Calculate the parameter vector update Ψ (q+1) by maximizing the Q-
function (8), i.e, Ψ (q+1) = arg maxΨ Q(Ψ ;Ψ (q)). By decomposing theQ−function
(8) as

Q(Ψ ;Ψ (q)) =

K∑
k=1

Q(wk;Ψ (q)) +Q(θk;Ψ (q)) (10)

where

Q(wk;Ψ (q)) =

n∑
i=1

τ
(q)
ik log [αkφp(xi;µk,Rk)] (11)

and

Q(θk;Ψ (q)) =

n∑
i=1

τ
(q)
ik log φd(yi; ak + BT

k xi,Σk), (12)

the maximization can then be done by performing K separate maximizations
w.r.t the gating network parameters and the experts network parameters.
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Updating the the gating networks’ parameters: Maximizing (11) w.r.t wk’s cor-
responds to the M-Step of a Gaussian Mixture Model [16]. The closed-form
expressions for updating the parameters are given by:

α
(q+1)
k =

n∑
i=1

τ
(q)
ik

/
n, (13)

µ
(q+1)
k =

n∑
i=1

τ
(q)
ik xi

/ n∑
i=1

τ
(q)
ik , (14)

R
(q+1)
k =

n∑
i=1

τ
(q)
ik (xi − µ(q+1)

k )(xi − µ(q+1)
k )T

/ n∑
i=1

τ
(q)
ik · (15)

Updating the experts’ network parameters Maximizing (12) w.r.t θk’s corre-
sponds to the M-Step of standard MoE with multivariate Gaussian regression
experts, see e.g [6]. The closed-form updating formulas are given by:

a
(q+1)
k =

n∑
i=1

τ
(q)
ik (yi − B

(q)
k

T
xi)

/ n∑
i=1

τ
(q)
ik , (16)

B
(q+1)
k =

[ n∑
i=1

τ
(q)
ik xix

T
i

]−1
n∑

i=1

τ
(q)
ik xi(yi − a

(q+1)
k )T , (17)

Σ
(q+1)
k =

n∑
i=1

τ
(q)
ik (yi − (a

(q+1)
k + B

(q+1)
k

T
xi))(yi − (a

(q+1)
k + B

(q+1)
k

T
xi))

T
/ n∑

i=1

τ
(q)
ik ·(18)

However, in a high dimensional setting, MLE may be unstable or even unfea-
sible. One possible way to proceed in such a context is the regularization of the
objective function. In the context of MoE models, this has been studied namely
in [14,7,11] where `1 and `2 regularization for the log-likelihood function of the
standard MoE model with softmax gating network. This penalized MLE allow an
efficient estimation for simultaneous parameter estimation and feature selection.

3 Penalized maximum likelihood parameter estimation

Here we study the regularized estimation of the MoGGE model. We first consider
the case when d = 1 (univariate response yi). The expert densities are thus
defined by f(yi|xi;θk) = φ(yi;βk,0 + βTk xi, σ

2
k) with θk = (βk,0,β

T
k , σ

2
k)T .

In our proposed approach, rather than maximizing the joint log-likelihood
(6), we attempt to maximize its `1-regularized version, to encourage sparse mod-
els and to perform estimation and feature selection. The resulting penalized
log-likelihood can then be defined by:

L(Ψ) = L(Ψ)− Penλ,γ(Ψ) (19)

where L(Ψ) is the observed-data log-likelihood of Ψ defined by (6) and Penλ,γ(Ψ)
is a Lasso [22] regularization term encouraging sparsity for the expert network
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parameters and the gating network parameters, with λ and γ positive real values
representing tuning hyperparameters. For regularizing the expert parameters,
the penalty is naturally applied to the regression coefficient vectors βk. For
the gating network, since the estimates are those of a Gaussian mixture, we
then follow the strategy of feature selection in model-based clustering in [20]
in which we apply the penalty to the Gaussian mean vectors µk and assume
that the Gaussian covariance matrices of the gating network are diagonal, ie.
Rk = diag(ν21 , . . . , ν

2
K). The penalty function is then given by:

Penλ,γ(Ψ) = λ

K∑
k=1

‖βk‖1 + γ

K∑
k=1

‖µk‖1· (20)

We now derive an EM-Lasso algorithm to maximize (19).

3.1 The EM-Lasso algorithm for the MoGGE model

Lets first define the penalized joint complete-data log-likelihood, which is given
by

Lc(Ψ) = Lc(Ψ)− Penλ,γ(Ψ) (21)

where Lc(Ψ) is the non-regularized joint complete-data log-likelihood defined
by (7). The EM-Lasso algorithm then alternates between the two following steps
until convergence (when there is no significant change in (19).

E-step. This step computes the expectation of the complete-data log-likelihood
(21), given the observed data D, using the current parameter vector Ψ (q):

Qλ,γ(Ψ ;Ψ (q)) = E
[
Lc(Ψ)|D;Ψ (q)

]
= Q(Ψ ;Ψ (q))− Penλ,γ(Ψ) (22)

which only requires the computation of the posterior probabilities of component

membership τ
(q)
ik (i = 1, . . . , n), for each of the K experts as defined by (9).

M-step. This step updates the value of the parameter vector Ψ by maximizing
the Q-function (8) with respect to Ψ , that is, by computing the parameter vector
update Ψ (q+1) = arg maxΨ Qλ,γ(Ψ ;Ψ (q)). Now we have this decomposition

Qλ,γ(Ψ ;Ψ (q)) =

K∑
k=1

Qγ(wk;Ψ (q)) +Qλ(Ψk;Ψ (q)) (23)

and the maximization is performed byK separate maximizations of the penalized
Q-functions Qγ(wk;Ψ (q)) and Qλ(Ψk;Ψ (q)).
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Coordinate Ascent for updating the gating network Updating the gating network
parameters consists of maximizing w.r.t wk the following penalized Q-function

Qγ(wk;Ψ) =

n∑
i=1

τ
(q)
ik log [αkφp(xi;µk,Rk)]− γ

p∑
j=1

|µk,j |

=

n∑
i=1

τ
(q)
ik logαk +

n∑
i=1

τ
(q)
ik log φp(xi;µk,Rk)− γ

p∑
j=1

|µk,j |·

It can be seen that the updates of the αk’s are unchanged compared to the
standard algorithm and are given by (13). For the mean vectors, updating the
coefficients µk,j corresponds to weighted version or and `1-regularized maximum
likelihood estimation a Gaussian mean; The coefficients µk,j can then be updated
in a cyclic way by using a Coordinate ascent algorithm until (24) is maximized.
Coordinate ascent (CA) [10, sec. 5.4] [9,23] is indeed an efficient way to solve
Lasso-regularization problems. For each coefficient index j = 1, . . . , p, it can be
easily shown that, after starting with the previous EM-Lasso estimate as initial

value, i.e, µ
(0,q)
kj = µ

(q)
kj , each iteration t of the CA algorithm updates are given

by the following updating formulas (see eg. [20]), written in a scalar and a vector
form:

µ
(t+1,q)
kj = sign(µ̃

(q+1)
kj )

(
|µ̃(q+1)
kj | − γ∑n

i=1 τ
(q)
ik

ν
2(q)
kj

)
+

= S

(
n∑
i=1

τ
(q)
ik xij ; γν

2(q)
kj

)/ n∑
i=1

τ
(q)
ik

= S
(
XT
j τ

(q)
k ; γν

2(q)
kj

)
/1Tnτ

(q)
k (24)

with, µ̃
(q+1)
kj =

∑n
i=1 τ

(q)
ik xij

/∑n
i=1 τ

(q)
ik is the usual non-regularized MLE up-

date for µk (Eq. (14)), Xj the jth column of X, 1n is a vector of ones of size n,

τ
(q)
k = (τ

(q)
1k , . . . , τ

(q)
nk )T , and S(u; η) := sign(u)(|u| − η)+ is the soft-thresholding

operator with (.)+ = max{., 0}. The CA procedure is iterated until no significant
change in (24) is observed. We then take the update at convergence of the CA

algorithm, i.e µ
(q+1)
kj = µ

(t+1,q)
kj . Finally, the updates of the diagonal elements of

the co-variance matrices are given by:

ν
2(q+1)
kj =

n∑
i=1

τ
(q)
ik (xij − µ(q+1)

kj )2
/ n∑
i=1

τ
(q)
ik · (25)

Coordinate Ascent for updating the experts network The maximization step
for updating the expert parameters θk consists of maximizing the function
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Qλ(θk;Ψ (q)) given by:

Qλ(θk;Ψ (q)) = Q(Ψk;Ψ (q))− λ
p∑
j=1

|βk,j |

= − 1

2σ2
k

n∑
i=1

τ
(q)
ik

(
yi − (βk,0 + βTk xi)

)2 − n
(q)
k

2
log(2πσ2

k)− λ
p∑
j=1

|βk,j |·

Updating βk, for each component k, consists of solving an independent weighted
Lasso problem where the weights are the posterior component membership prob-

abilities τ
(q)
ik . Each of these weighted Lasso problems is then separately solved

by Coordinate Ascent. The CA algorithm, after starting from the previous EM-

Lasso estimate as initial values, i.e β
(0,q)
kj = β

(q)
kj , calculates, at each iteration t,

the following coordinate updates, until no significant change in (26):

β
(t+1,q)
kj = S

(
n∑
i=1

τ
(q)
ik r

(t,q)
ikj xij ;λσ

(q)2
k

)/ n∑
i=1

τ
(q)
ik x

2
ij (26)

= S
(
XT
j W

(q)
k r

(q)
kj ;λσ

(q)
k

2)
/(XT

j W
(q)
k Xj), (27)

with r
(t,q)
ikj = yi−β(q)

k0 −xTi β
(t,q)
k +β

(t,q)
kj xij , r

(t,q)
kj = y−β(q)

k0 1n−Xβ
(t,q)
k +β

(t,q)
kj Xj

is the residual without considering the contribution of the j-th coefficient, and

W
(q)
k = diag(τ

(q)
k ). The parameter vector update is then taken at convergence

of the CA algorithm, i.e β
(q+1)
k = β

(t+1,q)
k . Then, the intercept and the variance,

have the following standard updates:

β
(q+1)
k,0 =

n∑
i=1

τ
(q)
ik (yi − xTi β

(q+1)
k )

/ n∑
i=1

τ
(q)
ik = τ

(q)
k

T
(y −Xβ

(q+1)
k )

/
1Tnτ

(q)
k (28)

σ
2(q+1)
k =

n∑
i=1

τ
(q)
ik

(
yi − (β

(q+1)
k,0 + xTi β

(q+1)
k )

)2/ n∑
i=1

τ
(q)
ik (29)

=
∥∥√W

(q)
k

(
y − β(q+1)

k,0 1n −Xβ
(q+1)
k

)∥∥2
2

/
1Tnτ

(q)
k · (30)

3.2 Algorithm tuning and model selection

In practice, appropriate values of the tuning parameters (λ, γ) as well as the
number of experts K should be chosen. In order to select them, we use a modified
BIC based on a grid of candidate values for K, λ and γ. This modified BIC is
an extension of the criterion used in [21] for regularized mixture of regressions
and was used in [7,11] and is defined as:

BIC(K,λ, γ) = L(Ψ̂K,λ,γ)− df(K,λ, γ)
log n

2
, (31)

where Ψ̂K,λ,γ is the penalized log-likelihood estimator obtained by the EM-
Lasso algorithm, and df(K,λ, γ) is the estimated number of non-zero coefficients
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in the model, interpreted as the degrees of freedom. Let’s assume that K0 ∈
{K1, . . . ,KM}, whith K0 the true number of expert components. For each value
of K, we define grids of tuning parameters {λ1, . . . , λM1} and {γ1, . . . , γM2}.
For each triplet (K,λ, γ), we calculated the penalized log-likelihood estimators

Ψ̂K,λ,γ and compute BIC(K,λ, γ). Finally, the model with parameters (K,λ, γ)
having the highest BIC value, is then selected.

4 Experimental study

In this section, we study the performance of our approach on simulated data.
The codes are written in Matlab and in R and will be made publicly available
on https://github.com/fchamroukhi. Different evaluation criteria are used to
assess the model’s performance, including sparsity, estimation of parameters and
clustering accuracy.

Sparsity performance In order to evaluate the sparsity of the model, we calculate
the specificity/sensitivity defined by:

– Sensitivity: proportion of correctly estimated zero coefficients;
– Specificity: proportion of correctly estimated nonzero coefficients.

Clustering performance For measuring the clustering performance, we calculate
the correct classification rate and the Adjusted Rate index (ARI) between the
true simulated partition and the partition estimated by the EM algorithms. The
estimated cluster labels are obtained by plugin the Baye’s allocation rule for the
estimated model, which consists of maximizing the posterior probabilities defined
in 9 and calculated with the estimated parameters. That is, the estimated class
label ẑi for the i-th pair (Xi,Yi) is given by

ẑi = arg
K

max
k=1

τik(Ψ̂) (i = 1, . . . , n)· (32)

For calculating the classification rate, we evaluate all the possible permutations
of the obtained partition, and the one giving the best rate is then retained.

4.1 Simulation study

The data are generated according to the following generative hierarchical process:

Zi ∼ Mult(1;α1, . . . , αK)

Xi|Zi = zi ∼ Np(.;µzi ,Rzi)

Yi|Xi = xi, Zi = zi ∼ Nd(.;βzi,0 + βTzixi, σ
2
zi).

We consider a MoGGE model of K = 2 expert components. The parame-
ters of the Gaussian gating function, whose prior probabilities are α1 = α2 =
0.5, are µ1 = (0, 1,−1,−1.5, 0, 0.5, 0, 0)T , µ2 = (2, 0, 1,−1.5, 0,−0.5, 0, 0)T and

https://github.com/fchamroukhi
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R1 = R2 = diag(ν21 , . . . , ν
2
K) with ν21 = . . . = ν2K = 1. The parameters

of the Gaussian expert regressors are β1 = (0, 1.5, 0, 0, 0, 1, 0,−0.5)T , β2 =
(1,−1.5, 0, 0, 2, 0, 0, 0.5), and σ1 = σ2 = 1. For each data set, we sample n = 300
data pairs, and for each experiment, 100 datasets were generated to average the
results and provide error bars. In order to get the best model for each sample in
the sense of the BIC criterion, we estimated the penalized model with the follow-
ing grids of values for the parameters: λ = (0, 1, 2, . . . , 25), γ = (0, 1, 2, . . . , 25);
The minimum and maximum values selected for λ and γ are respectively 4, 20
and 3, 18. Then we selected the penalized model which maximizes the modified
BIC value (31). The results will be provided in the parts below.

Obtained results

Parameter estimation accuracy Figure 1 shows the estimated parameters for
the gating network, with the error bars, for the proposed approach and for the
standard MoGGE model. Similarly, Figure 2 shows the estimated parameters
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Fig. 1: Boxplots of the estimated gating network parameters µk,j : component
k = 1, top, and component k = 2, bottom. The red stars are the true values.
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of the gating network. It can be seen on the two figures that, as expected, the
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Fig. 2: Boxplots of the estimated expert network parameters βk,j : component
k = 1, top, and component k = 2, bottom. The red stars are the true values.

proposed lasso-regularization approach with the proposed EM-Lasso algorithm,
clearly provides models that are sparser, compared to the standard approach
with EM, where the zero-coefficients are not precisely recovered. This is observed
for both the gating function parameters, and the expert function parameters.
While the penalized version we can see that it may be subject of a bias in
estimating the non-zero coefficients, the parameter estimated and the bias are
still reasonable. Hence, if one would to encourage sparsity, and to still have a
good performance in density estimation, then the penalized MoGGE is a better
choice, compared to the standard MLE of the MoGGE model.

Sensitivity/specificity results Table 1 gives the sensitivity (S1) and specificity
(S2) results for the two compared approaches. Note that here since we have
two components, then only the estimation of one Gaussian gating function is
considered, as the parameters of the other one are zeros. It can be seen that,
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Table 1: Sensitivity (S1) and specificity (S2) results.

Method
Expert 1 Expert 2 Gate

S1 S2 S1 S2 S1 S2

MoGGE-EM 0.000 1.000 0.000 1.000 0.000 1.000

MoGGE-EMLasso-BIC 0.790 1.000 0.785 1.000 0.779 1.000

none of the parameters in the non penalized model has a null value. The penalized
model provides naturally sparser models compared to the standard non-penalized
one.

Clustering results We calculate the accuracy of clustering for each data set. The
results in terms of correct classification rate and ARI values are provided in
Table 2. We can see that the classification rate as well as as the Adjusted Rand
Index are very close for the two methods, with a slight advantage to the proposed
approach.

Table 2: Clustering results: correct classification rate and Adjusted Rand Index.
Model C.rate ARI

MoGGE - EM 97.25%(0.8770%) 89.28%(3.325%)

MoGGE-EMLasso-BIC 97.43%(0.8521%) 89.99%(3.231%)

Selecting the sparsity tuning parameters We compute the Lasso path for a sample
with same parameters as presented at the beginning of the section. On Figure 3,
we observe that even with very small values (null value as well, i.e. non penalized
MoE) of γ, the true zero parameters have values very close to zero. We also note
that for values of ratio close to 0.8 for both λ and γ, almost every true zero
parameters have null values and the slight bias introduced in the true nonzero
parameters is reasonable.

5 Conclusion and future work

In this paper, the mixture of Gaussian-gated experts is studied towards model-
ing and clustering of heterogeneous regression data with high-dimensional pre-
dictors. A regularized MLE approach is proposed to simultaneously perform pa-
rameter estimation and feature selection. The developed EM-Lasso algorithm to
fit the model relies on coordinate ascent updates of the regularized parameters,
and its application in numerical experiments clearly shows it provides sparse
models. Its performance is also compared to the state-of-the art fitting with the
EM algorithm, shows its good performance, in particular in terms of sparsity.
The diagonal hypothesis of the covariance matrix to derive the regularization
(19) is now being relaxed, so that the regularization is on the elements of the
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Fig. 3: Lasso paths of the estimated gating network parameters (top) and expert
network parameters (bottom). The solid line represents the values of the true
non-zero values, and the dashed line represents the true zero values.

precision matrix, i.e a graphical Lasso regularization. A future extension will
also consider multivariate response with dedicated sparsity on the matrices of
regression coefficients.
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