
Hierarchical Dirichlet Process Hidden Markov Model for unsupervised

learning from bioacoustic data

Bartcus Marius BARTCUS@UNIV-TLN.FR
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Abstract

Hidden Markov Models (HMM) are one of

the most used models in statistics and machine

learning for modeling sequential data. One

of the main issues in HMM is the one of se-

lecting the number of hidden states required

for the expectation-maximization (EM) learning

scheme. The infinite Hidden Markov Model

(IHMM) is a Bayesian non-parametric alterna-

tive for standard parametric HMMs that offers a

principled way to tackle this challenging problem

by relying on a Hierarchical Dirichlet Process

(HDP) prior. In this paper, we present an applica-

tion of the the Hierarchical Dirichlet Process for

Hidden Markov Model (HDP-HMM) to a chal-

lenging problem of unsupervised learning from

bioacoustic data. We investigate two different ap-

proaches, the first one uses Gibbs sampling and

the second one uses Beam sampling. The prob-

lem for humpback whale song decomposition

consists in simultaneously finding the structure

of possible hidden whale song units and automat-

ically inferring the unknown number of the hid-

den units from the data. The considered data are

Mel Frequency Cepstral Coefficients (MFCC) of

recording of bioacoustic signals. The experimen-

tal results show the good performance of the pro-

posed Bayesian non-parametric approach.

1. Introduction

Hidden Markov Model (HMM) (Rabiner, 1989) is one of

the most used models in statistics and machine learning for
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the sequential and time series data. However, one main

issue in standard HMM is the one of selecting the num-

ber of hidden states. This is the problem of model se-

lection; the number of states being needed to be known

before learning the model. The Bayesian Non-Parametric

(BNP) approach (Robert, 1994; Hjort et al., 2010) gives a

good alternative for model selection. The infinite Hidden

Markov Model (IHMM) introduced by (Beal et al., 2002)

is a Bayesian non-parametric extension of the standard fi-

nite state HMM by providing a principled way to infer-

ence the number of states from the data in an automatic

way as the learning proceeds. They rely on Hierarchical

Dirichlet Process (HDP) to define a prior over the transi-

tion matrix as developed by (Teh et al., 2006). This model

is known as the hierarchical Dirichlet process for the Hid-

den Markov Model (HDP-HMM) (Teh et al., 2006). HDP-

HMM infers the posterior distribution over the number of

states. However the basic HDP-HMM has the limitation

of an inadequate modeling of the temporal persistence of

states (Fox et al., 2008). This problem has been addressed

in Fox et al. (2008). Another solution for the inference of

the hidden Markov model in the infinite scenario was pro-

posed by (Van Gael et al., 2008) where the Beam sampling

is used. The Beam sampling was seen to have better per-

formance and more robust than Gibbs sampling.

In this work, we rely on this Bayesian Non-Parametric for-

mulation for the Hidden Markov Model and present an ap-

plication of the HDP-HMM to a challenging problem of un-

supervised learning from bioacoustic data. We investigate

two different approaches, the first one uses Gibbs sampling

and the second one uses Beam sampling. The paper is orga-

nized as follows: First, we give a brief introduction of the

finite Hidden Markov Model in Section 2, then Section 3

briefly discusses previous work on infinite Hidden Markov

Models, the background for the Hierarchical Dirichlet Pro-

cess, the model and the inference algorithm are described in

this section. Then, section 4 presents experimental results
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for the humpback whale song data, where we have been

treated the two approaches for learning the infinite HMM

by using the Hierarchical Dirichlet Process: the Gibbs sam-

pling and the Beam sampling.

2. Hidden Markov Model

The finite Hidden Markov Model (HMM) (Rabiner, 1989;

Derrode & Pieczynski, 2006) is well adapted to sequen-

tial data. It assumes that the observed sequence X =
(x1, . . . ,xT ) where xt ∈ R

d is the multidimensional ob-

servation at time t, is governed by a hidden state sequence

z = (z1, . . . , zT ), where zt takes its values in a finite set

{1, . . . ,K}. The HMM is described by the initial state dis-

tribution π1i = p(z1 = i), the transition matrix which can

be denoted by π with elements (πij = p(zt = j|zt−1 = i))
and the parameters Θ = {θ1 . . . θK} of the paramet-

ric conditional probability densities of the observed data

p(xt|zt = k; θk) (the emission densities).

Given the parameters of the HMM {π,Θ}, the joint dis-

tribution of the hidden states z and observations X can be

written:

p(z,X|π1,π,Θ) = p(z1)p(x1|z1)
T∏

t=2

p(zt|zt−1)p(xt|zt)

(1)

In the equation (1) the distribution of state zt−1 conditioned

on zt denotes the transition probability and respectively the

distribution of xt conditioned on state zt, p(xt|zt) denotes

the emission distribution. The model is usually learned

with the EM algorithm with the forward-backward re-

cursion (Bauch-Welch algorithm) (Rabiner & Juang, 1993;

1986) that estimates the transition matrix π, as well as the

emission matrix Θ.

However, HMM have the limitation of model selection, the

number of states K being necessary known a priori. There-

fore, the existence of the Infinite Gaussian Mixture Model

(Rasmussen, 2000) where the number of classes are esti-

mated automatically, makes natural to have the necessity

of the infinite HMM (IHMM) where the number of states

will be inferred during the learning algorithm.

3. Infinite Hidden Markov Model

Bayesian Non-Parametric (BNP) (Robert, 1994;

Hjort et al., 2010) alternative offers a principled way

to tackle the challenging problem of model selection.

(Beal et al., 2002) shows the possibility of extending the

Hidden Markov Model by having a possible infinite num-

ber of hidden states, were the theory of Dirichlet Process

(DP)(Antoniak, 1974; Ferguson, 1973) was used to define

priors over the transition matrix. Because the transitions

of states is given independent priors, there is no coupling

across transitions between different states (Beal et al.,

2002), therefore DP (Ferguson, 1973) is not sufficient to

extend HMM to an infinite model. (Teh et al., 2006) shows

in more detail the Hierarchical Dirichlet Process (HDP)

for the Hidden Markov Model (HDP-HMM).

3.1. Hierarchical Dirichlet Process

Hierarchical modeling is an important tool for Bayesian

statistics, where the parameters are sampled according

to some distributions, involving other parameters (named

hyper-parameters). By adding distributions over the hyper-

parameters the probabilistic models becomes more richer.

This kind of recursion gives the idea of a hierarchical

model.

Hierarchical Dirichlet Process (HDP) extends DP where

groups of data are generated by unique generative process

(each group of data has it’s own model). The HDP con-

sists of a set of DPs Gj coupled through a base DP G0, that

can be interpreted as a mean of Gj . The basic generative

process for HDP is given by the equation (2).

G0|γ,H ∼ DP(γ,H) (2)

Gj |α,G0 ∼ DP(α,G0), ∀j = 1 . . . J

where J is the number of groups of data. The HDP is then

used for the prior distribution over the parameters of the

mixture. Supposing for each of the group of data J , the

iid parameters θj1, θj2, . . ., θjt corresponding to a single

observation xji the likelihood of the data by using the HDP

is then given by:

θjt|Gj ∼ Gj (3)

xjt|θjt ∼ F (θjt)

where F (θjt) is a data likelihood (e.g. a Gaussian distribu-

tion).

By giving a stick-breaking construction and replacing the

DP, the Hierarchical Dirichlet Process (2) becomes:

G0 =

∞∑

k=1

βkδθk
(4)

Gj =

∞∑

k=1

πjkδθk

where the parameters of the model are supposed to be

drawn according to a conjugate distribution 1 θk ∼ H inde-

pendently. For the Gaussian mixtures the parameters mean

and covariance matrix are drawn according to the Normal-

Inverse-Wishart distribution NIW(µ0, κ0, ν0,Λ0) where

1In Bayesian statistics, the conjugate distributions are when
the prior distribution p(θ) and the posterior distributions p(X|θ)
are in the same family.
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the hyper-parameters describes the shapes and the posi-

tion for each mixture densities: µ0 describing where the

mean of the mixtures should be, κ0 the number of pseudo-

observations supposed to be attributed and the hyper-

parameters ν0,Λ0 being similarly for the mixture densi-

ties of the covariance matrix (Wood & Black, 2008). More

details on this conjugate prior over the parameters of the

GMM is given in (Andrew Gelman & Rubin, 2003). Also

note in the HPD with stick-breaking construction equa-

tion (4) the hyper-parameter β = {β}∞k=1
∼ GEM(γ)

where GEM(γ) is the stick-breaking construction for the

DP (Sethurman, 1994), the process being described by the

following steps:

1. Start with stick with length equal to 1.

2. Sample β1 ∼ Beta(1, γ) where Beta meaning Beta

distribution.

3. Break the stick at β1 and set π1 to the length of the

stick on the left.la

4. Take the stick on the right and sample β2 ∼
Beta(1, γ). Breaking the stick β2, π2 will be set.

5. Continue the process infinite times.

3.2. Model Definition

Hierarchical Dirichlet Process gives the possibility to have

distributions over hyper-parameters by making the mod-

els more flexible. The coupling between transition matrix

makes possible to give a higher level to DP prior over the

parameters.

β ∼ DP(γ/K, . . . , γ/K) (5)

πj ∼ DP(αβ)

πj being the transition matrix for the state k and β the prior

hyper-parameter.

Letting Gj describe both, the transition matrix πjk and the

emission matrixΘ. The infinite Hidden Markov Model can

be given by the following generative process described as

follows:

β|γ ∼ GEM(γ) (6)

πj |α,β ∼ DP(α,β)

zjt|πj ∼ Mult(πj)

θk|H ∼ H

xjt|zjt, {θk}
∞
k=1 ∼ F (θzjt)

zjt being the indicator variable of the HDP-HMM, and θk
taking the different values of θzjt distributed according to

Gj with some probability πjk . F (θzjt) is a data likelihood

(e.g. a Gaussian distribution) with mean µzjt
and covari-

ance matrix Σzjt , N (xjt;µzjt
,Σzjt)).

the graphical model for the infinite Hidden Markov Model

having the representation as in figure 1.

Figure 1. Infinite Hidden Markov Model (IHMM) graphical rep-

resentation

Bacause of the lack of the strong beliefs of the hyper-

parameters α and γ, (Teh et al., 2006) gives a Gamma dis-

tribution that where also used in other works (Beal et al.,

2002; Van Gael et al., 2008).

3.3. Inference of the infinite Hidden Markov Model

In the IHMM model we estimate the state sequences z =
(z1, . . . zt) and the hyper-parameters (α,β, γ) that defines

the transition and the emission matrix. The Gibbs sampling

is described shortly in the algorithm 1 that computes O(K)
probabilities for each of t states giving to the inference for

the infinite Hidden Markov Models with Gibbs sampling a

O(TK) computational complexity. The Beam sampling,

having the worst complexity O(TK2) is briefly described,

but we refer the reader for more details to (Van Gael et al.,

2008).

The Gibbs sampling for the infinite Hidden Markov

Model consisting in sampling of the states zt that needs

two factors, where the first is the conditional likelihood of

xt given z, X and H.

p(zt = k|z\t,β, α) ∝






















(nzt−1,k + αβk)
nk,zt+1

+αβzt+1

nk.+α
if k ≤ K, k 6= zt−1

(nzt−1,k + αβk)
nk,zt+1

+1+αβzt+1

nk.+1+α
if k = zt−1 = zt+1

(nzt−1,k + αβk)
nk,zt+1

+αβzt+1

nk.+1+α
if k = zt−1 6= zt+1

αβkβzt+1
if k = K + 1

(7)

The second factor p(zt|z\t,β, α) will be computed as in

the equation 7,where nij is the number of transitions from

state i to the state j, excluding the time steps t and t − 1;

n.i and ni. being the number of transition in and respec-

tively out of state i and K is the number of distinct states

in z−t.
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Algorithm 1 Gibbs sampling for Infinite Hidden Markov

Models

Input: The observations X = (x1, . . . , xT ), the number

of samplings ns.

Initialize a random hidden state sequence z0 =
(z1, . . . , zT ).
for q = 1 to ns do

for t = 1 to T do

1. Sample the state p(zt = k|X, z\t,β, α,H) ∝
p(xt|x\t, zt = k, z\t,H) p(zt = k|z\t,β, α).
2. Update count matrices to reflect new zt. This

step may change the number of represented hidden

states K .

end for

3. Update the hyper-parameters α,β, γ.

end for

The Beam sampling for the infinite Hidden Markov

Model consist in using the truncation of the transition ma-

trix and using the dynamic programming to sample the

states z. Therefore it extends the Gibbs sampling by adding

an auxiliary variable u = (u1, . . . , uT ) that has the follow-

ing distribution:

ut ∼ Uniform(0, πztzt−1
) (8)

The states z of the model is sampled by a forward filtering-

backward sampling. The idea is that only the finite number

of states with probabilities πzt−1zt ≥ ut, ∀t ∈ T will have

non-zero probabilities. The probability density for the state

zt will be computed as follows:

p(zt|x,u,π,Θ) ∝ p(xt|zt)
∑

p(zt−1|x\t,u\t,π,Θ)

(9)

In equation 9 the sum over an infinite number of terms was

constrained by ut < πzt−1zt and p(zt−1|x\t,u\t,π,Θ) >
0, making it to sum over the finite number of zt−1.

The sampling of the model parameters in the infinite

Hidden Markov Model, in particular π, θ and β are given

in (Teh et al., 2006), however we give a brief introduction

to these. Supposing njk the number of times that a state j
transits to another state k, where j, k ∈ 1 . . .K , K repre-

senting the number of different states in z, the conditional

distribution for the transition matrix π given the states z,

and the hyper-parameters β, α is sampled by a Dirichlet

distribution:

πj ∝ Dir(nj1 + αβ1, . . . njK + αβK , α
∞∑

i=K+1

βi) (10)

where β is also sampled according to the Dirichlet distri-

bution:

β ∝ Dir(m.1, . . . ,m.K , γ) (11)

where m.k representing the number of clusters k in all

the data groups J , respectively one can say m.k =∑K

j=1
mjk. More details are could be found in (Teh et al.,

2006; Antoniak, 1974). At the end the parameters θk =
{µk,Σk} conditional on the data X, states z and the prior

distribution NIW(µ0, κ0, ν0,Λ0) are sampled according

to their posterior distributions.

4. Experiments

In this experiment, we apply the infinite Hidden Markov

Model to a challenging problem of humpback whale song

decomposition. Humpback whales produce songs with a

specific structure and the study of that songs is very chal-

lenging and very useful for bio-acousticians and scientists

to namely understand how do whales song and commu-

nicate (possibly according to which vocabulary) and to

have an idea about their origin, since the songs of whales

from different origins can be different. The analysis of

such complex signals that aims at discovering the call units

(which can be considered as a kind of whale vocabulary),

can be seen as a problem of unsupervised call units clas-

sification as in (Pace et al., 2010). We therefore reformu-

late the problem of whale song decomposition as a cluster-

ing problem. Contrary to the approach used in (Pace et al.,

2010), in which the number of clusters (call units in this

case) has been fixed manually, here, we apply the infi-

nite Hidden Markov Model to find the sates of the whale

song, and automatically infer the number of states from the

data. The used data are available in the framework of our

SABIOD project2. The data consist of MFCC parameters

of 8.6 minutes of a Humpback whale song recordings pro-

duced at few meters distance from the whale in La Reunion

- Indian Ocean. The 8.6 minutes of a Humpback whale

song recordings where treated for this application. The

Hierarchical Dirichlet Process for Hidden Markov Model

was investigated by two approaches, the Gibbs sampling

(Fox et al., 2008) with the original HDP-HMM (Teh et al.,

2006) and the Beam sampling (Van Gael et al., 2008). The

week limit approximation to the DP (Ishwaran & Zarepour,

2002) also named in literature as the truncation level (L)
3 equal to 30 was used for the two approaches. The al-

gorithms runs for 29000 sweeps and the state sequence

partitions with the spectrogram of the humpback whale

song units highlight the interest of using the Bayesian non-

parametric approaches over the Hidden Markov Model.

Figure 2 illustrates the state sequences obtained by using

the Gibbs sampling inference approach for the HDP-HMM

developed in (Teh et al., 2006; Fox et al., 2008). One can

2Scaled Acoustic BIODiversity:
http://sabiod.univ-tln.fr/data_samples.html

3L is the number that is bigger then the expected number of
states in the model

http://sabiod.univ-tln.fr/data_samples.html
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see the number of states estimated in this context is equal to

K = 6 being much smaller then the truncation level L. The

figure 2 illustrating the maximum state sequence possible

supposed a priori equal to L = 30, one can see that there

are empty states.
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10
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Figure 2. The state sequences obtained by the Gibbs sampling in-

ference approach for Infinite Hidden Markov Model of the hump-

back whale song data.

In the figure 3 we illustrate the spectrogram for 3 states se-

quences of the song units obtained for the humpback whale

song data by the bas HDP-HMM with the Gibbs sampling

inference approach. On the vertical axes the frequency (0
to 22.05 kHz) is showed and on the horizontal axes we have

the time, represented in seconds.

The Beam sampling was also investigated over the hump-

back whale song data, and the results where shown in the

figure 4. The inferred state sequence representation on the

left of the figure 4 was zoomed to 10 sequences, however

the truncation level was taken to be the same as for the

Gibbs sampling for the HDP-HMM (L = 30). We notice

the ninth sequence are clearly conveying information. This

determines the humpback whale song data. On the right of

the figure 4 observe the spectrogram of the whale song.

5. Conclusion

In this paper we relied on the Hierarchical Dirichlet Process

for Hidden Markov Model for unsupervised learning from

complex bioacoustic data. The two different approaches,

the Gibbs sampling and the Beam sampling were inves-

tigated over the bioacoustic signals. The possible hidden

whale song units of the humpback whale signals were de-

termined in an automatic way. The obtaining results high-

light the interest of using the Bayesian non-parametric ap-

proach for the Hidden Markov Model. In a future work

we propose the possibility to make the eigenvalue decom-

position for the covariance matrix for the emission density

of the HMM, where more flexible models could appear in

term of different volumes, orientations and shapes for each

clusters.

song unit 16

song unit 19

song unit 30

Figure 3. Spectrograms for the song units of the humpback whale

obtained with the Gibbs sampling inference approach for Infinite

Hidden Markov Model.
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Figure 4. The state sequences (on left) and the spectrogram (on

right), (the ninth unit) for the song of humpback whale obtained

by the the Beam sampling inference approach for the Infinite Hid-

dden Markov Model
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